V. Cataudella - CNR-SPIN and Universita' degli Studi di Napoli Federico II, Napoli, Italy

V. Cataudella
Are you V. Cataudella?

Claim your profile, edit publications, add additional information:

Contact Details

V. Cataudella
CNR-SPIN and Universita' degli Studi di Napoli Federico II, Napoli, Italy

Pubs By Year

External Links

Pub Categories

Physics - Strongly Correlated Electrons (32)
Physics - Mesoscopic Systems and Quantum Hall Effect (15)
Physics - Materials Science (12)
Physics - Superconductivity (4)
Physics - Soft Condensed Matter (3)
Physics - Statistical Mechanics (2)
Physics - Geophysics (2)
Physics - Other (2)
Physics - Optics (2)
Quantum Physics (2)
Physics - Instrumentation and Detectors (2)
Cosmology and Nongalactic Astrophysics (1)
High Energy Physics - Phenomenology (1)

Publications Authored By V. Cataudella

Authors: C. E. Aalseth, F. Acerbi, P. Agnes, I. F. M. Albuquerque, T. Alexander, A. Alici, A. K. Alton, P. Ampudia, P. Antonioli, S. Arcelli, R. Ardito, I. J. Arnquist, D. M. Asner, H. O. Back, G. Batignani, E. Bertoldo, S. Bettarini, M. G. Bisogni, V. Bocci, A. Bondar, G. Bonfini, W. Bonivento, M. Bossa, B. Bottino, R. Bunker, S. Bussino, A. Buzulutskov, M. Cadeddu, M. Cadoni, A. Caminata, N. Canci, A. Candela, C. Cantini, M. Caravati, M. Cariello, M. Carlini, M. Carpinelli, A. Castellani, S. Catalanotti, V. Cataudella, P. Cavalcante, R. Cereseto, Y. Chen, A. Chepurnov, A. Chiavassa, C. Cicalò, L. Cifarelli, M. Citterio, A. G. Cocco, M. Colocci, S. Corgiolu, G. Covone, P. Crivelli, I. D'Antone, M. D'Incecco, M. D. Da Rocha Rolo, M. Daniel, S. Davini, A. De Candia, S. De Cecco, M. De Deo, G. De Filippis, G. De Guido, G. De Rosa, G. Dellacasa, P. Demontis, A. V. Derbin, A. Devoto, F. Di Eusanio, G. Di Pietro, C. Dionisi, A. Dolgov, I. Dormia, S. Dussoni, A. Empl, A. Ferri, C. Filip, G. Fiorillo, K. Fomenko, D. Franco, G. E. Froudakis, F. Gabriele, A. Gabrieli, C. Galbiati, P. Garcia Abia, A. Gendotti, A. Ghisi, S. Giagu, G. Gibertoni, C. Giganti, M. Giorgi, G. K. Giovanetti, M. L. Gligan, A. Gola, O. Gorchakov, A. M. Goretti, F. Granato, M. Grassi, J. W. Grate, G. Y. Grigoriev, M. Gromov, M. Guan, M. B. B. Guerra, M. Guerzoni, M. Gulino, R. K. Haaland, B. Harrop, E. W. Hoppe, S. Horikawa, B. Hosseini, D. Hughes, P. Humble, E. V. Hungerford, An. Ianni, S. Jimenez Cabre, T. N. Johnson, K. Keeter, C. L. Kendziora, S. Kim, G. Koh, D. Korablev, G. Korga, A. Kubankin, R. Kugathasan, M. Kuss, X. Li, M. Lissia, G. U. Lodi, B. Loer, G. Longo, R. Lussana, L. Luzzi, Y. Ma, A. A. Machado, I. N. Machulin, L. Mais, A. Mandarano, L. Mapelli, M. Marcante, A. Margotti, S. M. Mari, M. Mariani, J. Maricic, M. Marinelli, D. Marras, C. J. Martoff, M. Mascia, A. Messina, P. D. Meyers, R. Milincic, A. Moggi, S. Moioli, S. Monasterio, J. Monroe, A. Monte, M. Morrocchi, W. Mu, V. N. Muratova, S. Murphy, P. Musico, R. Nania, J. Napolitano, A. Navrer Agasson, I. Nikulin, V. Nosov, A. O. Nozdrina, N. N. Nurakhov, A. Oleinik, V. Oleynikov, M. Orsini, F. Ortica, L. Pagani, M. Pallavicini, S. Palmas, L. Pandola, E. Pantic, E. Paoloni, G. Paternoster, V. Pavletcov, F. Pazzona, K. Pelczar, L. A. Pellegrini, N. Pelliccia, F. Perotti, R. Perruzza, C. Piemonte, F. Pilo, A. Pocar, D. Portaluppi, S. S. Poudel, D. A. Pugachev, H. Qian, B. Radics, F. Raffaelli, F. Ragusa, K. Randle, M. Razeti, A. Razeto, V. Regazzoni, C. Regenfus, B. Reinhold, A. L. Renshaw, M. Rescigno, Q. Riffard, A. Rivetti, A. Romani, L. Romero, B. Rossi, N. Rossi, A. Rubbia, D. Sablone, P. Salatino, O. Samoylov, W. Sands, M. Sant, R. Santorelli, C. Savarese, E. Scapparone, B. Schlitzer, G. Scioli, E. Sechi, E. Segreto, A. Seifert, D. A. Semenov, S. Serci, A. Shchagin, L. Shekhtman, E. Shemyakina, A. Sheshukov, M. Simeone, P. N. Singh, M. D. Skorokhvatov, O. Smirnov, G. Sobrero, A. Sokolov, A. Sotnikov, C. Stanford, G. B. Suffritti, Y. Suvorov, R. Tartaglia, G. Testera, A. Tonazzo, A. Tosi, P. Trinchese, E. V. Unzhakov, A. Vacca, M. Verducci, T. Viant, F. Villa, A. Vishneva, B. Vogelaar, M. Wada, J. Wahl, S. Walker, H. Wang, Y. Wang, A. W. Watson, S. Westerdale, J. Wilhelmi, R. Williams, M. M. Wojcik, S. Wu, X. Xiang, X. Xiao, C. Yang, Z. Ye, F. Zappa, G. Zappalà, C. Zhu, A. Zichichi, G. Zuzel

We report on the cryogenic characterization of Red Green Blue - High Density (RGB-HD) SiPMs developed at Fondazione Bruno Kessler (FBK) as part of the DarkSide program of dark matter searches with liquid argon time projection chambers. A dedicated setup was used to measure the primary dark noise, the correlated noise, and the gain of the SiPMs at varying temperatures. A custom-made data acquisition system and analysis software were used to precisely characterize these parameters. Read More

We present a theoretical analysis of Dirac magneto-plasmons in topological insulator nanowires. We discuss a cylindrical geometry where Berry phase effects induce the opening of a gap at the neutrality point. By taking into account surface electron wave functions introduced in previous papers and within the random phase approximation, we provide an analytical form of the dynamic structure factor. Read More

We examine the additional physics potential for a large scale argon experiment that could also provide some information on the direction of the recoiling nucleus. We explore the statistical feasibility of directional signal detection using a simplified approach that categorizes events based on the vertical or horizontal orientation of nuclear recoil direction and with a likelihood-ratio statistical approach that discriminates directional signal against a possible isotropic background source. Read More

Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here, we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, and we show that it rapidly approaches a multiple of the Zak phase in the long time limit. Read More

Soft nanosystems are electronic nanodevices, such as suspended carbon nanotubes or molecular junctions, whose transport properties are modulated by soft internal degrees of freedom, for example slow vibrational modes. In this review, effects of the electron-vibration coupling on the charge and heat transport of soft nanoscopic systems are theoretically investigated in the presence of time-dependent perturbations, such as a forcing antenna or pumping terms between the leads and the nanosystem. A well established approach valid for non-equilibrium adiabatic regimes is generalized to the case where external time-dependent perturbations are present. Read More

Stimulated by the recent realization of three dimensional topological insulator nanowire interfer- ometers, a theoretical analysis of quantum interference effects on the low energy spectrum of Bi2Se3 nanowires is presented. The electronic properties are analyzed in nanowires with circular, square and rectangular cross-sections starting from a continuum three dimensional model with particular emphasis on magnetic and geometrical effects. The theoretical study is based on numerically exact diagonalizations of the discretized model for all the geometries. Read More

Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walks are proving to be effective simulators of such phenomena. Here we report the realization of a photonic quantum walk showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional periodic systems, as in the Su-Schrieffer-Heeger model of polyacetylene. Read More

The linear thermoelectric properties of molecular junctions are theoretically studied close to room temperature within a model including electron-electron and electron-vibration interactions on the molecule. A nonequilibrium adiabatic approach is generalized to include large Coulomb repulsion through a self-consistent procedure and applied to the investigation of large molecules, such as fullerenes, within the Coulomb blockade regime. The focus is on the phonon thermal conductance which is quite sensitive to the effects of strong electron-electron interactions within the intermediate electron-vibration coupling regime. Read More

The transport properties at finite temperature of crystalline organic semiconductors are investigated, within the Su-Schrieffer-Heeger model, by combining exact diagonalization technique, Monte Carlo approaches, and maximum entropy method. The temperature-dependent mobility data measured in single crystals of rubrene are successfully reproduced: a crossover from super- to sub-diffusive motion occurs in the range $150 \leq T \leq 200$ K, where the mean free path becomes of the order of the lattice parameter and strong memory effects start to appear. We provide an effective model which can successfully explain low frequencies features of the absorption spectra. Read More

We present the first unbiased results for the mobility $\mu$ of one-dimensional Holstein polaron obtained by numerical analytic continuation combined with diagrammatic and world-line Monte Carlo methods in the thermodynamic limit. We have identified for the first time, by the characteristic $\omega$ and $T$ dependence in the wide region of parameters, several distinct regimes in the $\lambda-T$ plane including band conduction region, incoherent metallic region, activated hopping region, and high temperature saturation region. We observe for the first time that although mobilities and mean free paths at different values of $\lambda$ differ by many orders of magnitude at small temperatures, their values at $T$ larger than the bandwidth become very close to each other. Read More

We calculate the spectral function of the one dimensional Hubbard-Holstein model using the time dependent Density Matrix Renormalization Group (tDMRG), focusing on the regime of large local Coulomb repulsion, and away from electronic half-filling. We argue that, from weak to intermediate electron-phonon coupling, phonons interact only with the electronic charge, and not with the spin degrees of freedom. For strong electron-phonon interaction, spinon and holon bands are not discernible anymore and the system is well described by a spinless polaronic liquid. Read More

The thermoelectric properties of a molecular junction model, appropriate for large molecules such as fullerenes, are studied within a non-equilibrium adiabatic approach in the linear regime at room temperature. A self-consistent calculation is implemented for electron and phonon thermal conductance showing that both increase with the inclusion of the electron-vibration coupling. Moreover, we show that the deviations from the Wiedemann-Franz law are progressively reduced upon increasing the interaction between electronic and vibrational degrees of freedom. Read More

The Kubo formula for the electrical conductivity is rewritten in terms of a sum of Drude-like contributions associated to the exact eigenstates of the interacting system, each characterized by its own frequency-dependent relaxation time. The structure of the novel and equivalent formulation, weighting the contribution from each eigenstate by its Boltzmann occupation factor, simplifies considerably the access to the static properties (dc conductivity) and resolves the long standing difficulties to recover the Boltzmann result for dc conductivity from the Kubo formula. It is shown that the Boltzmann result, containing the correct transport scattering time instead of the electron lifetime determined by the Green function, can be recovered in problems with elastic and inelastic scattering at the lowest order of interaction. Read More

Spectral and transport properties of small molecule single-crystal organic semiconductors have been theoretically analyzed focusing on oligoacenes, in particular on the series from naphthalene to rubrene and pentacene aiming to show that the inclusion of different electron-phonon couplings is of paramount importance to interpret accurately the properties of prototype organic semiconductors. While, in the case of rubrene, the coupling between charge carriers and low frequency inter-molecular modes is sufficient for a satisfactory description of spectral and transport properties, the inclusion of electron coupling to both low frequency inter-molecular and high frequency intra-molecular vibrational modes is needed to account for the temperature dependence of transport properties in smaller oligoacenes. Read More

The non-equilibrium semiconductors physics is based on the paradigm that different degrees of freedom interact on different timescales. In this context the photo-excitation is often treated as an impulsive injection of electronic energy that is transferred to other degrees of freedom only at later times. Here, by studying the ultrafast particles dynamics in a archetypal strongly correlated charge-transfer insulator (La2CuO4), we show that the interaction between electrons and bosons manifest itself directly in the photo-excitation processes of a correlated material. Read More

We study a Thouless pump realized with an elastically \textit{deformable quantum dot} whose center of mass follows a non-linear stochastic dynamics. The interplay of noise, non-linear effects, dissipation and interaction with an external time-dependent driving on the pumped charge is fully analyzed. The results show that the quantum pumping mechanism not only is not destroyed by the force fluctuations, but it becomes stronger when the forcing signal frequency is tuned close to the resonance of the vibrational mode. Read More

Single-parameter adiabatic charge pumping, induced by a nearby radio-frequency antenna, is achieved in suspended carbon nanotubes close to the mechanical resonance. The charge pumping is due to an important dynamic adjustment of the oscillating motion to the antenna signal and it is different from the mechanism active in the two-parameter pumping. Finally, the second harmonic oscillator response shows an interesting relationship with the first harmonic that should be experimentally observed. Read More

We propose a microscopic model for a nanoelectromechanical system made by a radio-frequency driven suspended carbon nanotube (CNT) in the presence of an external magnetic field perpendicular to the current. As a main result, we show that, when the device is driven far from equilibrium, one can tune the CNT mechanical properties by varying the external magnetic field. Indeed, the magnetic field affects the CNT bending mode dynamics inducing an enhanced damping as well as a noise term due to the electronic phase fluctuations. Read More

The spectral response and physical features of the 2D Hubbard-Holstein model are calculated both in equilibrium at zero and low chemical dopings, and after an ultra short powerful light pulse, in undoped systems. At equilibrium and at strong charge-lattice couplings, the optical conductivity reveals a 3-peak structure in agreement with experimental observations. After an ultra short pulse and at nonzero electron-phonon interaction, phonon and spin subsystems oscillate with the phonon period $T_{ph} \approx 80$ fs. Read More

The formation of the electron-phonon induced bipolaron is shown to be feasible in organic semiconductors at the interface with dielectric gates due to the coupling of the carriers with interface vibrational modes and to the weak to intermediate strength of bulk electron-electron interaction. The polaronic bound states are found to be quite robust in a model with realistic strengths of electron coupling to both bulk and interface phonons. The crossover to nearly on-site bipolarons occurs for coupling values much smaller than those for nearly on-site polarons, but, on the other hand, it gives rise to an activated behavior of mobility with much larger activation energies. Read More

We study a general model describing a self-detecting single electron transistor realized by a suspended carbon nanotube actuated by a nearby antenna. The main features of the device, recently observed in a number of experiments, are accurately reproduced. When the device is in a low current-carrying state, a peak in the current signals a mechanical resonance. Read More

We study theoretically a fundamental issue in solids: the evolution of the optical spectra of polaron as the electron-phonon coupling increases. By comparing the exact results obtained by diagrammatic Monte Carlo method and the data got through exact diagonalization within an appropriate subspace of the phononic wavefunctions, the physical nature of the crossover from weak to strong coupling is revealed. The optical spectra are well understood by the quantum mechanical superposition of states with light and heavy phonon clouds corresponding to large and small polarons, respectively. Read More

The combined effect of bulk and interface electron-phonon couplings on the transport properties is investigated in a model for organic semiconductors gated with polarizable dielectrics. While the bulk electron-phonon interaction affects the behavior of mobility in the coherent regime below room temperature, the interface coupling is dominant for the activated high $T$ contribution of localized polarons. In order to improve the description of the transport properties, the presence of disorder is needed in addition to electron-phonon couplings. Read More

Spectral and transport properties of the quasi two-dimensional adiabatic Su-Schrieffer-Heeger model are studied adjusting the parameters in order to model rubrene single-crystal field effect transistors with small but finite density of injected charge carriers. We show that, with increasing temperature $T$, the chemical potential moves into the tail of the density of states corresponding to localized states, but this is not enough to drive the system into an insulating state. The mobility along different crystallographic directions is calculated including vertex corrections which give rise to a transport lifetime one order of magnitude smaller than spectral lifetime of the states involved in the transport mechanism. Read More

Electron coupling to intra- and inter-molecular vibrational modes is investigated in models appropriate to single crystal organic semiconductors, such as oligoacenes. Focus is on spectral and transport properties of these systems beyond perturbative approaches. The interplay between different couplings strongly affects the temperature band renormalization that is the result of a subtle equilibrium between opposite tendencies: band narrowing due to interaction with local modes, band widening due to electron coupling to non local modes. Read More

Spectral, optical and transport properties of an anisotropic three-dimensional Holstein model are studied within the adiabatic approximation. The parameter regime is appropriate for organic semiconductors used in single crystal based field effect transistors. Different approaches have been used to solve the model: self-consistent Born approximation valid for weak electron-phonon coupling, coherent potential approximation exact for infinite dimensions, and numerical diagonalization for finite lattices. Read More

A correlated inhomogeneous mean-field approach is proposed in order to study a tight-binding model of the manganite heterostructures (LaMnO3)2n/(SrMnO3)n with average hole doping x = 1/3. Phase diagrams, spectral and optical properties of large heterostructures (up to 48 sites along the growth direction) with a single interface are discussed analyzing the effects of electron-lattice anti-adiabatic fluctuations and strain. The formation of a metallic ferromagnetic interface is quite robust with varying the strength of electron-lattice coupling and strain, though the size of the interface region is strongly dependent on these interactions. Read More

Transport properties, spectral function and optical conductivity of the adiabatic one-dimensional Su-Schrieffer-Heeger (SSH) model are studied with particular emphasis on the model parameters suitable for Rubrene single crystals based field effect transistors. We show that the mobility, calculated by using the Kubo formula for conductivity, vanishes unless we introduce an "ad hoc" broadening of the system energy levels. Furthermore, the apparent contradiction between angle resolved photoemission data and transport properties is clarified by studying the behavior of the spectral function. Read More

Affiliations: 1Dipartimento di Fisica E. Amaldi, Universita' di Roma Tre, Roma, Italy, 2CNR-SPIN and Universita' degli Studi di Napoli Federico II, Napoli, Italy, 3CNR-SPIN and Universita' degli Studi di Napoli Federico II, Napoli, Italy, 4CNR-SPIN and Universita' degli Studi di Napoli Federico II, Napoli, Italy

We propose a very accurate computational scheme for the dynamics of a classical oscillator coupled to a molecular junction driven by a finite bias, including the finite mass effect. We focus on two minimal models for the molecular junction: Anderson-Holstein (AH) and two-site Su-Schrieffer-Heeger (SSH) models. As concerns the oscillator dynamics, we are able to recover a Langevin equation confirming what found by other authors with different approaches and assessing that quantum effects come from the electronic subsystem only. Read More

We study a single polaron in the Su-Schrieffer-Heeger (SSH) model using four different techniques (three numerical and one analytical). Polarons show a smooth crossover from weak to strong coupling, as a function of the electron-phonon coupling strength $\lambda$, in all models where this coupling depends only on phonon momentum $q$. In the SSH model the coupling also depends on the electron momentum $k$; we find it has a sharp transition, at a critical coupling strength $\lambda_c$, between states with zero and nonzero momentum of the ground state. Read More

Quantum entropies and state distances are analyzed in polaronic systems with short range (Holstein model) and long range (Fr$\ddot{o}$hlich model) electron-phonon coupling. These quantities are extracted by a variational wave function which describes very accurately polaron systems with arbitrary size in all the relevant parameter regimes. With the use of quantum information tools, the crossover region from weak to strong coupling regime can be characterized with high precision. Read More

Double-exchange mechanisms in RE$_{1-x}$AE$_{x}$MnO$_{3}$ manganites (where RE is a trivalent rare-earth ion and AE is a divalent alkali-earth ion) relies on the strong exchange interaction between two Mn$^{3+}$ and Mn$^{4+}$ ions through interfiling oxygen 2p states. Nevertheless, the role of RE and AE ions has ever been considered "silent" with respect to the DE conducting mechanisms. Here we show that a new path for DE-mechanism is indeed possible by partially replacing the RE-AE elements by Mn$^{2+}$-ions, in La-deficient La$_{x}$MnO$_{3-\delta}$ thin films. Read More

A model describing the low density carrier state in an organic single crystal FET with high-$\kappa$ gate dielectrics is studied. The interplay between charge carrier coupling with inter-molecular vibrations in the bulk of the organic material and the long-range interaction induced at the interface with a polar dielectric is investigated. This interplay is responsible for the stabilization of a polaronic state with an internal structure extending on few lattice sites, at much lower coupling strengths than expected from the polar interaction alone. Read More

We investigate the interplay between strong electron correlations and charge-lattice interaction in cuprates. The coupling between half breathing bond stretching phonons and doped holes in the t-t'-J model is studied by limited phonon basis exact diagonalization method. Nonadiabatic electron-phonon interaction leads to the splitting of the phonon spectral function at half-way to the zone boundary at $\vec{q}_s=\{(\pm \pi / 2, 0), (0, \pm \pi / 2) \}$ and to low energy kink feature in the electron dispersion, in agreement with experimental observations. Read More

The magnetic and electronic modifications induced at the interfaces in (SrMnO$_{3}$)$_{n}$/(LaMnO$_{3}$)$_{2n}$ superlattices have been investigated by linear and circular magnetic dichroism in the Mn L$_{2,3}$ x-ray absorption spectra. Together with theoretical calculations, our data demonstrate that the charge redistribution across interfaces favors in-plane ferromagnetic (FM) order and $e_{g}(x^{2}-y^{2})$ orbital occupation, in agreement with the average strain. Far from interfaces, inside LaMnO$_3$, electron localization and local strain favor antiferromagnetism (AFM) and $e_{g}(3z^{2}-r^{2})$ orbital occupation. Read More

The optical conductivity (OC) of cuprates is studied theoretically in the low density limit of the t-t'-J-Holstein model. By developing a limited phonon basis exact diagonalization (LPBED) method capable of treating the lattice of largest size 4x4 ever considered, we are able to discern fine features of the mid-infrared (MIR) part of the OC revealing three-peak structure. The two lowest peaks are observed in experiments and the highest one is tacitly resolved in moderately doped cuprates. Read More

We solve the problem of polaron localization on an attractive impurity by means of direct-space Diagrammatic Monte Carlo implemented for the system in the thermodynamic limit. In particular we determine the ground state phase diagram in dependence on the electron-phonon coupling and impurity potential strength for the whole phonon frequency range. Including the quantum phonon dynamics we find and characterize a new phase which is missing in the zero phonon-frequency limit (adiabatic approximation), where self-trapped polarons are not localized at shallow impurities. Read More

The charge dynamics in weakly hole doped high temperature superconductors is studied in terms of the accurate numerical solution to a model of a single hole interacting with a quantum lattice in an antiferromagnetic background, and accurate far-infrared ellipsometry measurements. The experimentally observed two electronic bands in the infrared spectrum can be identified in terms of the interplay between the electron correlation and electron-phonon interaction resolving the long standing mystery of the mid-infrared band. Read More

The non-local nature of the polaron formation in t-t'-t"-J model is studied in large lattices up to 64 sites by developing a new numerical method. We show that the effect of longer-range hoppings t' and t" is a large anisotropy of the electron-phonon interaction (EPI) leading to a completely different influence of EPI on the nodal and antinodal points in agreement with the experiments. Furthermore, nonlocal EPI preserves polaron's quantum motion, which destroys the antiferromagnetic order effectively, even at strong coupling regime, although the quasi-particle weight in angle-resolved-photoemission spectroscopy is strongly suppressed. Read More

We develop a novel self-consistent approach for studying the angle resolved photoemission spectra (ARPES) of a hole in the t-J-Holstein model giving perfect agreement with numerically exact Diagrammatic Monte Carlo data at zero temperature for all regimes of electron-phonon coupling. Generalizing the approach to finite temperatures we find that the anomalous temperature dependence of the ARPES in undoped cuprates is explained by cooperative interplay of coupling of the hole to magnetic fluctuations and strong electron-phonon interaction. Read More

The effect of Rashba spin-orbit interaction in quantum wires with hard-wall boundaries is discussed. The exact wave function and eigenvalue equation are worked out pointing out the mixing between the spin and spatial parts. The spectral properties are also studied within the perturbation theory with respect to the strength of the spin-orbit interaction and diagonalization procedure. Read More

In order to characterize landslide frequency-size distributions and individuate hazard scenarios and their possible precursors, we investigate a cellular automaton where the effects of a finite driving rate and the anisotropy are taken into account. The model is able to reproduce observed features of landslide events, such as power-law distributions, as experimentally reported. We analyze the key role of the driving rate and show that, as it is increased, a crossover from power-law to non power-law behaviors occurs. Read More

Affiliations: 1Universita' di Napoli, Italy, 2Universita' di Napoli, Italy, 3Universita' di Napoli, Italy, 4Universita' di Napoli, Italy, 5Universita' di Napoli, Italy

Landslide inventories show that the statistical distribution of the area of recorded events is well described by a power law over a range of decades. To understand these distributions, we consider a cellular automaton to model a time and position dependent factor of safety. The model is able to reproduce the complex structure of landslide distribution, as experimentally reported. Read More

The optical absorption of the Fr\"{o}hlich polaron model is obtained by an approximation-free Diagrammatic Monte Carlo method and compared with two new approximate approaches that treat lattice relaxation effects in different ways. We show that: i) a strong coupling expansion, based on the the Franck-Condon principle, well describes the optical conductivity for large coupling strengths ($\alpha >10$); ii) a Memory Function Formalism with phonon broadened levels reproduces the optical response for weak coupling strengths ($\alpha <6$) taking the dynamic lattice relaxation into account. In the coupling regime $6<\alpha<10$ the optical conductivity is a rapidly changing superposition of both Franck-Condon and dynamic contributions. Read More

We discuss the combined effect of Rashba and Dresselhaus spin-orbit interactions in polygonal loops formed by quantum wires, when the electron are injected in a node and collected at the opposite one. The conditions that allow perfect localization are found. Furthermore, we investigate the suppression of the Al'tshuler--Aronov--Spivak oscillations that appear, in presence of a magnetic flux, when the electrons are injected and collected at the same node. Read More

Fully frustrated one-dimensional diamond Josephson chains have been shown [B. Dou\c{c}ot and J. Vidal, Phys. Read More

In this paper we study the quantum phase transition between the insulating and the globally coherent superfluid phases in the Bose-Hubbard model with T_3 structure, the "dice lattice". Even in the absence of any frustration the superfluid phase is characterized by modulation of the order parameter on the different sublattices of the T_3 structure. The zero-temperature critical point as a function of a magnetic field shows the characteristic "butterfly" form. Read More

We present a formalism to study quantum networks made up by single-channel quantum wires in the presence of Rashba spin-orbit coupling and magnetic field. In particular, linear transport through one-dimensional and two-dimensional finite-size networks is studied by means of the scattering formalism. In some particular quantum networks, the action of the magnetic field or of the Rashba spin-orbit coupling induces localization of the electron wave function. Read More

The role of the electron-phonon interaction in the Holstein-Hubbard model is investigated in the metallic phase close to the Mott transition and in the insulating Mott phase. The model is studied by means of a variational slave boson technique. At half-filling, mean-field static quantities are in good agreement with the results obtained by numerical techniques. Read More