Trevor Darrell

Trevor Darrell
Are you Trevor Darrell?

Claim your profile, edit publications, add additional information:

Contact Details

Trevor Darrell

Pubs By Year

Pub Categories

Computer Science - Computer Vision and Pattern Recognition (47)
Computer Science - Learning (19)
Computer Science - Computation and Language (10)
Computer Science - Neural and Evolutionary Computing (8)
Computer Science - Artificial Intelligence (7)
Computer Science - Robotics (5)
Statistics - Machine Learning (3)
Computer Science - Multimedia (1)
Computer Science - Graphics (1)

Publications Authored By Trevor Darrell

In many real-world scenarios, rewards extrinsic to the agent are extremely sparse, or absent altogether. In such cases, curiosity can serve as an intrinsic reward signal to enable the agent to explore its environment and learn skills that might be useful later in its life. We formulate curiosity as the error in an agent's ability to predict the consequence of its own actions in a visual feature space learned by a self-supervised inverse dynamics model. Read More

Most recent CNN architectures use average pooling as a final feature encoding step. In the field of fine-grained recognition, however, recent global representations like bilinear pooling offer improved performance. In this paper, we generalize average and bilinear pooling to "alpha-pooling", allowing for learning the pooling strategy during training. Read More

Natural language questions are inherently compositional, and many are most easily answered by reasoning about their decomposition into modular sub-problems. For example, to answer "is there an equal number of balls and boxes?" we can look for balls, look for boxes, count them, and compare the results. The recently proposed Neural Module Network (NMN) architecture implements this approach to question answering by parsing questions into linguistic substructures and assembling question-specific deep networks from smaller modules that each solve one subtask. Read More

To predict a set of diverse and informative proposals with enriched representations, this paper introduces a differentiable Determinantal Point Process (DPP) layer that is able to augment the object detection architectures. Most modern object detection architectures, such as Faster R-CNN, learn to localize objects by minimizing deviations from the ground-truth but ignore correlation between multiple proposals and object categories. Non-Maximum Suppression (NMS) as a widely used proposal pruning scheme ignores label- and instance-level relations between object candidates resulting in multi-labeled detections. Read More

Adversarial learning methods are a promising approach to training robust deep networks, and can generate complex samples across diverse domains. They also can improve recognition despite the presence of domain shift or dataset bias: several adversarial approaches to unsupervised domain adaptation have recently been introduced, which reduce the difference between the training and test domain distributions and thus improve generalization performance. Prior generative approaches show compelling visualizations, but are not optimal on discriminative tasks and can be limited to smaller shifts. Read More

Over the past three years Pinterest has experimented with several visual search and recommendation services, including Related Pins (2014), Similar Looks (2015), Flashlight (2016) and Lens (2017). This paper presents an overview of our visual discovery engine powering these services, and shares the rationales behind our technical and product decisions such as the use of object detection and interactive user interfaces. We conclude that this visual discovery engine significantly improves engagement in both search and recommendation tasks. Read More

Reinforcement learning optimizes policies for expected cumulative reward. Need the supervision be so narrow? Reward is delayed and sparse for many tasks, making it a difficult and impoverished signal for end-to-end optimization. To augment reward, we consider a range of self-supervised tasks that incorporate states, actions, and successors to provide auxiliary losses. Read More

This paper presents a novel yet intuitive approach to unsupervised feature learning. Inspired by the human visual system, we explore whether low-level motion-based grouping cues can be used to learn an effective visual representation. Specifically, we use unsupervised motion-based segmentation on videos to obtain segments, which we use as 'pseudo ground truth' to train a convolutional network to segment objects from a single frame. Read More

Deep models are the defacto standard in visual decision models due to their impressive performance on a wide array of visual tasks. However, they are frequently seen as opaque and are unable to explain their decisions. In contrast, humans can justify their decisions with natural language and point to the evidence in the visual world which led to their decisions. Read More

Fully convolutional models for dense prediction have proven successful for a wide range of visual tasks. Such models perform well in a supervised setting, but performance can be surprisingly poor under domain shifts that appear mild to a human observer. For example, training on one city and testing on another in a different geographic region and/or weather condition may result in significantly degraded performance due to pixel-level distribution shift. Read More

Robust perception-action models should be learned from training data with diverse visual appearances and realistic behaviors, yet current approaches to deep visuomotor policy learning have been generally limited to in-situ models learned from a single vehicle or a simulation environment. We advocate learning a generic vehicle motion model from large scale crowd-sourced video data, and develop an end-to-end trainable architecture for learning to predict a distribution over future vehicle egomotion from instantaneous monocular camera observations and previous vehicle state. Our model incorporates a novel FCN-LSTM architecture, which can be learned from large-scale crowd-sourced vehicle action data, and leverages available scene segmentation side tasks to improve performance under a privileged learning paradigm. Read More

People often refer to entities in an image in terms of their relationships with other entities. For example, "the black cat sitting under the table" refers to both a "black cat" entity and its relationship with another "table" entity. Understanding these relationships is essential for interpreting and grounding such natural language expressions. Read More

Reinforcement learning (RL) can automate a wide variety of robotic skills, but learning each new skill requires considerable real-world data collection and manual representation engineering to design policy classes or features. Using deep reinforcement learning to train general purpose neural network policies alleviates some of the burden of manual representation engineering by using expressive policy classes, but exacerbates the challenge of data collection, since such methods tend to be less efficient than RL with low-dimensional, hand-designed representations. Transfer learning can mitigate this problem by enabling us to transfer information from one skill to another and even from one robot to another. Read More

Image segmentation from referring expressions is a joint vision and language modeling task, where the input is an image and a textual expression describing a particular region in the image; and the goal is to localize and segment the specific image region based on the given expression. One major difficulty to train such language-based image segmentation systems is the lack of datasets with joint vision and text annotations. Although existing vision datasets such as MS COCO provide image captions, there are few datasets with region-level textual annotations for images, and these are often smaller in scale. Read More

Recent years have seen tremendous progress in still-image segmentation; however the na\"ive application of these state-of-the-art algorithms to every video frame requires considerable computation and ignores the temporal continuity inherent in video. We propose a video recognition framework that relies on two key observations: 1) while pixels may change rapidly from frame to frame, the semantic content of a scene evolves more slowly, and 2) execution can be viewed as an aspect of architecture, yielding purpose-fit computation schedules for networks. We define a novel family of "clockwork" convnets driven by fixed or adaptive clock signals that schedule the processing of different layers at different update rates according to their semantic stability. Read More

Recent captioning models are limited in their ability to scale and describe concepts unseen in paired image-text corpora. We propose the Novel Object Captioner (NOC), a deep visual semantic captioning model that can describe a large number of object categories not present in existing image-caption datasets. Our model takes advantage of external sources -- labeled images from object recognition datasets, and semantic knowledge extracted from unannotated text. Read More

Modeling textual or visual information with vector representations trained from large language or visual datasets has been successfully explored in recent years. However, tasks such as visual question answering require combining these vector representations with each other. Approaches to multimodal pooling include element-wise product or sum, as well as concatenation of the visual and textual representations. Read More

The ability of the Generative Adversarial Networks (GANs) framework to learn generative models mapping from simple latent distributions to arbitrarily complex data distributions has been demonstrated empirically, with compelling results showing that the latent space of such generators captures semantic variation in the data distribution. Intuitively, models trained to predict these semantic latent representations given data may serve as useful feature representations for auxiliary problems where semantics are relevant. However, in their existing form, GANs have no means of learning the inverse mapping -- projecting data back into the latent space. Read More

Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. Read More

We present an unsupervised visual feature learning algorithm driven by context-based pixel prediction. By analogy with auto-encoders, we propose Context Encoders -- a convolutional neural network trained to generate the contents of an arbitrary image region conditioned on its surroundings. In order to succeed at this task, context encoders need to both understand the content of the entire image, as well as produce a plausible hypothesis for the missing part(s). Read More

Clearly explaining a rationale for a classification decision to an end-user can be as important as the decision itself. Existing approaches for deep visual recognition are generally opaque and do not output any justification text; contemporary vision-language models can describe image content but fail to take into account class-discriminative image aspects which justify visual predictions. We propose a new model that focuses on the discriminating properties of the visible object, jointly predicts a class label, and explains why the predicted label is appropriate for the image. Read More

In this paper we approach the novel problem of segmenting an image based on a natural language expression. This is different from traditional semantic segmentation over a predefined set of semantic classes, as e.g. Read More

We describe a question answering model that applies to both images and structured knowledge bases. The model uses natural language strings to automatically assemble neural networks from a collection of composable modules. Parameters for these modules are learned jointly with network-assembly parameters via reinforcement learning, with only (world, question, answer) triples as supervision. Read More

Bilinear models has been shown to achieve impressive performance on a wide range of visual tasks, such as semantic segmentation, fine grained recognition and face recognition. However, bilinear features are high dimensional, typically on the order of hundreds of thousands to a few million, which makes them impractical for subsequent analysis. We propose two compact bilinear representations with the same discriminative power as the full bilinear representation but with only a few thousand dimensions. Read More

Pose variation and subtle differences in appearance are key challenges to fine-grained classification. While deep networks have markedly improved general recognition, many approaches to fine-grained recognition rely on anchoring networks to parts for better accuracy. Identifying parts to find correspondence discounts pose variation so that features can be tuned to appearance. Read More

Real-world robotics problems often occur in domains that differ significantly from the robot's prior training environment. For many robotic control tasks, real world experience is expensive to obtain, but data is easy to collect in either an instrumented environment or in simulation. We propose a novel domain adaptation approach for robot perception that adapts visual representations learned on a large easy-to-obtain source dataset (e. Read More

Convolutional Neural Networks (CNNs) have recently emerged as the dominant model in computer vision. If provided with enough training data, they predict almost any visual quantity. In a discrete setting, such as classification, CNNs are not only able to predict a label but often predict a confidence in the form of a probability distribution over the output space. Read More

Precisely-labeled data sets with sufficient amount of samples are very important for training deep convolutional neural networks (CNNs). However, many of the available real-world data sets contain erroneously labeled samples and those errors substantially hinder the learning of very accurate CNN models. In this work, we consider the problem of training a deep CNN model for image classification with mislabeled training samples - an issue that is common in real image data sets with tags supplied by amateur users. Read More

Convolutional Neural Networks spread through computer vision like a wildfire, impacting almost all visual tasks imaginable. Despite this, few researchers dare to train their models from scratch. Most work builds on one of a handful of ImageNet pre-trained models, and fine-tunes or adapts these for specific tasks. Read More

We consider the visual sentiment task of mapping an image to an adjective noun pair (ANP) such as "cute baby". To capture the two-factor structure of our ANP semantics as well as to overcome annotation noise and ambiguity, we propose a novel factorized CNN model which learns separate representations for adjectives and nouns but optimizes the classification performance over their product. Our experiments on the publicly available SentiBank dataset show that our model significantly outperforms not only independent ANP classifiers on unseen ANPs and on retrieving images of novel ANPs, but also image captioning models which capture word semantics from co-occurrence of natural text; the latter turn out to be surprisingly poor at capturing the sentiment evoked by pure visual experience. Read More

Robots which interact with the physical world will benefit from a fine-grained tactile understanding of objects and surfaces. Additionally, for certain tasks, robots may need to know the haptic properties of an object before touching it. To enable better tactile understanding for robots, we propose a method of classifying surfaces with haptic adjectives (e. Read More

While recent deep neural network models have achieved promising results on the image captioning task, they rely largely on the availability of corpora with paired image and sentence captions to describe objects in context. In this work, we propose the Deep Compositional Captioner (DCC) to address the task of generating descriptions of novel objects which are not present in paired image-sentence datasets. Our method achieves this by leveraging large object recognition datasets and external text corpora and by transferring knowledge between semantically similar concepts. Read More

In this paper, we address the task of natural language object retrieval, to localize a target object within a given image based on a natural language query of the object. Natural language object retrieval differs from text-based image retrieval task as it involves spatial information about objects within the scene and global scene context. To address this issue, we propose a novel Spatial Context Recurrent ConvNet (SCRC) model as scoring function on candidate boxes for object retrieval, integrating spatial configurations and global scene-level contextual information into the network. Read More

Grounding (i.e. localizing) arbitrary, free-form textual phrases in visual content is a challenging problem with many applications for human-computer interaction and image-text reference resolution. Read More

Visual question answering is fundamentally compositional in nature---a question like "where is the dog?" shares substructure with questions like "what color is the dog?" and "where is the cat?" This paper seeks to simultaneously exploit the representational capacity of deep networks and the compositional linguistic structure of questions. We describe a procedure for constructing and learning *neural module networks*, which compose collections of jointly-trained neural "modules" into deep networks for question answering. Our approach decomposes questions into their linguistic substructures, and uses these structures to dynamically instantiate modular networks (with reusable components for recognizing dogs, classifying colors, etc. Read More

Quantification is the task of estimating the class-distribution of a data-set. While typically considered as a parameter estimation problem with strict assumptions on the data-set shift, we consider quantification in-the-wild, on two large scale data-sets from marine ecology: a survey of Caribbean coral reefs, and a plankton time series from Martha's Vineyard Coastal Observatory. We investigate several quantification methods from the literature and indicate opportunities for future work. Read More

Large scale object detection with thousands of classes introduces the problem of many contradicting false positive detections, which have to be suppressed. Class-independent non-maximum suppression has traditionally been used for this step, but it does not scale well as the number of classes grows. Traditional non-maximum suppression does not consider label- and instance-level relationships nor does it allow an exploitation of the spatial layout of detection proposals. Read More

Recent reports suggest that a generic supervised deep CNN model trained on a large-scale dataset reduces, but does not remove, dataset bias. Fine-tuning deep models in a new domain can require a significant amount of labeled data, which for many applications is simply not available. We propose a new CNN architecture to exploit unlabeled and sparsely labeled target domain data. Read More

Reinforcement learning provides a powerful and flexible framework for automated acquisition of robotic motion skills. However, applying reinforcement learning requires a sufficiently detailed representation of the state, including the configuration of task-relevant objects. We present an approach that automates state-space construction by learning a state representation directly from camera images. Read More

We present an approach to learn a dense pixel-wise labeling from image-level tags. Each image-level tag imposes constraints on the output labeling of a Convolutional Neural Network (CNN) classifier. We propose Constrained CNN (CCNN), a method which uses a novel loss function to optimize for any set of linear constraints on the output space (i. Read More

Real-world videos often have complex dynamics; and methods for generating open-domain video descriptions should be sensitive to temporal structure and allow both input (sequence of frames) and output (sequence of words) of variable length. To approach this problem, we propose a novel end-to-end sequence-to-sequence model to generate captions for videos. For this we exploit recurrent neural networks, specifically LSTMs, which have demonstrated state-of-the-art performance in image caption generation. Read More

Policy search methods can allow robots to learn control policies for a wide range of tasks, but practical applications of policy search often require hand-engineered components for perception, state estimation, and low-level control. In this paper, we aim to answer the following question: does training the perception and control systems jointly end-to-end provide better performance than training each component separately? To this end, we develop a method that can be used to learn policies that map raw image observations directly to torques at the robot's motors. The policies are represented by deep convolutional neural networks (CNNs) with 92,000 parameters, and are trained using a partially observed guided policy search method, which transforms policy search into supervised learning, with supervision provided by a simple trajectory-centric reinforcement learning method. Read More

Multiple instance learning (MIL) can reduce the need for costly annotation in tasks such as semantic segmentation by weakening the required degree of supervision. We propose a novel MIL formulation of multi-class semantic segmentation learning by a fully convolutional network. In this setting, we seek to learn a semantic segmentation model from just weak image-level labels. Read More

Recently, nested dropout was proposed as a method for ordering representation units in autoencoders by their information content, without diminishing reconstruction cost. However, it has only been applied to training fully-connected autoencoders in an unsupervised setting. We explore the impact of nested dropout on the convolutional layers in a CNN trained by backpropagation, investigating whether nested dropout can provide a simple and systematic way to determine the optimal representation size with respect to the desired accuracy and desired task and data complexity. Read More

Recent reports suggest that a generic supervised deep CNN model trained on a large-scale dataset reduces, but does not remove, dataset bias on a standard benchmark. Fine-tuning deep models in a new domain can require a significant amount of data, which for many applications is simply not available. We propose a new CNN architecture which introduces an adaptation layer and an additional domain confusion loss, to learn a representation that is both semantically meaningful and domain invariant. Read More

We develop methods for detector learning which exploit joint training over both weak and strong labels and which transfer learned perceptual representations from strongly-labeled auxiliary tasks. Previous methods for weak-label learning often learn detector models independently using latent variable optimization, but fail to share deep representation knowledge across classes and usually require strong initialization. Other previous methods transfer deep representations from domains with strong labels to those with only weak labels, but do not optimize over individual latent boxes, and thus may miss specific salient structures for a particular category. Read More

Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or "temporally deep", are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and demonstrate the value of these models on benchmark video recognition tasks, image description and retrieval problems, and video narration challenges. In contrast to current models which assume a fixed spatio-temporal receptive field or simple temporal averaging for sequential processing, recurrent convolutional models are "doubly deep"' in that they can be compositional in spatial and temporal "layers". Read More

Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. Read More

Convolutional neural nets (convnets) trained from massive labeled datasets have substantially improved the state-of-the-art in image classification and object detection. However, visual understanding requires establishing correspondence on a finer level than object category. Given their large pooling regions and training from whole-image labels, it is not clear that convnets derive their success from an accurate correspondence model which could be used for precise localization. Read More

This paper introduces a visual sentiment concept classification method based on deep convolutional neural networks (CNNs). The visual sentiment concepts are adjective noun pairs (ANPs) automatically discovered from the tags of web photos, and can be utilized as effective statistical cues for detecting emotions depicted in the images. Nearly one million Flickr images tagged with these ANPs are downloaded to train the classifiers of the concepts. Read More