U. Ellwanger - LPT Orsay

U. Ellwanger
Are you U. Ellwanger?

Claim your profile, edit publications, add additional information:

Contact Details

Name
U. Ellwanger
Affiliation
LPT Orsay
Location

Pubs By Year

External Links

Pub Categories

 
High Energy Physics - Phenomenology (50)
 
High Energy Physics - Experiment (13)
 
High Energy Astrophysical Phenomena (2)
 
Nuclear Theory (1)
 
Nuclear Experiment (1)
 
High Energy Physics - Theory (1)
 
High Energy Physics - Lattice (1)
 
Cosmology and Nongalactic Astrophysics (1)

Publications Authored By U. Ellwanger

The light higgsino-singlino scenario of the NMSSM allows to combine a naturally small $\mu$ parameter with a good dark matter relic density. Given the new constraints on spin-dependent and spin-independent direct detection cross sections in 2016 we study first which regions in the plane of chargino- and LSP-masses below 300 GeV remain viable. Subsequently we investigate the impact of searches for charginos and neutralinos at the LHC, and find that the limits from run I do not rule out any additional region in this plane. Read More

2016Oct
Authors: D. de Florian1, C. Grojean2, F. Maltoni3, C. Mariotti4, A. Nikitenko5, M. Pieri6, P. Savard7, M. Schumacher8, R. Tanaka9, R. Aggleton10, M. Ahmad11, B. Allanach12, C. Anastasiou13, W. Astill14, S. Badger15, M. Badziak16, J. Baglio17, E. Bagnaschi18, A. Ballestrero19, A. Banfi20, D. Barducci21, M. Beckingham22, C. Becot23, G. Bélanger24, J. Bellm25, N. Belyaev26, F. U. Bernlochner27, C. Beskidt28, A. Biekötter29, F. Bishara30, W. Bizon31, N. E. Bomark32, M. Bonvini33, S. Borowka34, V. Bortolotto35, S. Boselli36, F. J. Botella37, R. Boughezal38, G. C. Branco39, J. Brehmer40, L. Brenner41, S. Bressler42, I. Brivio43, A. Broggio44, H. Brun45, G. Buchalla46, C. D. Burgard47, A. Calandri48, L. Caminada49, R. Caminal Armadans50, F. Campanario51, J. Campbell52, F. Caola53, C. M. Carloni Calame54, S. Carrazza55, A. Carvalho56, M. Casolino57, O. Cata58, A. Celis59, F. Cerutti60, N. Chanon61, M. Chen62, X. Chen63, B. Chokoufé Nejad64, N. Christensen65, M. Ciuchini66, R. Contino67, T. Corbett68, D. Curtin69, M. Dall'Osso70, A. David71, S. Dawson72, J. de Blas73, W. de Boer74, P. de Castro Manzano75, C. Degrande76, R. L. Delgado77, F. Demartin78, A. Denner79, B. Di Micco80, R. Di Nardo81, S. Dittmaier82, A. Dobado83, T. Dorigo84, F. A. Dreyer85, M. Dührssen86, C. Duhr87, F. Dulat88, K. Ecker89, K. Ellis90, U. Ellwanger91, C. Englert92, D. Espriu93, A. Falkowski94, L. Fayard95, R. Feger96, G. Ferrera97, A. Ferroglia98, N. Fidanza99, T. Figy100, M. Flechl101, D. Fontes102, S. Forte103, P. Francavilla104, E. Franco105, R. Frederix106, A. Freitas107, F. F. Freitas108, F. Frensch109, S. Frixione110, B. Fuks111, E. Furlan112, S. Gadatsch113, J. Gao114, Y. Gao115, M. V. Garzelli116, T. Gehrmann117, R. Gerosa118, M. Ghezzi119, D. Ghosh120, S. Gieseke121, D. Gillberg122, G. F. Giudice123, E. W. N. Glover124, F. Goertz125, D. Gonçalves126, J. Gonzalez-Fraile127, M. Gorbahn128, S. Gori129, C. A. Gottardo130, M. Gouzevitch131, P. Govoni132, D. Gray133, M. Grazzini134, N. Greiner135, A. Greljo136, J. Grigo137, A. V. Gritsan138, R. Gröber139, S. Guindon140, H. E. Haber141, C. Han142, T. Han143, R. Harlander144, M. A. Harrendorf145, H. B. Hartanto146, C. Hays147, S. Heinemeyer148, G. Heinrich149, M. Herrero150, F. Herzog151, B. Hespel152, V. Hirschi153, S. Hoeche154, S. Honeywell155, S. J. Huber156, C. Hugonie157, J. Huston158, A. Ilnicka159, G. Isidori160, B. Jäger161, M. Jaquier162, S. P. Jones163, A. Juste164, S. Kallweit165, A. Kaluza166, A. Kardos167, A. Karlberg168, Z. Kassabov169, N. Kauer170, D. I. Kazakov171, M. Kerner172, W. Kilian173, F. Kling174, K. Köneke175, R. Kogler176, R. Konoplich177, S. Kortner178, S. Kraml179, C. Krause180, F. Krauss181, M. Krawczyk182, A. Kulesza183, S. Kuttimalai184, R. Lane185, A. Lazopoulos186, G. Lee187, P. Lenzi188, I. M. Lewis189, Y. Li190, S. Liebler191, J. Lindert192, X. Liu193, Z. Liu194, F. J. Llanes-Estrada195, H. E. Logan196, D. Lopez-Val197, I. Low198, G. Luisoni199, P. Maierhöfer200, E. Maina201, B. Mansoulié202, H. Mantler203, M. Mantoani204, A. C. Marini205, V. I. Martinez Outschoorn206, S. Marzani207, D. Marzocca208, A. Massironi209, K. Mawatari210, J. Mazzitelli211, A. McCarn212, B. Mellado213, K. Melnikov214, S. B. Menari215, L. Merlo216, C. Meyer217, P. Milenovic218, K. Mimasu219, S. Mishima220, B. Mistlberger221, S. -O. Moch222, A. Mohammadi223, P. F. Monni224, G. Montagna225, M. Moreno Llácer226, N. Moretti227, S. Moretti228, L. Motyka229, A. Mück230, M. Mühlleitner231, S. Munir232, P. Musella233, P. Nadolsky234, D. Napoletano235, M. Nebot236, C. Neu237, M. Neubert238, R. Nevzorov239, O. Nicrosini240, J. Nielsen241, K. Nikolopoulos242, J. M. No243, C. O'Brien244, T. Ohl245, C. Oleari246, T. Orimoto247, D. Pagani248, C. E. Pandini249, A. Papaefstathiou250, A. S. Papanastasiou251, G. Passarino252, B. D. Pecjak253, M. Pelliccioni254, G. Perez255, L. Perrozzi256, F. Petriello257, G. Petrucciani258, E. Pianori259, F. Piccinini260, M. Pierini261, A. Pilkington262, S. Plätzer263, T. Plehn264, R. Podskubka265, C. T. Potter266, S. Pozzorini267, K. Prokofiev268, A. Pukhov269, I. Puljak270, M. Queitsch-Maitland271, J. Quevillon272, D. Rathlev273, M. Rauch274, E. Re275, M. N. Rebelo276, D. Rebuzzi277, L. Reina278, C. Reuschle279, J. Reuter280, M. Riembau281, F. Riva282, A. Rizzi283, T. Robens284, R. Röntsch285, J. Rojo286, J. C. Romão287, N. Rompotis288, J. Roskes289, R. Roth290, G. P. Salam291, R. Salerno292, R. Santos293, V. Sanz294, J. J. Sanz-Cillero295, H. Sargsyan296, U. Sarica297, P. Schichtel298, J. Schlenk299, T. Schmidt300, C. Schmitt301, M. Schönherr302, U. Schubert303, M. Schulze304, S. Sekula305, M. Sekulla306, E. Shabalina307, H. S. Shao308, J. Shelton309, C. H. Shepherd-Themistocleous310, S. Y. Shim311, F. Siegert312, A. Signer313, J. P. Silva314, L. Silvestrini315, M. Sjodahl316, P. Slavich317, M. Slawinska318, L. Soffi319, M. Spannowsky320, C. Speckner321, D. M. Sperka322, M. Spira323, O. Stål324, F. Staub325, T. Stebel326, T. Stefaniak327, M. Steinhauser328, I. W. Stewart329, M. J. Strassler330, J. Streicher331, D. M. Strom332, S. Su333, X. Sun334, F. J. Tackmann335, K. Tackmann336, A. M. Teixeira337, R. Teixeira de Lima338, V. Theeuwes339, R. Thorne340, D. Tommasini341, P. Torrielli342, M. Tosi343, F. Tramontano344, Z. Trócsányi345, M. Trott346, I. Tsinikos347, M. Ubiali348, P. Vanlaer349, W. Verkerke350, A. Vicini351, L. Viliani352, E. Vryonidou353, D. Wackeroth354, C. E. M. Wagner355, J. Wang356, S. Wayand357, G. Weiglein358, C. Weiss359, M. Wiesemann360, C. Williams361, J. Winter362, D. Winterbottom363, R. Wolf364, M. Xiao365, L. L. Yang366, R. Yohay367, S. P. Y. Yuen368, G. Zanderighi369, M. Zaro370, D. Zeppenfeld371, R. Ziegler372, T. Zirke373, J. Zupan374
Affiliations: 1eds., 2eds., 3eds., 4eds., 5eds., 6eds., 7eds., 8eds., 9eds., 10The LHC Higgs Cross Section Working Group, 11The LHC Higgs Cross Section Working Group, 12The LHC Higgs Cross Section Working Group, 13The LHC Higgs Cross Section Working Group, 14The LHC Higgs Cross Section Working Group, 15The LHC Higgs Cross Section Working Group, 16The LHC Higgs Cross Section Working Group, 17The LHC Higgs Cross Section Working Group, 18The LHC Higgs Cross Section Working Group, 19The LHC Higgs Cross Section Working Group, 20The LHC Higgs Cross Section Working Group, 21The LHC Higgs Cross Section Working Group, 22The LHC Higgs Cross Section Working Group, 23The LHC Higgs Cross Section Working Group, 24The LHC Higgs Cross Section Working Group, 25The LHC Higgs Cross Section Working Group, 26The LHC Higgs Cross Section Working Group, 27The LHC Higgs Cross Section Working Group, 28The LHC Higgs Cross Section Working Group, 29The LHC Higgs Cross Section Working Group, 30The LHC Higgs Cross Section Working Group, 31The LHC Higgs Cross Section Working Group, 32The LHC Higgs Cross Section Working Group, 33The LHC Higgs Cross Section Working Group, 34The LHC Higgs Cross Section Working Group, 35The LHC Higgs Cross Section Working Group, 36The LHC Higgs Cross Section Working Group, 37The LHC Higgs Cross Section Working Group, 38The LHC Higgs Cross Section Working Group, 39The LHC Higgs Cross Section Working Group, 40The LHC Higgs Cross Section Working Group, 41The LHC Higgs Cross Section Working Group, 42The LHC Higgs Cross Section Working Group, 43The LHC Higgs Cross Section Working Group, 44The LHC Higgs Cross Section Working Group, 45The LHC Higgs Cross Section Working Group, 46The LHC Higgs Cross Section Working Group, 47The LHC Higgs Cross Section Working Group, 48The LHC Higgs Cross Section Working Group, 49The LHC Higgs Cross Section Working Group, 50The LHC Higgs Cross Section Working Group, 51The LHC Higgs Cross Section Working Group, 52The LHC Higgs Cross Section Working Group, 53The LHC Higgs Cross Section Working Group, 54The LHC Higgs Cross Section Working Group, 55The LHC Higgs Cross Section Working Group, 56The LHC Higgs Cross Section Working Group, 57The LHC Higgs Cross Section Working Group, 58The LHC Higgs Cross Section Working Group, 59The LHC Higgs Cross Section Working Group, 60The LHC Higgs Cross Section Working Group, 61The LHC Higgs Cross Section Working Group, 62The LHC Higgs Cross Section Working Group, 63The LHC Higgs Cross Section Working Group, 64The LHC Higgs Cross Section Working Group, 65The LHC Higgs Cross Section Working Group, 66The LHC Higgs Cross Section Working Group, 67The LHC Higgs Cross Section Working Group, 68The LHC Higgs Cross Section Working Group, 69The LHC Higgs Cross Section Working Group, 70The LHC Higgs Cross Section Working Group, 71The LHC Higgs Cross Section Working Group, 72The LHC Higgs Cross Section Working Group, 73The LHC Higgs Cross Section Working Group, 74The LHC Higgs Cross Section Working Group, 75The LHC Higgs Cross Section Working Group, 76The LHC Higgs Cross Section Working Group, 77The LHC Higgs Cross Section Working Group, 78The LHC Higgs Cross Section Working Group, 79The LHC Higgs Cross Section Working Group, 80The LHC Higgs Cross Section Working Group, 81The LHC Higgs Cross Section Working Group, 82The LHC Higgs Cross Section Working Group, 83The LHC Higgs Cross Section Working Group, 84The LHC Higgs Cross Section Working Group, 85The LHC Higgs Cross Section Working Group, 86The LHC Higgs Cross Section Working Group, 87The LHC Higgs Cross Section Working Group, 88The LHC Higgs Cross Section Working Group, 89The LHC Higgs Cross Section Working Group, 90The LHC Higgs Cross Section Working Group, 91The LHC Higgs Cross Section Working Group, 92The LHC Higgs Cross Section Working Group, 93The LHC Higgs Cross Section Working Group, 94The LHC Higgs Cross Section Working Group, 95The LHC Higgs Cross Section Working Group, 96The LHC Higgs Cross Section Working Group, 97The LHC Higgs Cross Section Working Group, 98The LHC Higgs Cross Section Working Group, 99The LHC Higgs Cross Section Working Group, 100The LHC Higgs Cross Section Working Group, 101The LHC Higgs Cross Section Working Group, 102The LHC Higgs Cross Section Working Group, 103The LHC Higgs Cross Section Working Group, 104The LHC Higgs Cross Section Working Group, 105The LHC Higgs Cross Section Working Group, 106The LHC Higgs Cross Section Working Group, 107The LHC Higgs Cross Section Working Group, 108The LHC Higgs Cross Section Working Group, 109The LHC Higgs Cross Section Working Group, 110The LHC Higgs Cross Section Working Group, 111The LHC Higgs Cross Section Working Group, 112The LHC Higgs Cross Section Working Group, 113The LHC Higgs Cross Section Working Group, 114The LHC Higgs Cross Section Working Group, 115The LHC Higgs Cross Section Working Group, 116The LHC Higgs Cross Section Working Group, 117The LHC Higgs Cross Section Working Group, 118The LHC Higgs Cross Section Working Group, 119The LHC Higgs Cross Section Working Group, 120The LHC Higgs Cross Section Working Group, 121The LHC Higgs Cross Section Working Group, 122The LHC Higgs Cross Section Working Group, 123The LHC Higgs Cross Section Working Group, 124The LHC Higgs Cross Section Working Group, 125The LHC Higgs Cross Section Working Group, 126The LHC Higgs Cross Section Working Group, 127The LHC Higgs Cross Section Working Group, 128The LHC Higgs Cross Section Working Group, 129The LHC Higgs Cross Section Working Group, 130The LHC Higgs Cross Section Working Group, 131The LHC Higgs Cross Section Working Group, 132The LHC Higgs Cross Section Working Group, 133The LHC Higgs Cross Section Working Group, 134The LHC Higgs Cross Section Working Group, 135The LHC Higgs Cross Section Working Group, 136The LHC Higgs Cross Section Working Group, 137The LHC Higgs Cross Section Working Group, 138The LHC Higgs Cross Section Working Group, 139The LHC Higgs Cross Section Working Group, 140The LHC Higgs Cross Section Working Group, 141The LHC Higgs Cross Section Working Group, 142The LHC Higgs Cross Section Working Group, 143The LHC Higgs Cross Section Working Group, 144The LHC Higgs Cross Section Working Group, 145The LHC Higgs Cross Section Working Group, 146The LHC Higgs Cross Section Working Group, 147The LHC Higgs Cross Section Working Group, 148The LHC Higgs Cross Section Working Group, 149The LHC Higgs Cross Section Working Group, 150The LHC Higgs Cross Section Working Group, 151The LHC Higgs Cross Section Working Group, 152The LHC Higgs Cross Section Working Group, 153The LHC Higgs Cross Section Working Group, 154The LHC Higgs Cross Section Working Group, 155The LHC Higgs Cross Section Working Group, 156The LHC Higgs Cross Section Working Group, 157The LHC Higgs Cross Section Working Group, 158The LHC Higgs Cross Section Working Group, 159The LHC Higgs Cross Section Working Group, 160The LHC Higgs Cross Section Working Group, 161The LHC Higgs Cross Section Working Group, 162The LHC Higgs Cross Section Working Group, 163The LHC Higgs Cross Section Working Group, 164The LHC Higgs Cross Section Working Group, 165The LHC Higgs Cross Section Working Group, 166The LHC Higgs Cross Section Working Group, 167The LHC Higgs Cross Section Working Group, 168The LHC Higgs Cross Section Working Group, 169The LHC Higgs Cross Section Working Group, 170The LHC Higgs Cross Section Working Group, 171The LHC Higgs Cross Section Working Group, 172The LHC Higgs Cross Section Working Group, 173The LHC Higgs Cross Section Working Group, 174The LHC Higgs Cross Section Working Group, 175The LHC Higgs Cross Section Working Group, 176The LHC Higgs Cross Section Working Group, 177The LHC Higgs Cross Section Working Group, 178The LHC Higgs Cross Section Working Group, 179The LHC Higgs Cross Section Working Group, 180The LHC Higgs Cross Section Working Group, 181The LHC Higgs Cross Section Working Group, 182The LHC Higgs Cross Section Working Group, 183The LHC Higgs Cross Section Working Group, 184The LHC Higgs Cross Section Working Group, 185The LHC Higgs Cross Section Working Group, 186The LHC Higgs Cross Section Working Group, 187The LHC Higgs Cross Section Working Group, 188The LHC Higgs Cross Section Working Group, 189The LHC Higgs Cross Section Working Group, 190The LHC Higgs Cross Section Working Group, 191The LHC Higgs Cross Section Working Group, 192The LHC Higgs Cross Section Working Group, 193The LHC Higgs Cross Section Working Group, 194The LHC Higgs Cross Section Working Group, 195The LHC Higgs Cross Section Working Group, 196The LHC Higgs Cross Section Working Group, 197The LHC Higgs Cross Section Working Group, 198The LHC Higgs Cross Section Working Group, 199The LHC Higgs Cross Section Working Group, 200The LHC Higgs Cross Section Working Group, 201The LHC Higgs Cross Section Working Group, 202The LHC Higgs Cross Section Working Group, 203The LHC Higgs Cross Section Working Group, 204The LHC Higgs Cross Section Working Group, 205The LHC Higgs Cross Section Working Group, 206The LHC Higgs Cross Section Working Group, 207The LHC Higgs Cross Section Working Group, 208The LHC Higgs Cross Section Working Group, 209The LHC Higgs Cross Section Working Group, 210The LHC Higgs Cross Section Working Group, 211The LHC Higgs Cross Section Working Group, 212The LHC Higgs Cross Section Working Group, 213The LHC Higgs Cross Section Working Group, 214The LHC Higgs Cross Section Working Group, 215The LHC Higgs Cross Section Working Group, 216The LHC Higgs Cross Section Working Group, 217The LHC Higgs Cross Section Working Group, 218The LHC Higgs Cross Section Working Group, 219The LHC Higgs Cross Section Working Group, 220The LHC Higgs Cross Section Working Group, 221The LHC Higgs Cross Section Working Group, 222The LHC Higgs Cross Section Working Group, 223The LHC Higgs Cross Section Working Group, 224The LHC Higgs Cross Section Working Group, 225The LHC Higgs Cross Section Working Group, 226The LHC Higgs Cross Section Working Group, 227The LHC Higgs Cross Section Working Group, 228The LHC Higgs Cross Section Working Group, 229The LHC Higgs Cross Section Working Group, 230The LHC Higgs Cross Section Working Group, 231The LHC Higgs Cross Section Working Group, 232The LHC Higgs Cross Section Working Group, 233The LHC Higgs Cross Section Working Group, 234The LHC Higgs Cross Section Working Group, 235The LHC Higgs Cross Section Working Group, 236The LHC Higgs Cross Section Working Group, 237The LHC Higgs Cross Section Working Group, 238The LHC Higgs Cross Section Working Group, 239The LHC Higgs Cross Section Working Group, 240The LHC Higgs Cross Section Working Group, 241The LHC Higgs Cross Section Working Group, 242The LHC Higgs Cross Section Working Group, 243The LHC Higgs Cross Section Working Group, 244The LHC Higgs Cross Section Working Group, 245The LHC Higgs Cross Section Working Group, 246The LHC Higgs Cross Section Working Group, 247The LHC Higgs Cross Section Working Group, 248The LHC Higgs Cross Section Working Group, 249The LHC Higgs Cross Section Working Group, 250The LHC Higgs Cross Section Working Group, 251The LHC Higgs Cross Section Working Group, 252The LHC Higgs Cross Section Working Group, 253The LHC Higgs Cross Section Working Group, 254The LHC Higgs Cross Section Working Group, 255The LHC Higgs Cross Section Working Group, 256The LHC Higgs Cross Section Working Group, 257The LHC Higgs Cross Section Working Group, 258The LHC Higgs Cross Section Working Group, 259The LHC Higgs Cross Section Working Group, 260The LHC Higgs Cross Section Working Group, 261The LHC Higgs Cross Section Working Group, 262The LHC Higgs Cross Section Working Group, 263The LHC Higgs Cross Section Working Group, 264The LHC Higgs Cross Section Working Group, 265The LHC Higgs Cross Section Working Group, 266The LHC Higgs Cross Section Working Group, 267The LHC Higgs Cross Section Working Group, 268The LHC Higgs Cross Section Working Group, 269The LHC Higgs Cross Section Working Group, 270The LHC Higgs Cross Section Working Group, 271The LHC Higgs Cross Section Working Group, 272The LHC Higgs Cross Section Working Group, 273The LHC Higgs Cross Section Working Group, 274The LHC Higgs Cross Section Working Group, 275The LHC Higgs Cross Section Working Group, 276The LHC Higgs Cross Section Working Group, 277The LHC Higgs Cross Section Working Group, 278The LHC Higgs Cross Section Working Group, 279The LHC Higgs Cross Section Working Group, 280The LHC Higgs Cross Section Working Group, 281The LHC Higgs Cross Section Working Group, 282The LHC Higgs Cross Section Working Group, 283The LHC Higgs Cross Section Working Group, 284The LHC Higgs Cross Section Working Group, 285The LHC Higgs Cross Section Working Group, 286The LHC Higgs Cross Section Working Group, 287The LHC Higgs Cross Section Working Group, 288The LHC Higgs Cross Section Working Group, 289The LHC Higgs Cross Section Working Group, 290The LHC Higgs Cross Section Working Group, 291The LHC Higgs Cross Section Working Group, 292The LHC Higgs Cross Section Working Group, 293The LHC Higgs Cross Section Working Group, 294The LHC Higgs Cross Section Working Group, 295The LHC Higgs Cross Section Working Group, 296The LHC Higgs Cross Section Working Group, 297The LHC Higgs Cross Section Working Group, 298The LHC Higgs Cross Section Working Group, 299The LHC Higgs Cross Section Working Group, 300The LHC Higgs Cross Section Working Group, 301The LHC Higgs Cross Section Working Group, 302The LHC Higgs Cross Section Working Group, 303The LHC Higgs Cross Section Working Group, 304The LHC Higgs Cross Section Working Group, 305The LHC Higgs Cross Section Working Group, 306The LHC Higgs Cross Section Working Group, 307The LHC Higgs Cross Section Working Group, 308The LHC Higgs Cross Section Working Group, 309The LHC Higgs Cross Section Working Group, 310The LHC Higgs Cross Section Working Group, 311The LHC Higgs Cross Section Working Group, 312The LHC Higgs Cross Section Working Group, 313The LHC Higgs Cross Section Working Group, 314The LHC Higgs Cross Section Working Group, 315The LHC Higgs Cross Section Working Group, 316The LHC Higgs Cross Section Working Group, 317The LHC Higgs Cross Section Working Group, 318The LHC Higgs Cross Section Working Group, 319The LHC Higgs Cross Section Working Group, 320The LHC Higgs Cross Section Working Group, 321The LHC Higgs Cross Section Working Group, 322The LHC Higgs Cross Section Working Group, 323The LHC Higgs Cross Section Working Group, 324The LHC Higgs Cross Section Working Group, 325The LHC Higgs Cross Section Working Group, 326The LHC Higgs Cross Section Working Group, 327The LHC Higgs Cross Section Working Group, 328The LHC Higgs Cross Section Working Group, 329The LHC Higgs Cross Section Working Group, 330The LHC Higgs Cross Section Working Group, 331The LHC Higgs Cross Section Working Group, 332The LHC Higgs Cross Section Working Group, 333The LHC Higgs Cross Section Working Group, 334The LHC Higgs Cross Section Working Group, 335The LHC Higgs Cross Section Working Group, 336The LHC Higgs Cross Section Working Group, 337The LHC Higgs Cross Section Working Group, 338The LHC Higgs Cross Section Working Group, 339The LHC Higgs Cross Section Working Group, 340The LHC Higgs Cross Section Working Group, 341The LHC Higgs Cross Section Working Group, 342The LHC Higgs Cross Section Working Group, 343The LHC Higgs Cross Section Working Group, 344The LHC Higgs Cross Section Working Group, 345The LHC Higgs Cross Section Working Group, 346The LHC Higgs Cross Section Working Group, 347The LHC Higgs Cross Section Working Group, 348The LHC Higgs Cross Section Working Group, 349The LHC Higgs Cross Section Working Group, 350The LHC Higgs Cross Section Working Group, 351The LHC Higgs Cross Section Working Group, 352The LHC Higgs Cross Section Working Group, 353The LHC Higgs Cross Section Working Group, 354The LHC Higgs Cross Section Working Group, 355The LHC Higgs Cross Section Working Group, 356The LHC Higgs Cross Section Working Group, 357The LHC Higgs Cross Section Working Group, 358The LHC Higgs Cross Section Working Group, 359The LHC Higgs Cross Section Working Group, 360The LHC Higgs Cross Section Working Group, 361The LHC Higgs Cross Section Working Group, 362The LHC Higgs Cross Section Working Group, 363The LHC Higgs Cross Section Working Group, 364The LHC Higgs Cross Section Working Group, 365The LHC Higgs Cross Section Working Group, 366The LHC Higgs Cross Section Working Group, 367The LHC Higgs Cross Section Working Group, 368The LHC Higgs Cross Section Working Group, 369The LHC Higgs Cross Section Working Group, 370The LHC Higgs Cross Section Working Group, 371The LHC Higgs Cross Section Working Group, 372The LHC Higgs Cross Section Working Group, 373The LHC Higgs Cross Section Working Group, 374The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We estimate the values of Yukawa couplings of a light pseudoscalar A with a mass of about 17 MeV, which would explain the $^8Be$ anomaly observed in the Atomki pair spectrometer experiment. The resulting couplings of A to up and down type quarks are about 0.3 times the coupling of the standard Higgs boson. Read More

The excess of events in the diphoton final state near 750 GeV observed by ATLAS and CMS can be explained within the NMSSM near the R-symmetry limit. Both scalars beyond the Standard Model Higgs boson have masses near 750 GeV, mix strongly, and share sizeable production cross sections in association with b-quarks as well as branching fractions into a pair of very light pseudoscalars. Pseudoscalars with a mass of ~ 210 MeV decay into collimated diphotons, whereas pseudoscalars with a mass of ~ 500-550 MeV can decay either into collimated diphotons or into three pi^0 resulting in collimated photon jets. Read More

We study a region in the NMSSM parameter space in which the mass of the SM-like Higgs boson is uplifted by ~4-17 GeV, allowing for stop masses and |A_t| <= 1 TeV alleviating the little fine tuning problem of the MSSM. An uplift of the mass of the SM-like Higgs boson is possible in two distinct regions in the NMSSM parameter space: Either for large lambda and small tan(beta) or, through singlet-doublet mixing, for small lambda and large tan(beta). For a mostly singlet-like Higgs state H_S with a mass below 125 GeV we investigate possible direct or indirect search channels at the run II of the LHC as function of the NMSSM-specific uplift of the mass of the SM-like Higgs boson: Direct production of H_S in gluon fusion with H_S decaying into diphotons, modified reduced couplings of the SM-like Higgs state, and the possible production of H_S in ggF -> A -> Z + H_S. Read More

The publicly available spectrum generators for the NMSSM often lead to different predictions for the mass of the standard model-like Higgs boson even if using the same renormalization scheme and two-loop accuracy. Depending on the parameter point, the differences can exceed 5 GeV, and even reach 8 GeV for moderate superparticle masses of up to 2 TeV. It is shown here that these differences can be traced back to the calculation of the running standard model parameters entering all calculations, to the approximations used in the two-loop corrections included in the different codes, and to different choices for the renormalization conditions and scales. Read More

We study to which extent SUSY extensions of the Standard Model can describe the excess of events of 3.0 standard deviations observed by ATLAS in the on-Z signal region, respecting constraints by CMS on similar signal channels as well as constraints from searches for jets and E^{miss}_T. GMSB-like scenarios are typically in conflict with these constraints, and do not reproduce well the shape of the E^{miss}_T distribution of the data. Read More

A comprehensive review of physics at an e+e- Linear Collider in the energy range of sqrt{s}=92 GeV--3 TeV is presented in view of recent and expected LHC results, experiments from low energy as well as astroparticle physics.The report focuses in particular on Higgs boson, Top quark and electroweak precision physics, but also discusses several models of beyond the Standard Model physics such as Supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analyzed as well. Read More

In the presence of a light singlino-like LSP in the NMSSM, the missing transverse energy - MET - signature of squark/gluino production can be considerably reduced. Instead, a pair of Higgs bosons is produced in each event. We propose benchmark points for such scenarios, which differ in the squark and gluino masses, and in their decay cascades. Read More

A light singlino in the NMSSM can reduce considerably the missing transverse energy at the end of sparticle decay cascades; instead, light NMSSM-specific Higgs bosons can be produced. Such scenarios can be consistent with present constraints from the LHC with all sparticle masses below ~1 TeV. We discuss search strategies, which do not rely on missing transverse energy, for such scenarios at the next run of the LHC near 14 TeV. Read More

We study the parameter space of the semi-constrained NMSSM, compatible with constraints on the Standard Model like Higgs mass and signal rates, constraints from searches for squarks and gluinos, a dark matter relic density compatible with bounds from WMAP/Planck, and direct detection cross sections compatible with constraints from LUX. The remaining parameter space allows for a fine-tuning as low as about 100, an additional lighter Higgs boson in the 60-120 GeV mass range detectable in the diphoton mode or in decays into a pair of lighter CP-odd Higgs bosons, and dominantly singlino like dark matter with a mass down to 1 GeV, but possibly a very small direct detection cross section. Read More

We propose a simplified light higgsino-singlino scenario in the NMSSM, in which the masses of the chargino and the lightest neutralino determine the masses and couplings of all 3 lightest neutralinos. This scenario is complementary to the simplified wino-like chargino/neutralino scenario used conventionally for the interpretation of results from trilepton searches, and motivated by lower bounds on the gluino mass in the case of GUT relations between the wino and gluino masses. We present all masses and mixing angles necessary for the determination of production cross sections of the chargino and the 3 neutralinos in the form of Tables in the M_{neutralino_1} - M_{chargino_1} plane, assuming Higgs mass motivated values for tan(beta)=2 and lambda=0. Read More

We put forth conclusions and suggestions regarding the presentation of the LHC Higgs results that may help to maximize their impact and their utility to the whole High Energy Physics community. Read More

In the NMSSM it is well possible to find an additional Higgs boson with a mass below 125 GeV which remains invisible in standard Higgs boson search channels. We study the Higgs pair production cross sections times branching fractions in this scenario, focusing on gluon fusion and the bb+tautau and bb+gammagamma final states. Summing over the SM-like and the lighter Higgs states, the production cross sections times branching fractions are never below the ones for SM Higgs pair production. Read More

The most recent LHC data have provided a considerable improvement in the precision with which various Higgs production and decay channels have been measured. Using all available public results from ATLAS, CMS and the Tevatron, we derive for each final state the combined confidence level contours for the signal strengths in the (gluon fusion + ttH associated production) versus (vector boson fusion + VH associated production) space. These "combined signal strength ellipses" can be used in a simple, generic way to constrain a very wide class of New Physics models in which the couplings of the Higgs boson deviate from the Standard Model prediction. Read More

We analyze the extent to which the LHC and Tevatron results as of the end of 2012 constrain invisible (or undetected) decays of the Higgs boson-like state at ~ 125 GeV. To this end we perform global fits for several cases: 1) a Higgs boson with Standard Model (SM) couplings but additional invisible decay modes; 2) SM couplings to fermions and vector bosons, but allowing for additional new particles modifying the effective Higgs couplings to gluons and photons; 3) no new particles in the loops but tree-level Higgs couplings to the up-quarks, down-quarks and vector bosons, relative to the SM, treated as free parameters. We find that in the three cases invisible decay rates of 23%, 61%, 88%, respectively, are consistent with current data at 95% confidence level (CL). Read More

Constraints from searches for squarks and gluinos at the LHC at sqrt{s}=8 TeV are applied to the parameter space of the NMSSM with universal squark/slepton and gaugino masses at the GUT scale, but allowing for non-universal soft Higgs mass parameters (the sNMSSM). We confine ourselves to regions of the parameter space compatible with a 125 GeV Higgs boson with diphoton signal rates at least as large as the Standard Model ones, and a dark matter candidate compatible with WMAP and XENON100 constraints. Following the simulation of numerous points in the m_0-M_{1/2} plane, we compare the constraints on the sNMSSM from 3-5 jets + missing E_T channels as well as from multijet + missing E_T channels with the corresponding cMSSM constraints. Read More

Performing a fit to all publicly available data, we analyze the extent to which the latest results from the LHC and Tevatron constrain the couplings of the Higgs boson-like state at ~ 125 GeV. To this end we assume that only Standard Model (SM) particles appear in the Higgs decays, but tree-level Higgs couplings to the up-quarks, down-quarks and vector bosons, relative to the SM are free parameters. We also assume that the leptonic couplings relative to the SM are the same as for the down-quark, and a custodial symmetry for the V=W,Z couplings. Read More

We discuss NMSSM scenarios in which the lightest Higgs boson $h_1$ is consistent with the small LEP excess at about 98 GeV in $e^+e^- \to Zh$ with $h\to b\anti b$ and the heavier Higgs boson $h_2$ has the primary features of the LHC Higgs-like signals at 125 GeV, including an enhanced $\gamma\gamma$ rate. Verification or falsification of the 98 GeV $h_1$ may be possible at the LHC during the 14 TeV run. The detection of the other NMSSM Higgs bosons at the LHC and future colliders is also discussed, as well as dark matter properties of the scenario under consideration. Read More

The best fit to the Tevatron results in the bb channel and the mild excesses at CMS in the gamma-gamma channel at 136 GeV and in the tau-tau channel above 132 GeV can be explained by a second Higgs state in this mass range, in addition to the one at 125 GeV recently discovered at the LHC. We show that a scenario with two Higgs bosons at 125 GeV and 136 GeV can be consistent with practically all available signal rates, including a reduced rate in the tau-tau channel around 125 GeV as reported by CMS. An example in the parameter space of the general NMSSM is given where, moreover, the signal rates of the 125 GeV Higgs boson in the gamma-gamma channels are enhanced relative to the expectation for a SM Higgs boson of this mass. Read More

In the Next-to-Minimal Supersymmetric Standard Model, neutralino dark matter can annihilate into a pair of photons through the exchange of a CP-odd Higgs boson in the s-channel. The CP-odd Higgs boson couples to two photons through a loop of dominantly higgsino-like charginos. We show that the parameter space of the NMSSM can accommodate simultaneously i) neutralino-like dark matter of a mass of about 130 GeV giving rise to a 130 GeV photon line; ii) an annihilation cross section of or larger than 10^{-27}cm^3s^{-1}; iii) a relic density in agreement with WMAP constraints; iv) a direct detection cross section compatible with bounds from XENON100, and v) a Standard Model like Higgs mass of about 125 GeV. Read More

Most models for asymmetric dark matter allow for dark matter self annihilation processes, which can wash out the asymmetry at temperatures near and below the dark matter mass. We study the coupled set of Boltzmann equations for the symmetric and antisymmetric dark matter number densities, and derive conditions applicable to a large class of models for the absence of a significant wash-out of an asymmetry. These constraints are applied to various existing scenarios. Read More

We study the NMSSM with universal Susy breaking terms (besides the Higgs sector) at the GUT scale. Within this constrained parameter space, it is not difficult to find a Higgs boson with a mass of about 125 GeV and an enhanced cross section in the diphoton channel. An additional lighter Higgs boson with reduced couplings and a mass <123 GeV is potentially observable at the LHC. Read More

In the framework of the NMSSM with a singlino-like LSP, we study quantitatively the impact of the additional bino -> singlino cascade on the efficiencies in several search channels for supersymmetry of the ATLAS and CMS collaborations. Compared to the MSSM, the additional cascade reduces the missing transverse energy, but leads to additional jets or leptons. For the NMSSM benchmark lines which generalize cMSSM benchmark points, the efficiencies in the most relevant 2/3 jet + missing energy search channels can drop by factors ~1/3 to ~1/7, and can reduce the present lower bounds on M_{1/2} by as much as ~0. Read More

A natural region in the parameter space of the NMSSM can accomodate a CP-even Higgs boson with a mass of about 125 GeV and, simultaneously, an enhanced cross section times branching ratio in the di-photon channel. This happens in the case of strong singlet-doublet mixing, when the partial width of a 125 GeV Higgs boson into bb is strongly reduced. In this case, a second lighter CP-even Higgs boson is potentially also observable at the LHC. Read More

We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. Read More

We review possible properties of Higgs bosons in the NMSSM, which allow to discriminate this model from the MSSM: masses of mostly Standard-Model-like Higgs bosons at or above 140 GeV, or enhanced branching fractions into two photons, or Higgs-to-Higgs decays. In the case of a Standard-Model-like Higgs boson above 140 GeV, it is necessarily accompagnied by a lighter state with a large gauge singlet component. Examples for such scenarios are presented. Read More

We study the fine tuning in the parameter space of the semi-constrained NMSSM, where most soft Susy breaking parameters are universal at the GUT scale. We discuss the dependence of the fine tuning on the soft Susy breaking parameters M_1/2 and m0, and on the Higgs masses in NMSSM specific scenarios involving large singlet-doublet Higgs mixing or dominant Higgs-to-Higgs decays. Whereas these latter scenarios allow a priori for considerably less fine tuning than the constrained MSSM, the early LHC results rule out a large part of the parameter space of the semi-constrained NMSSM corresponding to low values of the fine tuning. Read More

The code NMSDECAY allows to compute widths and branching ratios of sparticle decays in the Next-to-Minimal Supersymmetric Standard Model. It is based on a generalization of SDECAY, to include the extended Higgs and neutralino sectors of the NMSSM. Slepton 3-body decays, possibly relevant in the case of a singlino-like lightest supersymmetric particle, have been added. Read More

Models with an extended Higgs sector, as the NMSSM, allow for scenarios where the Standard Model-like CP-even Higgs boson H decays dominantly as H -> AA -> 4 tau where A is a light CP-odd Higgs boson. Tight constraints on this scenario in the form of lower bounds on M_H have recently been published by the ALEPH group. We show that, due to A - eta_b mixing, the branching ratio H -> AA -> 4 tau is strongly reduced for M_A in the range 9 - 10. Read More

In the Next-to-Minimal Supersymmetric Standard Model, CP-even Higgs bosons can have masses in the range of 80-110 GeV in agreement with constraints from LEP due to their sizeable singlet component. Nevertheless their branching ratio into two photons can be 10 times larger than the one of a Standard Model Higgs boson of similar mass due to a reduced coupling to b quarks. This can lead to a spectacular enhancement of the Higgs signal rate in the di-photon channel at hadron colliders by a factor 6. Read More

The constrained Next-to-Minimal Supersymmetric Standard Model (cNMSSM) with mSugra-like boundary conditions at the GUT scale implies a singlino-like LSP with a mass just a few GeV below a stau NLSP. Hence, most of the squark/gluino decay cascades contain two tau leptons. The gluino mass >~ 1. Read More

A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Read More

In the Next-to-Minimal Supersymmetric Standard Model, a bino-like LSP can be as light as a few GeV and satisfy WMAP constraints on the dark matter relic density in the presence of a light CP-odd Higgs scalar. We study upper bounds on the direct detection cross sections for such a light LSP in the mass range 2-20 GeV in the NMSSM, respecting all constraints from B-physics and LEP. The OPAL constraints on e^+ e^- -> \chi^0_1 \chi^0_i (i > 1) play an important role and are discussed in some detail. Read More

We review the theoretical and phenomenological aspects of the Next-to-Minimal Supersymmetric Standard Model: the Higgs sector including radiative corrections and the 2-loop beta-functions for all parameters of the general NMSSM; the tadpole and domain wall problems, baryogenesis; NMSSM phenomenology at colliders, B physics and dark matter; specific scenarios as the constrained NMSSM, Gauge Mediated Supersymmetry Breaking, U(1)'-extensions, CP and R-parity violation. Read More

The motivations for the NMSSM are reviewed, and possible unconventional signals for Higgs and sparticle production at the LHC are discussed. In the presence of a light pseudoscalar, the SM-like Higgs scalar can decay dominantly into a 4-tau final state. In the fully constrained NMSSM with mSUGRA-like soft SUSY breaking terms, the correct dark matter relic density is obtained for a singlino-like LSP which modifies considerably all sparticle decay chains. Read More

The mass of the eta_b(1S), measured recently by BABAR, is significantly lower than expected from QCD predictions for the Upsilon(1S) - eta_b(1S) hyperfine splitting. We suggest that the observed eta_b(1S) mass is shifted downwards due to a mixing with a CP-odd Higgs scalar A with a mass m_A in the range 9.4 - 10. Read More

We discuss a generalization of the minimal supersymmetric extension of the Standard Model in the form of three additional singlet superfields, which would explain the essential features of the CDF multi-muon events presented recently: a large production cross section of ~ 100 pb originates from the production of a CP-odd scalar A with a mass in the 70 - 80 GeV range and a large value of tan(beta) ~ 40. The CP-odd scalar A decays dominantly into CP-odd and CP-even scalars a_1 and h_1, which generate decay cascades h_1 -> 2 h_2 -> 4 a_2 -> 8 tau-leptons, and a_1 -> h_1 a_2 with h_1 decaying as above. The decay a_2 -> tau+ tau- is slow, leading to a lifetime of O(20) ps. Read More

We discuss several phenomenological aspects of the fully constrained version of the next-to-minimal supersymmetric extension of the standard model (cNMSSM). Assuming universal boundary conditions at a high energy scale for the soft supersymmetry-breaking gaugino, sfermion and Higgs masses as well as for the trilinear interactions, we find that the model can satisfy all present constraints from colliders and cosmological data on dark matter, B- and muon-physics. The phenomenologically viable region of the parameter space of the cNMSSM can be described by essentially one single parameter as the universal gaugino mass parameter M_{1/2}, and corresponds to small values for the universal scalar mass m_0. Read More

We study possible effects of a light CP-odd Higgs boson on radiative Upsilon decays in the Next-to-Minimal Supersymmetric Standard Model. Recent constraints from CLEO on radiative Upsilon(1S) decays are translated into constraints on the parameter space of CP-odd Higgs boson masses and couplings, and compared to constraints from B physics and the muon anomalous magnetic moment. Possible Higgs - eta_b(nS) mixing effects are discussed, notably in the light of the recent measurement of the eta_b(1S) mass by Babar: The somewhat large Upsilon(1S) - eta_b(1S) hyperfine splitting could easily be explained by the presence of a CP-odd Higgs boson with a mass in the range 9. Read More

We review different constrained versions of the NMSSM: the fully constrained cNMSSM with universal boundary conditions for gauginos and all soft scalar masses and trilinear couplings, and the NMSSM with soft terms from Gauge Mediated Supersymmetry Breaking. Regarding the fully constrained cNMSSM, after imposing LEP constraints and the correct dark matter relic density, one single parameter is sufficient to describe the entire Higgs and sparticle spectrum of the model, which then contains always a singlino LSP. The NMSSM with soft terms from GMSB is phenomenologically viable if (and only if) the singlet is allowed to couple directly to the messenger sector; then various ranges in parameter space satisfy constraints from colliders and precision observables. Read More

We generalize the computation of supersymmetric contributions to the muon anomalous magnetic moment (g-2)_mu to the NMSSM. In the presence of a light CP-odd Higgs scalar, these can differ considerably from the MSSM. We discuss the amount of these contributions in regions of the parameter space of the general NMSSM compatible with constraints from B physics. Read More

We investigate various classes of Gauge Mediated Supersymmetry Breaking models and show that the Next-to-Minimal Supersymmetric Standard Model can solve the mu-problem in a phenomenologically acceptable way. These models include scenarios with singlet tadpole terms, which are phenomenologically viable, e.g. Read More

We consider the fully constrained version of the next-to-minimal supersymmetric extension of the standard model (cNMSSM) in which a singlet Higgs superfield is added to the two doublets that are present in the minimal extension (MSSM). Assuming universal boundary conditions at a high scale for the soft supersymmetry-breaking gaugino, sfermion and Higgs mass parameters as well as for the trilinear interactions, we find that the model is more constrained than the celebrated minimal supergravity model. The phenomenologically viable region in the parameter space of the cNMSSM corresponds to a small value for the universal scalar mass m_0: in this case, one single input parameter is sufficient to describe the phenomenology of the model once the available constraints from collider data and cosmology are imposed. Read More

We discuss constrained and semi--constrained versions of the next--to--minimal supersymmetric extension of the Standard Model (NMSSM) in which a singlet Higgs superfield is added to the two doublet superfields that are present in the minimal extension (MSSM). This leads to a richer Higgs and neutralino spectrum and allows for many interesting phenomena that are not present in the MSSM. In particular, light Higgs particles are still allowed by current constraints and could appear as decay products of the heavier Higgs states, rendering their search rather difficult at the LHC. Read More

2008Jan

This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. Read More

The Supersymmetry Les Houches Accord (SLHA) provides a universal set of conventions for conveying spectral and decay information for supersymmetry analysis problems in high energy physics. Here, we propose extensions of the conventions of the first SLHA to include various generalisations: the minimal supersymmetric standard model with violation of CP, R-parity, and flavour, as well as the simplest next-to-minimal model. Read More

We update constraints from B physics observables on the parameters of the MSSM and the NMSSM, combining them with LEP constraints. Presently available SM and Susy radiative corrections are included in the calculations, which will be made public in the form of a Fortran code. Results for the tan(beta) and M_{H^+} dependence of b -> s gamma are presented, as well as constraints on the NMSSM specific case of a light CP odd Higgs scalar. Read More

We update the upper bound on the lightest CP even Higgs mass in the NMSSM, which is given as a function of tan(beta) and lambda. We include the available one and two loop corrections to the NMSSM Higgs masses, and constraints from the absence of Landau singularities below the GUT scale as well as from the stability of the NMSSM Higgs potential. For m_top varying between 171. Read More