Takaaki Hori

Takaaki Hori
Are you Takaaki Hori?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Takaaki Hori
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Computation and Language (3)
 
Computer Science - Multimedia (1)
 
Computer Science - Computer Vision and Pattern Recognition (1)
 
Computer Science - Sound (1)

Publications Authored By Takaaki Hori

The field of speech recognition is in the midst of a paradigm shift: end-to-end neural networks are challenging the dominance of hidden Markov models as a core technology. Using an attention mechanism in a recurrent encoder-decoder architecture solves the dynamic time alignment problem, allowing joint end-to-end training of the acoustic and language modeling components. In this paper we extend the end-to-end framework to encompass microphone array signal processing for noise suppression and speech enhancement within the acoustic encoding network. Read More

Currently successful methods for video description are based on encoder-decoder sentence generation using recur-rent neural networks (RNNs). Recent work has shown the advantage of integrating temporal and/or spatial attention mechanisms into these models, in which the decoder net-work predicts each word in the description by selectively giving more weight to encoded features from specific time frames (temporal attention) or to features from specific spatial regions (spatial attention). In this paper, we propose to expand the attention model to selectively attend not just to specific times or spatial regions, but to specific modalities of input such as image features, motion features, and audio features. Read More

Recently, there has been an increasing interest in end-to-end speech recognition that directly transcribes speech to text without any predefined alignments. One approach is the attention-based encoder-decoder framework that learns a mapping between variable-length input and output sequences in one step using a purely data-driven method. The attention model has often been shown to improve the performance over another end-to-end approach, the Connectionist Temporal Classification (CTC), mainly because it explicitly uses the history of the target character without any conditional independence assumptions. Read More