V. Hannen - The CBELSA/TAPS Collaboration

V. Hannen
Are you V. Hannen?

Claim your profile, edit publications, add additional information:

Contact Details

V. Hannen
The CBELSA/TAPS Collaboration

Pubs By Year

Pub Categories

Physics - Instrumentation and Detectors (12)
Nuclear Experiment (5)
High Energy Physics - Experiment (4)
Physics - Atomic Physics (3)
Instrumentation and Methods for Astrophysics (2)
Astrophysics of Galaxies (1)
Cosmology and Nongalactic Astrophysics (1)
High Energy Physics - Phenomenology (1)

Publications Authored By V. Hannen

The KATRIN experiment aims at a direct and model independent determination of the neutrino mass with 0.2 eV/c^2 sensitivity (at 90% C.L. Read More


DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Read More

Authors: M. Arenz, M. Babutzka, M. Bahr, J. P. Barrett, S. Bauer, M. Beck, A. Beglarian, J. Behrens, T. Bergmann, U. Besserer, J. Blümer, L. I. Bodine, K. Bokeloh, J. Bonn, B. Bornschein, L. Bornschein, S. Büsch, T. H. Burritt, S. Chilingaryan, T. J. Corona, L. De Viveiros, P. J. Doe, O. Dragoun, G. Drexlin, S. Dyba, S. Ebenhöch, K. Eitel, E. Ellinger, S. Enomoto, M. Erhard, D. Eversheim, M. Fedkevych, A. Felden, S. Fischer, J. A. Formaggio, F. Fränkle, D. Furse, M. Ghilea, W. Gil, F. Glück, A. Gonzalez Urena, S. Görhardt, S. Groh, S. Grohmann, R. Grössle, R. Gumbsheimer, M. Hackenjos, V. Hannen, F. Harms, N. Hauÿmann, F. Heizmann, K. Helbing, W. Herz, S. Hickford, D. Hilk, B. Hillen, T. Höhn, B. Holzapfel, M. Hötzel, M. A. Howe, A. Huber, A. Jansen, N. Kernert, L. Kippenbrock, M. Kleesiek, M. Klein, A. Kopmann, A. Kosmider, A. Kovalík, B. Krasch, M. Kraus, H. Krause, M. Krause, L. Kuckert, B. Kuffner, L. La Cascio, O. Lebeda, B. Leiber, J. Letnev, V. M. Lobashev, A. Lokhov, E. Malcherek, M. Mark, E. L. Martin, S. Mertens, S. Mirz, B. Monreal, K. Müller, M. Neuberger, H. Neumann, S. Niemes, M. Noe, N. S. Oblath, A. Off, H. -W. Ortjohann, A. Osipowicz, E. Otten, D. S. Parno, P. Plischke, A. W. P. Poon, M. Prall, F. Priester, P. C. -O. Ranitzsch, J. Reich, O. Rest, R. G. H. Robertson, M. Röllig, S. Rosendahl, S. Rupp, M. Rysavy, K. Schlösser, M. Schlösser, K. Schönung, M. Schrank, J. Schwarz, W. Seiler, H. Seitz-Moskaliuk, J. Sentkerestiova, A. Skasyrskaya, M. Slezak, A. Spalek, M. Steidl, N. Steinbrink, M. Sturm, M. Suesser, H. H. Telle, T. Thümmler, N. Titov, I. Tkachev, N. Trost, A. Unru, K. Valerius, D. Venos, R. Vianden, S. Vöcking, B. L. Wall, N. Wandkowsky, M. Weber, C. Weinheimer, C. Weiss, S. Welte, J. Wendel, K. L. Wierman, J. F. Wilkerson, D. Winzen, J. Wolf, S. Wüstling, M. Zacher, S. Zadoroghny, M. Zboril

The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. Read More

Authors: R. Adhikari, M. Agostini, N. Anh Ky, T. Araki, M. Archidiacono, M. Bahr, J. Baur, J. Behrens, F. Bezrukov, P. S. Bhupal Dev, D. Borah, A. Boyarsky, A. de Gouvea, C. A. de S. Pires, H. J. de Vega, A. G. Dias, P. Di Bari, Z. Djurcic, K. Dolde, H. Dorrer, M. Durero, O. Dragoun, M. Drewes, G. Drexlin, Ch. E. Düllmann, K. Eberhardt, S. Eliseev, C. Enss, N. W. Evans, A. Faessler, P. Filianin, V. Fischer, A. Fleischmann, J. A. Formaggio, J. Franse, F. M. Fraenkle, C. S. Frenk, G. Fuller, L. Gastaldo, A. Garzilli, C. Giunti, F. Glück, M. C. Goodman, M. C. Gonzalez-Garcia, D. Gorbunov, J. Hamann, V. Hannen, S. Hannestad, S. H. Hansen, C. Hassel, J. Heeck, F. Hofmann, T. Houdy, A. Huber, D. Iakubovskyi, A. Ianni, A. Ibarra, R. Jacobsson, T. Jeltema, J. Jochum, S. Kempf, T. Kieck, M. Korzeczek, V. Kornoukhov, T. Lachenmaier, M. Laine, P. Langacker, T. Lasserre, J. Lesgourgues, D. Lhuillier, Y. F. Li, W. Liao, A. W. Long, M. Maltoni, G. Mangano, N. E. Mavromatos, N. Menci, A. Merle, S. Mertens, A. Mirizzi, B. Monreal, A. Nozik, A. Neronov, V. Niro, Y. Novikov, L. Oberauer, E. Otten, N. Palanque-Delabrouille, M. Pallavicini, V. S. Pantuev, E. Papastergis, S. Parke, S. Pascoli, S. Pastor, A. Patwardhan, A. Pilaftsis, D. C. Radford, P. C. -O. Ranitzsch, O. Rest, D. J. Robinson, P. S. Rodrigues da Silva, O. Ruchayskiy, N. G. Sanchez, M. Sasaki, N. Saviano, A. Schneider, F. Schneider, T. Schwetz, S. Schönert, S. Scholl, F. Shankar, R. Shrock, N. Steinbrink, L. Strigari, F. Suekane, B. Suerfu, R. Takahashi, N. Thi Hong Van, I. Tkachev, M. Totzauer, Y. Tsai, C. G. Tully, K. Valerius, J. W. F. Valle, D. Venos, M. Viel, M. Vivier, M. Y. Wang, C. Weinheimer, K. Wendt, L. Winslow, J. Wolf, M. Wurm, Z. Xing, S. Zhou, K. Zuber

We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. Read More

Affiliations: 1The CBELSA/TAPS Collaboration, 2The CBELSA/TAPS Collaboration, 3The CBELSA/TAPS Collaboration, 4The CBELSA/TAPS Collaboration, 5The CBELSA/TAPS Collaboration, 6The CBELSA/TAPS Collaboration, 7The CBELSA/TAPS Collaboration, 8The CBELSA/TAPS Collaboration, 9The CBELSA/TAPS Collaboration, 10The CBELSA/TAPS Collaboration, 11The CBELSA/TAPS Collaboration, 12The CBELSA/TAPS Collaboration, 13The CBELSA/TAPS Collaboration, 14The CBELSA/TAPS Collaboration, 15The CBELSA/TAPS Collaboration, 16The CBELSA/TAPS Collaboration, 17The CBELSA/TAPS Collaboration, 18The CBELSA/TAPS Collaboration, 19The CBELSA/TAPS Collaboration, 20The CBELSA/TAPS Collaboration, 21The CBELSA/TAPS Collaboration, 22The CBELSA/TAPS Collaboration, 23The CBELSA/TAPS Collaboration, 24The CBELSA/TAPS Collaboration, 25The CBELSA/TAPS Collaboration, 26The CBELSA/TAPS Collaboration, 27The CBELSA/TAPS Collaboration, 28The CBELSA/TAPS Collaboration, 29The CBELSA/TAPS Collaboration, 30The CBELSA/TAPS Collaboration, 31The CBELSA/TAPS Collaboration, 32The CBELSA/TAPS Collaboration, 33The CBELSA/TAPS Collaboration, 34The CBELSA/TAPS Collaboration, 35The CBELSA/TAPS Collaboration, 36The CBELSA/TAPS Collaboration, 37The CBELSA/TAPS Collaboration, 38The CBELSA/TAPS Collaboration, 39The CBELSA/TAPS Collaboration, 40The CBELSA/TAPS Collaboration, 41The CBELSA/TAPS Collaboration, 42The CBELSA/TAPS Collaboration, 43The CBELSA/TAPS Collaboration, 44The CBELSA/TAPS Collaboration, 45The CBELSA/TAPS Collaboration, 46The CBELSA/TAPS Collaboration, 47The CBELSA/TAPS Collaboration, 48The CBELSA/TAPS Collaboration, 49The CBELSA/TAPS Collaboration, 50The CBELSA/TAPS Collaboration, 51The CBELSA/TAPS Collaboration, 52The CBELSA/TAPS Collaboration, 53The CBELSA/TAPS Collaboration, 54The CBELSA/TAPS Collaboration, 55The CBELSA/TAPS Collaboration, 56The CBELSA/TAPS Collaboration, 57The CBELSA/TAPS Collaboration, 58The CBELSA/TAPS Collaboration, 59The CBELSA/TAPS Collaboration, 60The CBELSA/TAPS Collaboration, 61The CBELSA/TAPS Collaboration, 62The CBELSA/TAPS Collaboration, 63The CBELSA/TAPS Collaboration, 64The CBELSA/TAPS Collaboration, 65The CBELSA/TAPS Collaboration, 66The CBELSA/TAPS Collaboration, 67The CBELSA/TAPS Collaboration, 68The CBELSA/TAPS Collaboration, 69The CBELSA/TAPS Collaboration, 70The CBELSA/TAPS Collaboration, 71The CBELSA/TAPS Collaboration, 72The CBELSA/TAPS Collaboration, 73The CBELSA/TAPS Collaboration, 74The CBELSA/TAPS Collaboration, 75The CBELSA/TAPS Collaboration, 76The CBELSA/TAPS Collaboration, 77The CBELSA/TAPS Collaboration, 78The CBELSA/TAPS Collaboration, 79The CBELSA/TAPS Collaboration

Data on the polarization observables T, P, and H for the reaction $\gamma p\to p\pi^0$ are reported. Compared to earlier data from other experiments, our data are more precise and extend the covered range in energy and angle substantially. The results were extracted from azimuthal asymmetries measured using a transversely polarized target and linearly polarized photons. Read More

New data on the polarization observables T, P, and H for the reaction $\gamma p \to p\pi^0$ are reported. The results are extracted from azimuthal asymmetries when a transversely polarized butanol target and a linearly polarized photon beam are used. The data were taken at the Bonn electron stretcher accelerator ELSA using the CBELSA/TAPS detector. Read More

We performed a laser spectroscopic determination of the $2s$ hyperfine splitting (HFS) of Li-like $^{209}\text{Bi}^{80+}$ and repeated the measurement of the $1s$ HFS of H-like $^{209}\text{Bi}^{82+}$. Both ion species were subsequently stored in the Experimental Storage Ring at the GSI Helmholtzzentrum f\"ur Schwerionenforschung Darmstadt and cooled with an electron cooler at a velocity of $\approx 0.71\,c$. Read More

In this contribution we review the status and perspectives of direct neutrino mass experiments. These experiments investigate the kinematics of $\beta$-decays of specific isotopes ($^3$H, $^{187}$Re, $^{163}$Ho) to derive model-independent information on the averaged electron (anti-) neutrino mass, which is formed by the incoherent sum of the neutrino mass eigenstates contributing to the electron neutrino. We first review the kinematics of $\beta$-decay and the determination of the neutrino mass, before giving a brief overview of past neutrino mass measurements (SN1987a-ToF studies, Mainz and Troitsk experiments for $^3$H, cryo-bolometers for $^{187}$Re). Read More

A single photon counting system has been developed for efficient detection of forward emitted fluorescence photons at the Experimental Storage Ring (ESR) at GSI. The system employs a movable parabolic mirror with a central slit that can be positioned around the ion beam and a selected low noise photomultiplier for detection of the collected photons. Compared to the previously used system of mirror segments installed inside the ESR the collection efficiency for forward-emitted photons is improved by more than a factor of 5. Read More

We have performed laser cooling of Mg ions confined in a Penning trap. The externally produced ions were captured in flight, stored and laser cooled. Laser-induced fluorescence was observed perpendicular to the cooling laser axis. Read More

For the SPECTRAP experiment at GSI, Germany, detectors with Single-Photon counting capability in the visible and near-infrared regime are required. For the wavelength region up to 1100 nm we investigate the performance of 2x2 mm^2 avalanche photo diodes (APDs) of type S0223 manufactured by Radiation Monitoring Devices. To minimize thermal noise, the APDs are cooled to approximately -170 deg. Read More

The isomer 83mKr with its half-life of 1.83 h is an ideal calibration source for a liquid noble gas dark matter experiment like the XENON project. However, the risk of contamination of the detector with traces of the much longer lived mother isotop 83Rb (86. Read More

We have developed a contact-free 2-dimensional laser sensor with which the position of wires can be measured in 3 dimensions with an accuracy of better than 10 micrometer and with which the tension of the wires can be determined with an accuracy of 0.04 N. These measurements can be made from a distance of 15 cm. Read More

We report on spectroscopy and time-of-flight measurements using an 18 keV fast-pulsed photoelectron source of adjustable intensity, ranging from single photoelectrons per pulse to 5 photoelectrons per microsecond at pulse repetition rates of up to 10 kHz. Short pulses between 40 ns and 40 microseconds in length were produced by switching light emitting diodes with central output wavelengths of 265 nm and 257 nm, in the deep ultraviolet (or UV-C) regime, at kHz frequencies. Such photoelectron sources can be useful calibration devices for testing the properties of high-resolution electrostatic spectrometers, like the ones used in current neutrino mass searches. Read More