Tamas Sarlos

Tamas Sarlos
Are you Tamas Sarlos?

Claim your profile, edit publications, add additional information:

Contact Details

Tamas Sarlos

Pubs By Year

Pub Categories

Computer Science - Learning (4)
Statistics - Machine Learning (3)
Computer Science - Data Structures and Algorithms (2)

Publications Authored By Tamas Sarlos

We introduce LAMP: the Linear Additive Markov Process. Transitions in LAMP may be influenced by states visited in the distant history of the process, but unlike higher-order Markov processes, LAMP retains an efficient parametrization. LAMP also allows the specific dependence on history to be learned efficiently from data. Read More

We consider an efficient computational framework for speeding up several machine learning algorithms with almost no loss of accuracy. The proposed framework relies on projections via structured matrices that we call Structured Spinners, which are formed as products of three structured matrix-blocks that incorporate rotations. The approach is highly generic, i. Read More

We present a generic compact computational framework relying on structured random matrices that can be applied to speed up several machine learning algorithms with almost no loss of accuracy. The applications include new fast LSH-based algorithms, efficient kernel computations via random feature maps, convex optimization algorithms, quantization techniques and many more. Certain models of the presented paradigm are even more compressible since they apply only bit matrices. Read More

Despite their successes, what makes kernel methods difficult to use in many large scale problems is the fact that storing and computing the decision function is typically expensive, especially at prediction time. In this paper, we overcome this difficulty by proposing Fastfood, an approximation that accelerates such computation significantly. Key to Fastfood is the observation that Hadamard matrices, when combined with diagonal Gaussian matrices, exhibit properties similar to dense Gaussian random matrices. Read More

Dimension reduction is a key algorithmic tool with many applications including nearest-neighbor search, compressed sensing and linear algebra in the streaming model. In this work we obtain a {\em sparse} version of the fundamental tool in dimension reduction --- the Johnson--Lindenstrauss transform. Using hashing and local densification, we construct a sparse projection matrix with just $\tilde{O}(\frac{1}{\epsilon})$ non-zero entries per column. Read More

Least squares approximation is a technique to find an approximate solution to a system of linear equations that has no exact solution. In a typical setting, one lets $n$ be the number of constraints and $d$ be the number of variables, with $n \gg d$. Then, existing exact methods find a solution vector in $O(nd^2)$ time. Read More