Thomas G. Beatty

Thomas G. Beatty
Are you Thomas G. Beatty?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Thomas G. Beatty
Affiliation
Location

Pubs By Year

Pub Categories

 
Earth and Planetary Astrophysics (26)
 
Solar and Stellar Astrophysics (14)
 
Astrophysics of Galaxies (2)
 
Astrophysics (2)
 
Instrumentation and Methods for Astrophysics (1)

Publications Authored By Thomas G. Beatty

2017Feb
Authors: L. Pei, M. M. Fausnaugh, A. J. Barth, B. M. Peterson, M. C. Bentz, G. De Rosa, K. D. Denney, M. R. Goad, C. S. Kochanek, K. T. Korista, G. A. Kriss, R. W. Pogge, V. N. Bennert, M. Brotherton, K. I. Clubb, E. Dalla Bontà, A. V. Filippenko, J. E. Greene, C. J. Grier, M. Vestergaard, W. Zheng, Scott M. Adams, Thomas G. Beatty, A. Bigley, Jacob E. Brown, Jonathan S. Brown, G. Canalizo, J. M. Comerford, Carl T. Coker, E. M. Corsini, S. Croft, K. V. Croxall, A. J. Deason, Michael Eracleous, O. D. Fox, E. L. Gates, C. B. Henderson, E. Holmbeck, T. W. -S. Holoien, J. J. Jensen, C. A. Johnson, P. L. Kelly, S. Kim, A. King, M. W. Lau, Miao Li, Cassandra Lochhaas, Zhiyuan Ma, E. R. Manne-Nicholas, J. C. Mauerhan, M. A. Malkan, R. McGurk, L. Morelli, Ana Mosquera, Dale Mudd, F. Muller Sanchez, M. L. Nguyen, P. Ochner, B. Ou-Yang, A. Pancoast, Matthew T. Penny, A. Pizzella, Radosław Poleski, Jessie Runnoe, B. Scott, Jaderson S. Schimoia, B. J. Shappee, I. Shivvers, Gregory V. Simonian, A. Siviero, Garrett Somers, Daniel J. Stevens, M. A. Strauss, Jamie Tayar, N. Tejos, T. Treu, J. Van Saders, L. Vican, S. Villanueva Jr., H. Yuk, N. L. Zakamska, W. Zhu, M. D. Anderson, P. Arévalo, C. Bazhaw, S. Bisogni, G. A. Borman, M. C. Bottorff, W. N. Brandt, A. A. Breeveld, E. M. Cackett, M. T. Carini, D. M. Crenshaw, A. De Lorenzo-Cáceres, M. Dietrich, R. Edelson, N. V. Efimova, J. Ely, P. A. Evans, G. J. Ferland, K. Flatland, N. Gehrels, S. Geier, J. M. Gelbord, D. Grupe, A. Gupta, P. B. Hall, S. Hicks, D. Horenstein, Keith Horne, T. Hutchison, M. Im, M. D. Joner, J. Jones, J. Kaastra, S. Kaspi, B. C. Kelly, J. A. Kennea, M. Kim, S. C. Kim, S. A. Klimanov, J. C. Lee, D. C. Leonard, P. Lira, F. MacInnis, S. Mathur, I. M. McHardy, C. Montouri, R. Musso, S. V. Nazarov, H. Netzer, R. P. Norris, J. A. Nousek, D. N. Okhmat, I. Papadakis, J. R. Parks, J. -U. Pott, S. E. Rafter, H. -W. Rix, D. A. Saylor, K. Schnülle, S. G. Sergeev, M. Siegel, A. Skielboe, M. Spencer, D. Starkey, H. -I. Sung, K. G. Teems, C. S. Turner, P. Uttley, C. Villforth, Y. Weiss, J. -H. Woo, H. Yan, S. Young, Y. Zu

We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multi-wavelength reverberation mapping campaign. The campaign spanned six months and achieved an almost daily cadence with observations from five ground-based telescopes. The H$\beta$ and He II $\lambda$4686 broad emission-line light curves lag that of the 5100 $\AA$ optical continuum by $4. Read More

We observed two eclipses of the Kepler-13A planetary system, on UT 2014 April 28 and UT 2014 October 13, in the near-infrared using Wide Field Camera 3 on the Hubble Space Telescope. By using the nearby binary stars Kepler-13BC as a reference, we were able to create a differential light curve for Kepler-13A that had little of the systematics typically present in HST/WFC3 spectrophotometry. We measure a broadband (1. Read More

We present here our observations and analysis of the dayside emission spectrum of the hot Jupiter WASP-103b. We observed WASP-103b during secondary eclipse using two visits of the Hubble Space Telescope with the G141 grism on Wide Field Camera 3 in spatial scan mode. We generated secondary eclipse light curves of the planet in both blended white-light and spectrally binned wavechannels from 1. Read More

We present a high precision H-band emission spectrum of the transiting brown dwarf KELT-1b, which we spectrophotometrically observed during a single secondary eclipse using the LUCI1 multi-object spectrograph on the Large Binocular Telescope. Using a Gaussian-process regression model, we are able to clearly measure the broadband eclipse depth as Delta-H=1418+/-94ppm. We are also able to spectrally-resolve the H-band into five separate wavechannels and measure the eclipse spectrum of KELT-1b at R~50 with an average precision of +/-115ppm. Read More

We present the first results from an optical reverberation mapping campaign executed in 2014, targeting the active galactic nuclei (AGN) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a "changing look" AGN and a broad-line radio galaxy. Based on continuum-H$\beta$ lags, we measure black hole masses for all five targets. Read More

Be stars have generally been characterized by the emission lines in their spectra, and especially the time variability of those spectroscopic features. They are known to also exhibit photometric variability at multiple timescales, but have not been broadly compared and analyzed by that behavior. We have taken advantage of the advent of wide-field, long-baseline, and high-cadence photometric surveys that search for transiting exoplanets to perform a comprehensive analysis of brightness variations among a large number of known Be stars. Read More

We report the discovery of KELT-12b, a highly inflated Jupiter-mass planet transiting a mildly evolved host star. We identified the initial transit signal in the KELT-North survey data and established the planetary nature of the companion through precise follow-up photometry, high-resolution spectroscopy, precise radial velocity measurements, and high-resolution adaptive optics imaging. Our preferred best-fit model indicates that the $V = 10. Read More

In some planet formation theories, protoplanets grow gravitationally within a young star's protoplanetary disk, a signature of which may be a localized disturbance in the disk's radial and/or vertical structure. Using time-series photometric observations by the Kilodegree Extremely Little Telescope South (KELT-South) project and the All-Sky Automated Survey for SuperNovae (ASAS-SN), combined with archival observations, we present the discovery of two extended dimming events of the young star, DM Ori. This young system faded by $\sim$1. Read More

We present Doppler tomographic analyses for the spectroscopic transits of KELT-7b and HAT-P-56b, two hot-Jupiters orbiting rapidly rotating F-dwarf host stars. These include analyses of archival TRES observations for KELT-7b, and a new TRES transit observation of HAT-P-56b. We report spin-orbit aligned geometries for KELT-7b (2. Read More

We present photometric observations of RW Aurigae, a Classical T Tauri system, that reveal two remarkable dimming events. These events are similar to that which we observed in 2010-2011, which was the first such deep dimming observed in RW Aur in a century's worth of photometric monitoring. We suggested the 2010-2011 dimming was the result of an occultation of the star by its tidally disrupted circumstellar disk. Read More

We present multiwavelength, multi-telescope, ground-based follow-up photometry of the white dwarf WD 1145+017, that has recently been suggested to be orbited by up to six or more, short-period, low-mass, disintegrating planetesimals. We detect 9 significant dips in flux of between 10% and 30% of the stellar flux from our ground-based photometry. We observe transits deeper than 10% on average every ~3. Read More

We investigate astrophysical contributions to the statistical uncertainty of precision radial velocity measurements of stellar spectra. We analytically determine the uncertainty in centroiding isolated spectral lines broadened by Gaussian, Lorentzian, Voigt, and rotational profiles, finding that for all cases and assuming weak lines, the uncertainty is the line centroid is $\sigma_V\approx C\,\Theta^{3/2}/(W I_0^{1/2})$, where $\Theta$ is the full-width at half-maximum of the line, $W$ is the equivalent width, and $I_0$ is the continuum signal-to-noise ratio, with $C$ a constant of order unity that depends on the specific line profile. We use this result to motivate approximate analytic expressions to the total radial velocity uncertainty for a stellar spectrum with a given photon noise, resolution, wavelength, effective temperature, surface gravity, metallicity, macroturbulence, and stellar rotation. Read More

AA Tau is a well studied young stellar object that presents many of the photometric characteristics of a Classical T Tauri star (CTTS), including short-timescale stochastic variability attributed to spots and/or accretion as well as long duration dimming events attributed to occultations by vertical features (e.g., warps) in its circumstellar disk. Read More

The MINiature Exoplanet Radial Velocity Array (MINERVA) is a US-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7 m telescopes outfitted for both high-resolution spectroscopy and photometry, and is designed for completely autonomous operation. Read More

We present secondary eclipse observations of the highly irradiated transiting brown dwarf KELT-1b. These observations represent the first constraints on the atmospheric dynamics of a highly irradiated brown dwarf, and the atmospheres of irradiated giant planets at high surface gravity. Using the Spitzer Space Telescope, we measure secondary eclipse depths of 0. Read More

We report the discovery of KELT-6b, a mildly-inflated Saturn-mass planet transiting a metal-poor host. The initial transit signal was identified in KELT-North survey data, and the planetary nature of the occulter was established using a combination of follow-up photometry, high-resolution imaging, high-resolution spectroscopy, and precise radial velocity measurements. The fiducial model from a global analysis including constraints from isochrones indicates that the V=10. Read More

RW Aur A is a classical T Tauri star, believed to have undergone a reconfiguration of its circumstellar environment as a consequence of a recent fly-by of its stellar companion, RW Aur B. This interaction stripped away part of the circumstellar disk of RW Aur A, leaving a tidally disrupted arm and a short truncated circumstellar disk. We present photometric observations of the RW Aur system from the Kilodegree Extremely Little Telescope (KELT) survey showing a long and deep dimming that occurred from September 2010 until March 2011. Read More

We report the discovery of a highly eccentric, double-lined spectroscopic binary star system (TYC 3010-1494-1), comprising two solar-type stars that we had initially identified as a single star with a brown dwarf companion. At the moderate resolving power of the MARVELS spectrograph and the spectrographs used for subsequent radial-velocity (RV) measurements (R ~ <30,000), this particular stellar binary mimics a single-lined binary with an RV signal that would be induced by a brown dwarf companion (Msin(i)~50 M_Jup) to a solar-type primary. At least three properties of this system allow it to masquerade as a single star with a very low-mass companion: its large eccentricity (e~0. Read More

We report the discovery via radial velocity of a short-period (P = 2.430420 \pm 0.000006 days) companion to the F-type main sequence star TYC 2930-00872-1. Read More

The probability that an exoplanet transits its host star is high for planets in close orbits, but drops off rapidly for increasing semimajor axes. This makes transit surveys for planets with large semimajor axes orbiting bright stars impractical, since one would need to continuously observe hundreds of stars that are spread out over the entire sky. One way to make such a survey tractable is to constrain the inclination of the stellar rotation axes in advance, and thereby enhance the transit probabilities. Read More

We present photometry of two transits of the giant planet WASP-4b with a photometric precision of 400-800 parts per million and a time sampling of 25-40 seconds. The two midtransit times are determined to within 6 seconds. Together with previously published times, the data are consistent with a constant orbital period, giving no compelling evidence for period variations that would be produced by a satellite or additional planets. Read More

Observing extrasolar planetary transits is one of the only ways that we may infer the masses and radii of planets outside the Solar System. As such, the detections made by photometric transit surveys are one of the only foreseeable ways that the areas of planetary interiors, system dynamics, migration, and formation will acquire more data. Predicting the yields of these surveys therefore serves as a useful statistical tool. Read More

We develop a method for predicting the yield of transiting planets from a photometric survey given the parameters of the survey (nights observed, bandpass, exposure time, telescope aperture, locations of the target fields, observational conditions, and detector characteristics), as well as the underlying planet properties (frequency, period and radius distributions). Using our updated understanding of transit surveys provided by the experiences of the survey teams, we account for those factors that have proven to have the greatest effect on the survey yields. Specifically, we include the effects of the surveys' window functions, adopt revised estimates of the giant planet frequency, account for the number and distribution of main-sequence stars in the survey fields, and include the effects of Galactic structure and interstellar extinction. Read More