# T. Tauchi - KEK

## Contact Details

NameT. Tauchi |
||

AffiliationKEK |
||

Location |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesPhysics - Accelerator Physics (16) Physics - Instrumentation and Detectors (10) High Energy Physics - Experiment (6) Instrumentation and Methods for Astrophysics (1) |

## Publications Authored By T. Tauchi

**Authors:**The CLIC, CLICdp collaborations, :, M. J. Boland, U. Felzmann, P. J. Giansiracusa, T. G. Lucas, R. P. Rassool, C. Balazs, T. K. Charles, K. Afanaciev, I. Emeliantchik, A. Ignatenko, V. Makarenko, N. Shumeiko, A. Patapenka, I. Zhuk, A. C. Abusleme Hoffman, M. A. Diaz Gutierrez, M. Vogel Gonzalez, Y. Chi, X. He, G. Pei, S. Pei, G. Shu, X. Wang, J. Zhang, F. Zhao, Z. Zhou, H. Chen, Y. Gao, W. Huang, Y. P. Kuang, B. Li, Y. Li, J. Shao, J. Shi, C. Tang, X. Wu, L. Ma, Y. Han, W. Fang, Q. Gu, D. Huang, X. Huang, J. Tan, Z. Wang, Z. Zhao, T. Laštovička, U. Uggerhoj, T. N. Wistisen, A. Aabloo, K. Eimre, K. Kuppart, S. Vigonski, V. Zadin, M. Aicheler, E. Baibuz, E. Brücken, F. Djurabekova, P. Eerola, F. Garcia, E. Haeggström, K. Huitu, V. Jansson, V. Karimaki, I. Kassamakov, A. Kyritsakis, S. Lehti, A. Meriläinen, R. Montonen, T. Niinikoski, K. Nordlund, K. Österberg, M. Parekh, N. A. Törnqvist, J. Väinölä, M. Veske, W. Farabolini, A. Mollard, O. Napoly, F. Peauger, J. Plouin, P. Bambade, I. Chaikovska, R. Chehab, M. Davier, W. Kaabi, E. Kou, F. LeDiberder, R. Pöschl, D. Zerwas, B. Aimard, G. Balik, J. -P. Baud, J. -J. Blaising, L. Brunetti, M. Chefdeville, C. Drancourt, N. Geoffroy, J. Jacquemier, A. Jeremie, Y. Karyotakis, J. M. Nappa, S. Vilalte, G. Vouters, A. Bernard, I. Peric, M. Gabriel, F. Simon, M. Szalay, N. van der Kolk, T. Alexopoulos, E. N. Gazis, N. Gazis, E. Ikarios, V. Kostopoulos, S. Kourkoulis, P. D. Gupta, P. Shrivastava, H. Arfaei, M. K. Dayyani, H. Ghasem, S. S. Hajari, H. Shaker, Y. Ashkenazy, H. Abramowicz, Y. Benhammou, O. Borysov, S. Kananov, A. Levy, I. Levy, O. Rosenblat, G. D'Auria, S. Di Mitri, T. Abe, A. Aryshev, T. Higo, Y. Makida, S. Matsumoto, T. Shidara, T. Takatomi, Y. Takubo, T. Tauchi, N. Toge, K. Ueno, J. Urakawa, A. Yamamoto, M. Yamanaka, R. Raboanary, R. Hart, H. van der Graaf, G. Eigen, J. Zalieckas, E. Adli, R. Lillestøl, L. Malina, J. Pfingstner, K. N. Sjobak, W. Ahmed, M. I. Asghar, H. Hoorani, S. Bugiel, R. Dasgupta, M. Firlej, T. A. Fiutowski, M. Idzik, M. Kopec, M. Kuczynska, J. Moron, K. P. Swientek, W. Daniluk, B. Krupa, M. Kucharczyk, T. Lesiak, A. Moszczynski, B. Pawlik, P. Sopicki, T. Wojtoń, L. Zawiejski, J. Kalinowski, M. Krawczyk, A. F. Żarnecki, E. Firu, V. Ghenescu, A. T. Neagu, T. Preda, I-S. Zgura, A. Aloev, N. Azaryan, J. Budagov, M. Chizhov, M. Filippova, V. Glagolev, A. Gongadze, S. Grigoryan, D. Gudkov, V. Karjavine, M. Lyablin, A. Olyunin, A. Samochkine, A. Sapronov, G. Shirkov, V. Soldatov, A. Solodko, E. Solodko, G. Trubnikov, I. Tyapkin, V. Uzhinsky, A. Vorozhtov, E. Levichev, N. Mezentsev, P. Piminov, D. Shatilov, P. Vobly, K. Zolotarev, I. Bozovic Jelisavcic, G. Kacarevic, S. Lukic, G. Milutinovic-Dumbelovic, M. Pandurovic, U. Iriso, F. Perez, M. Pont, J. Trenado, M. Aguilar-Benitez, J. Calero, L. Garcia-Tabares, D. Gavela, J. L. Gutierrez, D. Lopez, F. Toral, D. Moya, A. Ruiz Jimeno, I. Vila, T. Argyropoulos, C. Blanch Gutierrez, M. Boronat, D. Esperante, A. Faus-Golfe, J. Fuster, N. Fuster Martinez, N. Galindo Muñoz, I. García, J. Giner Navarro, E. Ros, M. Vos, R. Brenner, T. Ekelöf, M. Jacewicz, J. Ögren, M. Olvegård, R. Ruber, V. Ziemann, D. Aguglia, N. Alipour Tehrani, A. Andersson, F. Andrianala, F. Antoniou, K. Artoos, S. Atieh, R. Ballabriga Sune, M. J. Barnes, J. Barranco Garcia, H. Bartosik, C. Belver-Aguilar, A. Benot Morell, D. R. Bett, S. Bettoni, G. Blanchot, O. Blanco Garcia, X. A. Bonnin, O. Brunner, H. Burkhardt, S. Calatroni, M. Campbell, N. Catalan Lasheras, M. Cerqueira Bastos, A. Cherif, E. Chevallay, B. Constance, R. Corsini, B. Cure, S. Curt, B. Dalena, D. Dannheim, G. De Michele, L. De Oliveira, N. Deelen, J. P. Delahaye, T. Dobers, S. Doebert, M. Draper, F. Duarte Ramos, A. Dubrovskiy, K. Elsener, J. Esberg, M. Esposito, V. Fedosseev, P. Ferracin, A. Fiergolski, K. Foraz, A. Fowler, F. Friebel, J-F. Fuchs, C. A. Fuentes Rojas, A. Gaddi, L. Garcia Fajardo, H. Garcia Morales, C. Garion, L. Gatignon, J-C. Gayde, H. Gerwig, A. N. Goldblatt, C. Grefe, A. Grudiev, F. G. Guillot-Vignot, M. L. Gutt-Mostowy, M. Hauschild, C. Hessler, J. K. Holma, E. Holzer, M. Hourican, D. Hynds, Y. Inntjore Levinsen, B. Jeanneret, E. Jensen, M. Jonker, M. Kastriotou, J. M. K. Kemppinen, R. B. Kieffer, W. Klempt, O. Kononenko, A. Korsback, E. Koukovini Platia, J. W. Kovermann, C-I. Kozsar, I. Kremastiotis, S. Kulis, A. Latina, F. Leaux, P. Lebrun, T. Lefevre, L. Linssen, X. Llopart Cudie, A. A. Maier, H. Mainaud Durand, E. Manosperti, C. Marelli, E. Marin Lacoma, R. Martin, S. Mazzoni, G. Mcmonagle, O. Mete, L. M. Mether, M. Modena, R. M. Münker, T. Muranaka, E. Nebot Del Busto, N. Nikiforou, D. Nisbet, J-M. Nonglaton, F. X. Nuiry, A. Nürnberg, M. Olvegard, J. Osborne, S. Papadopoulou, Y. Papaphilippou, A. Passarelli, M. Patecki, L. Pazdera, D. Pellegrini, K. Pepitone, E. Perez Codina, A. Perez Fontenla, T. H. B. Persson, M. Petrič, F. Pitters, S. Pittet, F. Plassard, R. Rajamak, S. Redford, Y. Renier, S. F. Rey, G. Riddone, L. Rinolfi, E. Rodriguez Castro, P. Roloff, C. Rossi, V. Rude, G. Rumolo, A. Sailer, E. Santin, D. Schlatter, H. Schmickler, D. Schulte, N. Shipman, E. Sicking, R. Simoniello, P. K. Skowronski, P. Sobrino Mompean, L. Soby, M. P. Sosin, S. Sroka, S. Stapnes, G. Sterbini, R. Ström, I. Syratchev, F. Tecker, P. A. Thonet, L. Timeo, H. Timko, R. Tomas Garcia, P. Valerio, A. L. Vamvakas, A. Vivoli, M. A. Weber, R. Wegner, M. Wendt, B. Woolley, W. Wuensch, J. Uythoven, H. Zha, P. Zisopoulos, M. Benoit, M. Vicente Barreto Pinto, M. Bopp, H. H. Braun, M. Csatari Divall, M. Dehler, T. Garvey, J. Y. Raguin, L. Rivkin, R. Zennaro, A. Aksoy, Z. Nergiz, E. Pilicer, I. Tapan, O. Yavas, V. Baturin, R. Kholodov, S. Lebedynskyi, V. Miroshnichenko, S. Mordyk, I. Profatilova, V. Storizhko, N. Watson, A. Winter, J. Goldstein, S. Green, J. S. Marshall, M. A. Thomson, B. Xu, W. A. Gillespie, R. Pan, M. A Tyrk, D. Protopopescu, A. Robson, R. Apsimon, I. Bailey, G. Burt, D. Constable, A. Dexter, S. Karimian, C. Lingwood, M. D. Buckland, G. Casse, J. Vossebeld, A. Bosco, P. Karataev, K. Kruchinin, K. Lekomtsev, L. Nevay, J. Snuverink, E. Yamakawa, V. Boisvert, S. Boogert, G. Boorman, S. Gibson, A. Lyapin, W. Shields, P. Teixeira-Dias, S. West, R. Jones, N. Joshi, R. Bodenstein, P. N. Burrows, G. B. Christian, D. Gamba, C. Perry, J. Roberts, J. A. Clarke, N. A. Collomb, S. P. Jamison, B. J. A. Shepherd, D. Walsh, M. Demarteau, J. Repond, H. Weerts, L. Xia, J. D. Wells, C. Adolphsen, T. Barklow, M. Breidenbach, N. Graf, J. Hewett, T. Markiewicz, D. McCormick, K. Moffeit, Y. Nosochkov, M. Oriunno, N. Phinney, T. Rizzo, S. Tantawi, F. Wang, J. Wang, G. White, M. Woodley

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Read More

In this brief overview we will reflect on the process of the design of the linear collider (LC) final focus (FF) optics, and will also describe the theoretical and experimental efforts on design and practical realisation of a prototype of the LC FF optics implemented in the ATF2 facility at KEK, Japan, presently being commissioned and operated. Read More

Model-independent analysis (MIA) methods are generally useful for analysing complex systems in which relationships between the observables are non-trivial and noise is present. Principle Component Analysis (PCA) is one of MIA methods allowing to isolate components in the input data graded to their contribution to the variability of the data. In this publication we show how the PCA can be applied to digitised signals obtained from a cavity beam position monitor (CBPM) system on the example of a 3-cavity test system installed at the Accelerator Test Facility 2 (ATF2) at KEK in Japan. Read More

**Authors:**Chris Adolphsen

^{1}, Maura Barone

^{2}, Barry Barish

^{3}, Karsten Buesser

^{4}, Philip Burrows

^{5}, John Carwardine

^{6}, Jeffrey Clark

^{7}, Hélène Mainaud Durand

^{8}, Gerry Dugan

^{9}, Eckhard Elsen

^{10}, Atsushi Enomoto

^{11}, Brian Foster

^{12}, Shigeki Fukuda

^{13}, Wei Gai

^{14}, Martin Gastal

^{15}, Rongli Geng

^{16}, Camille Ginsburg

^{17}, Susanna Guiducci

^{18}, Mike Harrison

^{19}, Hitoshi Hayano

^{20}, Keith Kershaw

^{21}, Kiyoshi Kubo

^{22}, Victor Kuchler

^{23}, Benno List

^{24}, Wanming Liu

^{25}, Shinichiro Michizono

^{26}, Christopher Nantista

^{27}, John Osborne

^{28}, Mark Palmer

^{29}, James McEwan Paterson

^{30}, Thomas Peterson

^{31}, Nan Phinney

^{32}, Paolo Pierini

^{33}, Marc Ross

^{34}, David Rubin

^{35}, Andrei Seryi

^{36}, John Sheppard

^{37}, Nikolay Solyak

^{38}, Steinar Stapnes

^{39}, Toshiaki Tauchi

^{40}, Nobu Toge

^{41}, Nicholas Walker

^{42}, Akira Yamamoto

^{43}, Kaoru Yokoya

^{44}

**Affiliations:**

^{1}SLAC,

^{2}Fermilab,

^{3}Caltech,

^{4}DESY,

^{5}University of Oxford, Particle Physics Department,

^{6}ANL,

^{7}Fermilab,

^{8}CERN,

^{9}Cornell University,

^{10}DESY,

^{11}KEK,

^{12}DESY,

^{13}KEK,

^{14}ANL,

^{15}CERN,

^{16}Jefferson Lab,

^{17}Fermilab,

^{18}LNF,

^{19}BNL,

^{20}KEK,

^{21}CERN,

^{22}KEK,

^{23}Fermilab,

^{24}DESY,

^{25}ANL,

^{26}KEK,

^{27}SLAC,

^{28}CERN,

^{29}Fermilab,

^{30}SLAC,

^{31}Fermilab,

^{32}SLAC,

^{33}INFN, Laboratorio LASA,

^{34}SLAC,

^{35}Cornell University,

^{36}University of Oxford,

^{37}SLAC,

^{38}Fermilab,

^{39}CERN,

^{40}KEK,

^{41}KEK,

^{42}DESY,

^{43}KEK,

^{44}KEK

**Category:**Physics - Accelerator Physics

The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. Read More

**Authors:**Chris Adolphsen

^{1}, Maura Barone

^{2}, Barry Barish

^{3}, Karsten Buesser

^{4}, Philip Burrows

^{5}, John Carwardine

^{6}, Jeffrey Clark

^{7}, Hélène Mainaud Durand

^{8}, Gerry Dugan

^{9}, Eckhard Elsen

^{10}, Atsushi Enomoto

^{11}, Brian Foster

^{12}, Shigeki Fukuda

^{13}, Wei Gai

^{14}, Martin Gastal

^{15}, Rongli Geng

^{16}, Camille Ginsburg

^{17}, Susanna Guiducci

^{18}, Mike Harrison

^{19}, Hitoshi Hayano

^{20}, Keith Kershaw

^{21}, Kiyoshi Kubo

^{22}, Victor Kuchler

^{23}, Benno List

^{24}, Wanming Liu

^{25}, Shinichiro Michizono

^{26}, Christopher Nantista

^{27}, John Osborne

^{28}, Mark Palmer

^{29}, James McEwan Paterson

^{30}, Thomas Peterson

^{31}, Nan Phinney

^{32}, Paolo Pierini

^{33}, Marc Ross

^{34}, David Rubin

^{35}, Andrei Seryi

^{36}, John Sheppard

^{37}, Nikolay Solyak

^{38}, Steinar Stapnes

^{39}, Toshiaki Tauchi

^{40}, Nobu Toge

^{41}, Nicholas Walker

^{42}, Akira Yamamoto

^{43}, Kaoru Yokoya

^{44}

**Affiliations:**

^{1}SLAC,

^{2}Fermilab,

^{3}Caltech,

^{4}DESY,

^{5}University of Oxford, Particle Physics Department,

^{6}ANL,

^{7}Fermilab,

^{8}CERN,

^{9}Cornell University,

^{10}DESY,

^{11}KEK,

^{12}DESY,

^{13}KEK,

^{14}ANL,

^{15}CERN,

^{16}Jefferson Lab,

^{17}Fermilab,

^{18}LNF,

^{19}BNL,

^{20}KEK,

^{21}CERN,

^{22}KEK,

^{23}Fermilab,

^{24}DESY,

^{25}ANL,

^{26}KEK,

^{27}SLAC,

^{28}CERN,

^{29}Fermilab,

^{30}SLAC,

^{31}Fermilab,

^{32}SLAC,

^{33}INFN, Laboratorio LASA,

^{34}SLAC,

^{35}Cornell University,

^{36}University of Oxford,

^{37}SLAC,

^{38}Fermilab,

^{39}CERN,

^{40}KEK,

^{41}KEK,

^{42}DESY,

^{43}KEK,

^{44}KEK

**Category:**Physics - Accelerator Physics

The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. Read More

**Authors:**Y. I. Kim

^{1}, R. Ainsworth

^{2}, A. Aryshev

^{3}, S. T. Boogert

^{4}, G. Boorman

^{5}, J. Frisch

^{6}, A. Heo

^{7}, Y. Honda

^{8}, W. H. Hwang

^{9}, J. Y. Huang

^{10}, E. -S. Kim

^{11}, S. H. Kim

^{12}, A. Lyapin

^{13}, T. Naito

^{14}, J. May

^{15}, D. McCormick

^{16}, R. E. Mellor

^{17}, S. Molloy

^{18}, J. Nelson

^{19}, S. J. Park

^{20}, Y. J. Park

^{21}, M. Ross

^{22}, S. Shin

^{23}, C. Swinson

^{24}, T. Smith

^{25}, N. Terunuma

^{26}, T. Tauchi

^{27}, J. Urakawa

^{28}, G. R. White

^{29}

**Affiliations:**

^{1}Kyungpook Natl. U.,

^{2}Royal Holloway, U. of London,

^{3}KEK, Tsukuba,

^{4}Royal Holloway, U. of London,

^{5}Royal Holloway, U. of London,

^{6}SLAC,

^{7}Kyungpook Natl. U.,

^{8}KEK, Tsukuba,

^{9}Pohang Accelerator Lab.,

^{10}Pohang Accelerator Lab.,

^{11}Kyungpook Natl. U.,

^{12}Pohang Accelerator Lab.,

^{13}Royal Holloway, U. of London,

^{14}KEK, Tsukuba,

^{15}SLAC,

^{16}SLAC,

^{17}Cornell U., Phys. Dept.,

^{18}Royal Holloway, U. of London,

^{19}SLAC,

^{20}Pohang Accelerator Lab.,

^{21}Pohang Accelerator Lab.,

^{22}Fermilab,

^{23}Pohang Accelerator Lab.,

^{24}Brookhaven,

^{25}SLAC,

^{26}KEK, Tsukuba,

^{27}KEK, Tsukuba,

^{28}KEK, Tsukuba,

^{29}SLAC

**Category:**Physics - Accelerator Physics

The Accelerator Test Facility 2 (ATF2) is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM) system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6. Read More

**Authors:**P. Bambade

^{1}, M. Alabau Pons

^{2}, J. Amann

^{3}, D. Angal-Kalinin

^{4}, R. Apsimon

^{5}, S. Araki

^{6}, A. Aryshev

^{7}, S. Bai

^{8}, P. Bellomo

^{9}, D. Bett

^{10}, G. Blair

^{11}, B. Bolzon

^{12}, S. Boogert

^{13}, G. Boorman

^{14}, P. N. Burrows

^{15}, G. Christian

^{16}, P. Coe

^{17}, B. Constance

^{18}, Jean-Pierre Delahaye

^{19}, L. Deacon

^{20}, E. Elsen

^{21}, A. Faus-Golfe

^{22}, M. Fukuda

^{23}, J. Gao

^{24}, N. Geffroy

^{25}, E. Gianfelice-Wendt

^{26}, H. Guler

^{27}, H. Hayano

^{28}, A. -Y. Heo

^{29}, Y. Honda

^{30}, J. Y. Huang

^{31}, W. H. Hwang

^{32}, Y. Iwashita

^{33}, A. Jeremie

^{34}, J. Jones

^{35}, Y. Kamiya

^{36}, P. Karataev

^{37}, E. -S. Kim

^{38}, H. -S. Kim

^{39}, S. H. Kim

^{40}, S. Komamiya

^{41}, K. Kubo

^{42}, T. Kume

^{43}, S. Kuroda

^{44}, B. Lam

^{45}, A. Lyapin

^{46}, M. Masuzawa

^{47}, D. McCormick

^{48}, S. Molloy

^{49}, T. Naito

^{50}, T. Nakamura

^{51}, J. Nelson

^{52}, D. Okamoto

^{53}, T. Okugi

^{54}, M. Oroku

^{55}, Y. J. Park

^{56}, B. Parker

^{57}, E. Paterson

^{58}, C. Perry

^{59}, M. Pivi

^{60}, T. Raubenheimer

^{61}, Y. Renier

^{62}, J. Resta-Lopez

^{63}, C. Rimbault

^{64}, M. Ross

^{65}, T. Sanuki

^{66}, A. Scarfe

^{67}, D. Schulte

^{68}, A. Seryi

^{69}, C. Spencer

^{70}, T. Suehara

^{71}, R. Sugahara

^{72}, C. Swinson

^{73}, T. Takahashi

^{74}, T. Tauchi

^{75}, N. Terunuma

^{76}, R. Tomas

^{77}, J. Urakawa

^{78}, D. Urner

^{79}, M. Verderi

^{80}, M. -H. Wang

^{81}, M. Warden

^{82}, M. Wendt

^{83}, G. White

^{84}, W. Wittmer

^{85}, A. Wolski

^{86}, M. Woodley

^{87}, Y. Yamaguchi

^{88}, T. Yamanaka

^{89}, Y. Yan

^{90}, H. Yoda

^{91}, K. Yokoya

^{92}, F. Zhou

^{93}, F. Zimmermann

^{94}

**Affiliations:**

^{1}Orsay and KEK, Tsukuba,

^{2}Valencia U., IFIC,

^{3}SLAC,

^{4}Daresbury,

^{5}Oxford U., JAI,

^{6}KEK, Tsukuba,

^{7}KEK, Tsukuba,

^{8}Beijing, Inst. High Energy Phys.,

^{9}SLAC,

^{10}Oxford U., JAI,

^{11}Royal Holloway, U. of London,

^{12}Savoie U.,

^{13}Royal Holloway, U. of London,

^{14}Royal Holloway, U. of London,

^{15}Oxford U., JAI,

^{16}Oxford U., JAI,

^{17}Oxford U., JAI,

^{18}Oxford U., JAI,

^{19}CERN,

^{20}Royal Holloway, U. of London,

^{21}DESY,

^{22}Valencia U., IFIC,

^{23}KEK, Tsukuba,

^{24}Beijing, Inst. High Energy Phys.,

^{25}Savoie U.,

^{26}Fermilab,

^{27}Ecole Polytechnique,

^{28}KEK, Tsukuba,

^{29}Kyungpook Natl. U.,

^{30}KEK, Tsukuba,

^{31}Pohang Accelerator Lab.,

^{32}Pohang Accelerator Lab.,

^{33}Kyoto U., Inst. Chem. Res.,

^{34}Savoie U.,

^{35}Daresbury,

^{36}Tokyo U.,

^{37}Royal Holloway, U. of London,

^{38}Kyungpook Natl. U.,

^{39}Kyungpook Natl. U.,

^{40}Pohang Accelerator Lab.,

^{41}Tokyo U.,

^{42}KEK, Tsukuba,

^{43}KEK, Tsukuba,

^{44}KEK, Tsukuba,

^{45}SLAC,

^{46}University Coll. London,

^{47}KEK, Tsukuba,

^{48}SLAC,

^{49}Royal Holloway, U. of London,

^{50}KEK, Tsukuba,

^{51}Tokyo U.,

^{52}SLAC,

^{53}Tohoku U.,

^{54}KEK, Tsukuba,

^{55}Tokyo U.,

^{56}Pohang Accelerator Lab.,

^{57}Brookhaven,

^{58}SLAC,

^{59}Oxford U., JAI,

^{60}SLAC,

^{61}SLAC,

^{62}Orsay and KEK, Tsukuba,

^{63}Oxford U., JAI,

^{64}Orsay,

^{65}Fermilab,

^{66}Tohoku U.,

^{67}Manchester U.,

^{68}CERN,

^{69}SLAC,

^{70}SLAC,

^{71}Tokyo U.,

^{72}KEK, Tsukuba,

^{73}Oxford U., JAI,

^{74}Hiroshima U.,

^{75}KEK, Tsukuba,

^{76}KEK, Tsukuba,

^{77}CERN,

^{78}KEK, Tsukuba,

^{79}Oxford U., JAI,

^{80}Ecole Polytechnique,

^{81}SLAC,

^{82}Oxford U., JAI,

^{83}Fermilab,

^{84}SLAC,

^{85}SLAC,

^{86}Liverpool U.,

^{87}SLAC,

^{88}Tokyo U.,

^{89}Tokyo U.,

^{90}SLAC,

^{91}Tokyo U.,

^{92}KEK, Tsukuba,

^{93}SLAC,

^{94}CERN

**Category:**Physics - Accelerator Physics

ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U. Read More

We have developed a compact cryogenic system with a pulse tube refrigerator and a coaxial heat exchanger. This liquefaction-purification system not only saves the cooling power used to reach high gaseous recirculation rate, but also reduces the impurity level with high speed. The heat exchanger operates with an efficiency of 99%, which indicates the possibility for fast xenon gas recirculation in a highpressurized large-scale xenon storage with much less thermal losses. Read More

We fabricated a readout ASIC with the fully depleted silicon-on-insulator (FD-SOI) technology for the pair-monitor. The pair-monitor is a silicon pixel device that measures the beam profile of the international linear collider. It utilizes the directional distribution of a large number of electron-positron pairs created by collision of bunches, and is required to tolerate radiation dose of about a few Mrad/year. Read More

A beam size monitor so called Shintake monitor, which uses the inverse Compton scattering between the laser interference fringe and the electron beam was designed for and installed at ATF2. The commissioning at ATF2 was started in the end of 2008 and succeeded in the measurement of the fringe pattern from the scattered gamma-rays. The present status of the Shintake monitor is described here. Read More

**Authors:**Y. Yamaguchi, T. Yamanaka, M. Oroku, Y. Kamiya, S. Komamiya, T. Suehara, T. Okugi, N. Terunuma, T. Tauchi, S. Araki, J. Urakawa

The beam test for the Shintake monitor succeeded in measuring signal modulation with the laser interference fringe pattern in November 2009. We have studied the error sources, and evaluated the systematic error to be less than 30% for 1 minute measurements. This paper centers on the evaluation of the Shintake monitor performance through analyzing beam tests deta. Read More

At the International Linear Collider (ILC), measurement of the beam profile at the interaction point (IP) is a key issue to achieve high luminosity. We studied the beam size measurement by combination of Pair Monitor and BeamCal. We obtained measurement accuracies of 2. Read More

At the international linear collider, measurement of the beam profile at the interaction point is a key issue to achieve high luminosity. We report a simulation study on a new beam profile monitor, called the pair monitor, which uses the hit distribution of the electron-positron pairs generated at the interaction point. We obtained measurement accuracies of 5. Read More

The pair monitor is a beam profile monitor at interaction point (IP) for the international linear collider (ILC). We have designed and developed the pair monitor as a silicon pixel sensor which is located at about 400 cm from IP. As the first step to develop the pair monitor, the readout ASIC was developed. Read More

We developed an electron beam size monitor for extremely small beam sizes. It uses a laser interference fringe for a scattering target with the electron beam. Our target performance is < 2 nm systematic error for 37 nm beam size and < 10% statistical error in a measurement using 90 electron bunches for 25 - 6000 nm beam size. Read More

IP-BPM (Interaction Point Beam Position Monitor) is an ultra high resolution cavity BPM to be used at ATF2, a test facility for ILC final focus system. Control of beam position in 2 nm precision is required for ATF2. Beam tests at ATF extraction line proved a 8. Read More

Shintake monitor is a nanometer-scale electron beam size monitor. It probes a electron beam by an interference fringe pattern formed by split laser beams. Minimum measurable beam size by this method is less than 1/10 of laser wavelength. Read More

At a warm linear collider the short time interval at which bunches will pass near each other in the interaction region may lead to significant alteration of the bunches positions. In this paper we quantify the intensity of this effect and show that it can be addressed by a fast intra-pulse feedback system. Read More

At the Linear Collider mismatches between the two beams will result in an intense beamstrahlung. We have studied how this beamstrahlung would evolve as a function of the offset between the two beams and we suggest ways of monitoring it. Read More