V. Belov - National Nuclear Research University, MEPhI, Russia

V. Belov
Are you V. Belov?

Claim your profile, edit publications, add additional information:

Contact Details

Name
V. Belov
Affiliation
National Nuclear Research University, MEPhI, Russia
City
Moskva
Country
Russia

Pubs By Year

Pub Categories

 
Physics - Instrumentation and Detectors (27)
 
High Energy Physics - Experiment (25)
 
Nuclear Experiment (19)
 
Instrumentation and Methods for Astrophysics (4)
 
Mathematical Physics (3)
 
Mathematics - Mathematical Physics (3)
 
Quantum Physics (2)
 
Cosmology and Nongalactic Astrophysics (2)
 
Physics - Medical Physics (1)
 
High Energy Physics - Phenomenology (1)

Publications Authored By V. Belov

Searches for double beta decay of $^{134}\text{Xe}$ were performed with EXO-200, a single-phase liquid xenon detector designed to search for neutrinoless double beta decay of $^{136}\text{Xe}$. Using an exposure of $29.6\text{ kg}\!\cdot\!\text{yr}$, the lower limits of $\text{T}_{1/2}^{2\nu\beta\!\beta}>8. Read More

A SensL MicroFC-SMT-60035 6x6 mm$^2$ silicon photo-multiplier coated with a NOL-1 wavelength shifter have been tested in the liquid xenon to detect the 175-nm scintillation light. For comparison, a Hamamatsu vacuum ultraviolet sensitive MPPC VUV3 3x3 mm$^2$ was tested under the same conditions. The photodetection efficiency of $13. Read More

We report results from a systematic measurement campaign conducted to identify low radioactivity materials for the construction of the EXO-200 double beta decay experiment. Partial results from this campaign have already been reported in a 2008 paper by the EXO collaboration. Here we release the remaining data, collected since 2007, to the public. Read More

The EXO-200 Collaboration is searching for neutrinoless double beta decay using a liquid xenon (LXe) time projection chamber. This measurement relies on modeling the transport of charge deposits produced by interactions in the LXe to allow discrimination between signal and background events. Here we present measurements of the transverse diffusion constant and drift velocity of electrons at drift fields between 20~V/cm and 615~V/cm using EXO-200 data. Read More

The DANSS project is aimed at creating a relatively compact neutrino spectrometer which does not contain any flammable or other dangerous liquids and may therefore be located very close to the core of an industrial power reactor. As a result, it is expected that high neutrino flux would provide about 15,000 IBD interactions per day in the detector with a sensitive volume of 1 m$^3$. High segmentation of the plastic scintillator will allow to suppress a background down to a 1% level. Read More

The energy resolution of the EXO-200 detector is limited by electronics noise in the measurement of the scintillation response. Here we present a new technique to extract optimal scintillation energy measurements for signals split across multiple channels in the presence of correlated noise. The implementation of these techniques improves the energy resolution of the detector at the neutrinoless double beta decay Q-value from $\left[1. Read More

A search for Lorentz- and CPT-violating signals in the double beta decay spectrum of $^{136}$Xe has been performed using an exposure of 100 kg$\cdot$yr with the EXO-200 detector. No significant evidence of the spectral modification due to isotropic Lorentz-violation was found, and a two-sided limit of $-2.65 \times 10^{-5 } \; \textrm{GeV} < \mathring{a}^{(3)}_{\text{of}} < 7. Read More

As neutrinoless double-beta decay experiments become more sensitive and intrinsic radioactivity in detector materials is reduced, previously minor contributions to the background must be understood and eliminated. With this in mind, cosmogenic backgrounds have been studied with the EXO-200 experiment. Using the EXO-200 TPC, the muon flux (through a flat horizontal surface) underground at the Waste Isolation Pilot Plant (WIPP) has been measured to be {\Phi} = 4. Read More

EXO-200 is a single phase liquid xenon detector designed to search for neutrinoless double-beta decay of $^{136}$Xe to the ground state of $^{136}$Ba. We report here on a search for the two-neutrino double-beta decay of $^{136}$Xe to the first $0^+$ excited state, $0^+_1$, of $^{136}$Ba based on a 100 kg$\cdot$yr exposure of $^{136}$Xe. Using a specialized analysis employing a machine learning algorithm, we obtain a 90% CL half-life sensitivity of $1. Read More

The COHERENT collaboration's primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. Read More

Alpha decays in the EXO-200 detector are used to measure the fraction of charged $^{218}\mathrm{Po}$ and $^{214}\mathrm{Bi}$ daughters created from alpha and beta decays, respectively. $^{222}\mathrm{Rn}$ alpha decays in liquid xenon (LXe) are found to produce $^{218}\mathrm{Po}^{+}$ ions $50.3 \pm 3. Read More

The search for neutrinoless double-beta decay (0{\nu}{\beta}{\beta}) requires extremely low background and a good understanding of their sources and their influence on the rate in the region of parameter space relevant to the 0{\nu}{\beta}{\beta} signal. We report on studies of various {\beta}- and {\gamma}-backgrounds in the liquid- xenon-based EXO-200 0{\nu}{\beta}{\beta} experiment. With this work we try to better understand the location and strength of specific background sources and compare the conclusions to radioassay results taken before and during detector construction. Read More

EXO-200 is a single phase liquid xenon detector designed to search for neutrinoless double-beta decay of $^{136}$Xe. Here we report on a search for various Majoron-emitting modes based on 100 kg$\cdot$yr exposure of $^{136}$Xe. A lower limit of $T^{^{136}Xe}_{1/2} >1. Read More

We present the results of the first experimental study of ionization yield of electron recoils with energies below 100 keV produced in liquid xenon by the isotopes: 37Ar, 83mKr, 241Am, 129Xe, 131Xe. It is confirmed by a direct measurement with 37Ar isotope (2.82 keV) that the ionization yield is growing up with the energy decrease in the energy range below ~ 10 keV accordingly to the NEST predictions. Read More

Many extensions of the Standard Model of particle physics suggest that neutrinos should be Majorana-type fermions, but this assumption is difficult to confirm. Observation of neutrinoless double-beta decay ($0\nu \beta \beta$), a spontaneous transition that may occur in several candidate nuclei, would verify the Majorana nature of the neutrino and constrain the absolute scale of the neutrino mass spectrum. Recent searches carried out with $^{76}$Ge (GERDA experiment) and $^{136}$Xe (KamLAND-Zen and EXO-200 experiments) have established the lifetime of this decay to be longer than $10^{25}$ yr, corresponding to a limit on the neutrino mass of 0. Read More

We report on an improved measurement of the 2\nu \beta \beta\ half-life of Xe-136 performed by EXO-200. The use of a large and homogeneous time projection chamber allows for the precise estimate of the fiducial mass used for the measurement, resulting in a small systematic uncertainty. We also discuss in detail the data analysis methods used for double-beta decay searches with EXO-200, while emphasizing those directly related to the present measurement. Read More

DANSSino is a reduced pilot version of a solid-state detector of reactor antineutrinos (to be created within the DANSS project and installed under the industrial 3 GW(th) reactor of the Kalinin Nuclear Power Plant -- KNPP). Numerous tests performed at a distance of 11 m from the reactor core demonstrate operability of the chosen design and reveal the main sources of the background. In spite of its small size (20x20x100 ccm), the pilot detector turned out to be quite sensitive to reactor antineutrinos, detecting about 70 IBD events per day with the signal-to-background ratio about unity. Read More

DANSSino is a simplified pilot version of a solid-state detector of reactor antineutrino (it is being created within the DANSS project and will be installed close to an industrial nuclear power reactor). Numerous tests performed under a 3 GW(th) reactor of the Kalinin NPP at a distance of 11 m from the core demonstrate operability of the chosen design and reveal the main sources of the background. In spite of its small size (20x20x100 ccm), the pilot detector turned out to be quite sensitive to reactor neutrinos, detecting about 70 IBD events per day with the signal-to-background ratio about unity. Read More

2012Dec
Affiliations: 1National Nuclear Research University, MEPhI, Russia, 2National Nuclear Research University, MEPhI, Russia, 3National Research Centre Kurchatov Institute, Russia, 4National Nuclear Research University, MEPhI, Russia, 5National Nuclear Research University, MEPhI, Russia, 6National Nuclear Research University, MEPhI, Russia, 7National Nuclear Research University, MEPhI, Russia, 8National Nuclear Research University, MEPhI, Russia, 9Petersburg Nuclear Physics Institute, Russia, 10National Nuclear Research University, MEPhI, Russia, 11SSC RF Institute for Theoretical and Experimental Physics, Russia, 12National Nuclear Research University, MEPhI, Russia, 13National Nuclear Research University, MEPhI, Russia, 14National Nuclear Research University, MEPhI, Russia, 15National Nuclear Research University, MEPhI, Russia, 16National Nuclear Research University, MEPhI, Russia, 17National Nuclear Research University, MEPhI, Russia, 18National Nuclear Research University, MEPhI, Russia, 19National Nuclear Research University, MEPhI, Russia, 20National Nuclear Research University, MEPhI, Russia, 21National Nuclear Research University, MEPhI, Russia, 22National Nuclear Research University, MEPhI, Russia, 23National Nuclear Research University, MEPhI, Russia, 24National Nuclear Research University, MEPhI, Russia, 25National Nuclear Research University, MEPhI, Russia, 26National Nuclear Research University, MEPhI, Russia, 27National Research Centre Kurchatov Institute, Russia, 28National Nuclear Research University, MEPhI, Russia, 29National Nuclear Research University, MEPhI, Russia, 30National Nuclear Research University, MEPhI, Russia, 31National Research Centre Kurchatov Institute, Russia, 32National Nuclear Research University, MEPhI, Russia, 33National Research Centre Kurchatov Institute, Russia, 34National Research Centre Kurchatov Institute, Russia, 35National Nuclear Research University, MEPhI, Russia, 36National Nuclear Research University, MEPhI, Russia, 37National Nuclear Research University, MEPhI, Russia, 38National Nuclear Research University, MEPhI, Russia, 39National Nuclear Research University, MEPhI, Russia, 40National Nuclear Research University, MEPhI, Russia, 41National Nuclear Research University, MEPhI, Russia, 42National Research Centre Kurchatov Institute, Russia, 43National Research Centre Kurchatov Institute, Russia, 44National Nuclear Research University, MEPhI, Russia, 45SSC RF Institute for Theoretical and Experimental Physics, Russia

We propose to detect and to study neutrino neutral current coherent scattering off atomic nuclei with a two-phase emission detector using liquid xenon as a working medium. Expected signals and backgrounds are calculated for two possible experimental sites: Kalinin Nuclear Power Plant in the Russian Federation and Spallation Neutron Source at the Oak Ridge National Laboratory in the USA. Both sites have advantages as well as limitations. Read More

We studied the application of statistical reconstruction algorithms, namely maximum likelihood and least squares methods, to the problem of event reconstruction in a dual phase liquid xenon detector. An iterative method was developed for in-situ reconstruction of the PMT light response functions from calibration data taken with an uncollimated gamma-ray source. Using the techniques described, the performance of the ZEPLIN-III dark matter detector was studied for 122 keV gamma-rays. Read More

ZEPLIN-III is a two-phase xenon direct dark matter experiment located at the Boulby Mine (UK). After its first science run in 2008 it was upgraded with: an array of low background photomultipliers, a new anti-coincidence detector system with plastic scintillator and an improved calibration system. After 319 days of data taking the second science run ended in May 2011. Read More

Plastic scintillators are widely used in industry, medicine and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 keV and 850 keV. Read More

We present an experimental study of single electron emission in ZEPLIN-III, a two-phase xenon experiment built to search for dark matter WIMPs, and discuss applications enabled by the excellent signal-to-noise ratio achieved in detecting this signature. Firstly, we demonstrate a practical method for precise measurement of the free electron lifetime in liquid xenon during normal operation of these detectors. Then, using a realistic detector response model and backgrounds, we assess the feasibility of deploying such an instrument for measuring coherent neutrino-nucleus elastic scattering using the ionisation channel in the few-electron regime. Read More

We report the observation of two-neutrino double-beta decay in Xe-136 with T_1/2 = 2.11 +- 0.04 (stat. Read More

ZE3RA is the software package responsible for processing the raw data from the ZEPLIN-III dark matter experiment and its reduction into a set of parameters used in all subsequent analyses. The detector is a liquid xenon time projection chamber with scintillation and electroluminescence signals read out by an array of 31 photomultipliers. The dual range 62-channel data stream is optimised for the detection of scintillation pulses down to a single photoelectron and of ionisation signals as small as those produced by single electrons. Read More

Scintillation and ionisation yields for nuclear recoils in liquid xenon above 10 keVnr (nuclear recoil energy) are deduced from data acquired using broadband Am-Be neutron sources. The nuclear recoil data from several exposures to two sources were compared to detailed simulations. Energy-dependent scintillation and ionisation yields giving acceptable fits to the data were derived. Read More

A magnetically driven piston pump for xenon gas recirculation is presented. The pump is designed to satisfy extreme purity and containment requirements, as is appropriate for the recirculation of isotopically enriched xenon through the purification system and large liquid xenon TPC of EXO-200. The pump, using sprung polymer gaskets, is capable of pumping more than 16 standard liters per minute (SLPM) of xenon gas with 750 torr differential pressure. Read More

The ZEPLIN-III experiment is operating in its second phase at the Boulby Underground Laboratory in search of dark matter WIMPs. The major upgrades to the instrument over its first science run include lower background photomultiplier tubes and installation of a plastic scintillator veto system. Performance results from the veto detector using calibration and science data in its first six months of operation in coincidence with ZEPLIN-III are presented. Read More

The design, optimisation and construction of an anti-coincidence veto detector to complement the ZEPLIN-III direct dark matter search instrument is described. One tonne of plastic scintillator is arranged into 52 bars individually read out by photomultipliers and coupled to a gadolinium-loaded passive polypropylene shield. Particular attention has been paid to radiological content. Read More

A method is described that allows calibration and assessment of the linearity of response of an array of photomultiplier tubes. The method does not require knowledge of the photomultiplier single photoelectron response model and uses science data directly, thus eliminating the need for dedicated data sets. In this manner all photomultiplier working conditions (e. Read More

Following Ehrenfest's approach, the problem of quantum-classical correspondence can be treated in the class of trajectory-coherent functions that approximate as $\h\to 0$ a quantum-mechanical state. This idea leads to a family of systems of ordinary differential equations, called Ehrenfest M-systems (M=0,1,2,.. Read More

We study linear problems of mathematical physics in which the adiabatic approximation is used in the wide sense. Using the idea that all these problems can be treated as problems with operator-valued symbol, we propose a general regular scheme of adiabatic approximation based on operator methods. This scheme is a generalization of the Born-Oppenheimer and Maslov methods, the Peierls substitution, etc. Read More

2004Nov
Affiliations: 1Institute for Theoretical and Experimental Physics, 2Institute for Theoretical and Experimental Physics, 3Institute for Theoretical and Experimental Physics, 4Institute for Theoretical and Experimental Physics, 5Institute for Theoretical and Experimental Physics, 6Institute for Theoretical and Experimental Physics, 7Institute for Theoretical and Experimental Physics, 8Institute for Theoretical and Experimental Physics, 9Institute for Theoretical and Experimental Physics, 10Institute for Theoretical and Experimental Physics, 11Institute for Theoretical and Experimental Physics

Detector DEVIS is TPC in the magnetic field. It is dedicated to the investigation of the double-beta decay of Xe. Setup sensitivity was estimated in the series of measurements with Xe with natural isotopes composition. Read More

2000Dec
Affiliations: 1Moscow Institute of Electronics and Mathematics, 2Tomsk Polytechnic University, 3Tomsk State University

The general construction of quasi-classically concentrated solutions to the Hartree-type equation, based on the complex WKB-Maslov method, is presented. The formal solutions of the Cauchy problem for this equation, asymptotic in small parameter \h (\h\to0), are constructed with a power accuracy of O(\h^{N/2}), where N is any natural number. In constructing the quasi-classically concentrated solutions, a set of Hamilton-Ehrenfest equations (equations for middle or centered moments) is essentially used. Read More

High approximations of semiclassical trajectory-coherent states (TCS) and of semiclassical Green function (in the class of semiclassically concentrated states) for the Dirac operator with anomalous Pauli interaction are obtained. For Schrodinger and Dirac operators trajectory-coherent representations are constructed up to any precision with respect to h, h-->0. Read More

The first order quantum correction to the power of spontaneous radiation of electrons in an arbitrary two-component periodic magnetic field was obtained. The phenomenon of selfpolarization of the spin of electrons in a process of spontaneous radiation was also studied. By electron's motion in a spiral magnetic undulator, the quantitative characteristics of selfpolarization (the polarization degree and the relaxation time) are different from corresponding ones in synchrotron radiation. Read More