T. Suehara - Department of Physics, Kyushu University, Fukuoka, Japan

T. Suehara
Are you T. Suehara?

Claim your profile, edit publications, add additional information:

Contact Details

Name
T. Suehara
Affiliation
Department of Physics, Kyushu University, Fukuoka, Japan
City
Fukuoka
Country
Japan

Pubs By Year

Pub Categories

 
High Energy Physics - Experiment (38)
 
Physics - Instrumentation and Detectors (20)
 
High Energy Physics - Phenomenology (10)
 
Physics - Atomic Physics (9)
 
Physics - Accelerator Physics (6)
 
Physics - Optics (2)
 
Physics - Data Analysis; Statistics and Probability (1)

Publications Authored By T. Suehara

We are developing position sensitive silicon detectors (PSD) which have an electrode at each of four corners so that the incident position of a charged particle can be obtained using signals from the electrodes. It is expected that the position resolution the electromagnetic calorimeter (ECAL) of the ILD detector will be improved by introducing PSD into the detection layers. In this study, we irradiated collimated laser beams to the surface of the PSD, varying the incident position. Read More

SKIROC2 is an ASIC to readout the silicon pad detectors for the electromagnetic calorimeter in the International Linear Collider. Characteristics of SKIROC2 and the new version of SKIROC2A, packaged with BGA, are measured with testboards and charge injection. The results on the signal-to-noise ratio of both trigger and ADC output, threshold tuning capability and timing resolution are presented. Read More

2016Apr
Authors: Z. Deng, Y. Li, Y. Wang, Q. Yue, Z. Yang, J. Apostolakis, G. Folger, C. Grefe, V. Ivantchenko, A. Ribon, V. Uzhinskiy, D. Boumediene, C. Carloganu, V. Français, G. Cho, D-W. Kim, S. C. Lee, W. Park, S. Vallecorsa, S. Cauwenbergh, M. Tytgat, A. Pingault, N. Zaganidis, E. Brianne, A. Ebrahimi, K. Gadow, P. Göttlicher, C. Günter, O. Hartbrich, B. Hermberg, A. Irles, F. Krivan, K. Krüger, J. Kvasnicka, S. Lu, B. Lutz, V. Morgunov, C. Neubüser, A. Provenza, M. Reinecke, F. Sefkow, S. Schuwalow, H. L. Tran, E. Garutti, S. Laurien, M. Matysek, M. Ramilli, S. Schroeder, B. Bilki, E. Norbeck, D. Northacker, Y. Onel, S. Chang, A. Khan, D. H. Kim, D. J. Kong, Y. D. Oh, K. Kawagoe, H. Hirai, Y. Sudo, T. Suehara, H. Sumida, T. Yoshioka, E. Cortina Gil, S. Mannai, V. Buridon, C. Combaret, L. Caponetto, R. Eté, G. Garillot, G. Grenier, R. Han, J. C. Ianigro, R. Kieffer, I. Laktineh, N. Lumb, H. Mathez, L. Mirabito, A. Petrukhin, A. Steen, J. Berenguer Antequera, E. Calvo Alamillo, M. -C. Fouz, J. Marin, J. Puerta-Pelayo, A. Verdugo, M. Chadeeva, M. Danilov, M. Gabriel, P. Goecke, C. Kiesling, N. vanderKolk, F. Simon, M. Szalay, S. Bilokin, J. Bonis, P. Cornebise, F. Richard, R. Pöschl, J. Rouëné, A. Thiebault, D. Zerwas, M. Anduze, V. Balagura, K. Belkadhi, V. Boudry, J-C. Brient, R. Cornat, M. Frotin, F. Gastaldi, Y. Haddad, F. Magniette, M. Ruan, M. Rubio-Roy, K. Shpak, H. Videau, D. Yu, S. Callier, S. Conforti di Lorenzo, F. Dulucq, G. Martin-Chassard, Ch. de la Taille, L. Raux, N. Seguin-Moreau, K. Kotera, H. Ono, T. Takeshita, F. Corriveau

The CALICE Semi-Digital Hadron Calorimeter (SDHCAL) technological prototype is a sampling calorimeter using Glass Resistive Plate Chamber detectors with a three-threshold readout as the active medium. This technology is one of the two options proposed for the hadron calorimeter of the International Large Detector for the International Linear Collider. The prototype was exposed to beams of muons, electrons and pions of different energies at the CERN Super Proton Synchrotron. Read More

International Large Detector (ILD) adopts Particle Flow Algorithm (PFA) for precise measurement of multiple jets. The electromagnetic calorimeter (ECAL) of ILD has two candidates sensor technologies for PFA, which are pixelized silicon sensors and scintillator-strips with silicon photomultipliers. Pixelized silicon sensors have higher granularity for PFA, however they have an issue of cost reduction. Read More

In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0. Read More

2016Feb
Authors: The CALICE Collaboration, G. Eigen, T. Price, N. K. Watson, J. S. Marshall, M. A. Thomson, D. R. Ward, D. Benchekroun, A. Hoummada, Y. Khoulaki, J. Apostolakis, A. Dotti, G. Folger, V. Ivantchenko, A. Ribon, V. Uzhinskiy, J. -Y. Hostachy, L. Morin, E. Brianne, A. Ebrahimi, K. Gadow, P. Göttlicher, C. Günter, O. Hartbrich, B. Hermberg, A. Irles, F. Krivan, K. Krüger, J. Kvasnicka, S. Lu, B. Lutz, V. Morgunov, C. Neubüser, A. Provenza, M. Reinecke, F. Sefkow, S. Schuwalow, H. L. Tran, E. Garutti, S. Laurien, M. Matysek, M. Ramilli, S. Schroeder, K. Briggl, P. Eckert, Y. Munwes, H. -Ch. Schultz-Coulon, W. Shen, R. Stamen, B. Bilki, E. Norbeck, D. Northacker, Y. Onel, B. van Doren, G. W. Wilson, K. Kawagoe, H. Hirai, Y. Sudo, T. Suehara, H. Sumida, S. Takada, T. Tomita, T. Yoshioka, M. Wing, A. Bonnevaux, C. Combaret, L. Caponetto, G. Grenier, R. Han, J. C. Ianigro, R. Kieffer, I. Laktineh, N. Lumb, H. Mathez, L. Mirabito, A. Steen, J. Berenguer Antequera, E. Calvo Alamillo, M. -C. Fouz, J. Marin, J. Puerta-Pelayo, A. Verdugo, B. Bobchenko, O. Markin, E. Novikov, V. Rusinov, E. Tarkovsky, N. Kirikova, V. Kozlov, P. Smirnov, Y. Soloviev, D. Besson, P. Buzhan, M. Chadeeva, M. Danilov, A. Drutskoy, A. Ilyin, D. Mironov, R. Mizuk, E. Popova, M. Gabriel, P. Goecke, C. Kiesling, N. van der Kolk, F. Simon, M. Szalay, S. Bilokin, J. Bonis, P. Cornebise, R. Pöschl, F. Richard, A. Thiebault, D. Zerwas, M. Anduze, V. Balagura, E. Becheva, V. Boudry, J-C. Brient, J-B. Cizel, C. Clerc, R. Cornat, M. Frotin, F. Gastaldi, F. Magniette, P. Mora de Freitas, G. Musat, S. Pavy, M. Rubio-Roy, M. Ruan, H. Videau, S. Callier, F. Dulucq, G. Martin-Chassard, L. Raux, N. Seguin-Moreau, Ch. de la Taille, J. Cvach, P. Gallus, M. Havranek, M. Janata, D. Lednicky, M. Marcisovsky, I. Polak, J. Popule, L. Tomasek, M. Tomasek, P. Sicho, J. Smolik, V. Vrba, J. Zalesak, K. Kotera, H. Ono, T. Takeshita, S. Ieki, Y. Kamiya, W. Ootani, N. Shibata, D. Jeans, S. Komamiya, H. Nakanishi

The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9. Read More

We evaluate the measurement precision of the production cross section times the branching ratio of the Higgs boson decaying into tau lepton pairs at the International Linear Collider (ILC). We analyze various final states associated with the main production mechanisms of the Higgs boson, the Higgs-strahlung and WW-fusion processes. The statistical precision of the production cross section times the branching ratio is estimated to be 2. Read More

2015Sep
Authors: The CALICE collaboration, M. Chefdeville, Y. Karyotakis, J. Repond, J. Schlereth, L. Xia, G. Eigen, J. S. Marshall, M. A. Thomson, D. R. Ward, N. Alipour Tehrani, J. Apostolakis, D. Dannheim, K. Elsener, G. Folger, C. Grefe, V. Ivantchenko, M. Killenberg, W. Klempt, E. van der Kraaij, L. Linssen, A. -I. Lucaci-Timoce, A. Münnich, S. Poss, A. Ribon, P. Roloff, A. Sailer, D. Schlatter, E. Sicking, J. Strube, V. Uzhinskiy, S. Chang, A. Khan, D. H. Kim, D. J. Kong, Y. D. Oh, G. C. Blazey, A. Dyshkant, K. Francis, V. Zutshi, J. Giraud, D. Grondin, J. -Y. Hostachy, E. Brianne, U. Cornett, D. David, G. Falley, K. Gadow, P. Göttlicher, C. Günter, O. Hartbrich, B. Hermberg, A. Irles, S. Karstensen, F. Krivan, K. Krüger, J. Kvasnicka, S. Lu, B. Lutz, S. Morozov, V. Morgunov, C. Neubüser, A. Provenza, M. Reinecke, F. Sefkow, P. Smirnov, M. Terwort, H. L. Tran, A. Vargas-Trevino, E. Garutti, S. Laurien, M. Matysek, M. Ramilli, S. Schröder, K. Briggl, P. Eckert, T. Harion, Y. Munwes, H. -Ch. Schultz-Coulon, W. Shen, R. Stamen, B. Bilki, Y. Onel, K. Kawagoe, H. Hirai, Y. Sudo, T. Suehara, H. Sumida, S. Takada, T. Tomita, T. Yoshioka, M. Wing, E. Calvo Alamillo, M. -C. Fouz, J. Marin, J. Puerta-Pelayo, A. Verdugo, B. Bobchenko, M. Chadeeva, M. Danilov, O. Markin, R. Mizuk, E. Novikov, V. Rusinov, E. Tarkovsky, N. Kirikova, V. Kozlov, P. Smirnov, Y. Soloviev, D. Besson, P. Buzhan, E. Popova, M. Gabriel, C. Kiesling, N. van der Kolk, K. Seidel, F. Simon, C. Soldner, M. Szalay, M. Tesar, L. Weuste, M. S. Amjad, J. Bonis, P. Cornebise, F. Richard, R. Pöschl, J. Rouëné, A. Thiebault, M. Anduze, V. Balagura, V. Boudry, J-C. Brient, J-B. Cizel, R. Cornat, M. Frotin, F. Gastaldi, Y. Haddad, F. Magniette, J. Nanni, S. Pavy, M. Rubio-Roy, K. Shpak, T. H. Tran, H. Videau, D. Yu, S. Callier, S. Conforti di Lorenzo, F. Dulucq, J. Fleury, G. Martin-Chassard, Ch. de la Taille, L. Raux, N. Seguin-Moreau, J. Cvach, P. Gallus, M. Havranek, M. Janata, M. Kovalcuk, J. Kvasnicka, D. Lednicky, M. Marcisovsky, I. Polak, J. Popule, L. Tomasek, M. Tomasek, P. Ruzicka, P. Sicho, J. Smolik, V. Vrba, J. Zalesak, S. Ieki, Y. Kamiya, W. Ootani, N. Shibata, S. Chen, D. Jeans, S. Komamiya, C. Kozakai, H. Nakanishi, M. Götze, J. Sauer, S. Weber, C. Zeitnitz

We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. Read More

We report on the progress in flavor identification tools developed for a future $e^+e^-$ linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. Read More

Excellent jet energy measurement is important at the International Linear Collider (ILC) because most of interesting physics processes decay into multi-jet final states. We employ a particle flow method to reconstruct particles, hence International Large Detector (ILD) needs high spatial resolution which can separate each particle in jets. We study pixelized silicon sensors as active material of ILD Silicon electro- magnetic calorimeter (SiECAL). Read More

Hybrid ECAL is a cost-conscious option of electromagnetic calorimeter (ECAL) for particle flow calorimetry to be used in a detector of International Linear Collider (ILC). It is a combination of silicon-tungsten ECAL, which realizes high granularity and robust measurement of electromagnetic shower, and scintillator-tungsten ECAL, which gives affordable cost with similar performance to silicon. Optimization and a data acquisition trial in a test bench for the hybrid ECAL are described in this article. Read More

We evaluate the expected measurement accuracy of the branching ratio of the Standard Model Higgs boson decaying into tau pairs at the ILC with a full simulation of the ILD detector concept. We assume a Higgs mass of 125 GeV, a branching ratio of BR($h \to \tau ^+ \tau ^-$) = 6.32%, a beam polarization of electron (positron) of -0. Read More

2014Dec
Authors: The CALICE Collaboration, B. Bilki, J. Repond, L. Xia, G. Eigen, M. A. Thomson, D. R. Ward, D. Benchekroun, A. Hoummada, Y. Khoulaki, S. Chang, A. Khan, D. H. Kim, D. J. Kong, Y. D. Oh, G. C. Blazey, A. Dyshkant, K. Francis, J. G. R. Lima, R. Salcido, V. Zutshi, F. Salvatore, K. Kawagoe, Y. Miyazaki, Y. Sudo, T. Suehara, T. Tomita, H. Ueno, T. Yoshioka, J. Apostolakis, D. Dannheim, G. Folger, V. Ivantchenko, W. Klempt, A. -I. Lucaci-Timoce, A. Ribon, D. Schlatter, E. Sicking, V. Uzhinskiy, J. Giraud, D. Grondin, J. -Y. Hostachy, L. Morin, E. Brianne, U. Cornett, D. David, A. Ebrahimi, G. Falley, K. Gadow, P. Göttlicher, C. Günter, O. Hartbrich, B. Hermberg, S. Karstensen, F. Krivan, K. Krüger, S. Lu, B. Lutz, S. Morozov, V. Morgunov, C. Neubüser, M. Reinecke, F. Sefkow, P. Smirnov, H. L. Tran, P. Buhmann, E. Garutti, S. Laurien, M. Matysek, M. Ramilli, K. Briggl, P. Eckert, T. Harion, Y. Munwes, H. -Ch. Schultz-Coulon, W. Shen, R. Stamen, E. Norbeck, D. Northacker, Y. Onel, B. van Doren, G. W. Wilson, M. Wing, C. Combaret, L. Caponetto, R. Eté, G. Grenier, R. Han, J. C. Ianigro, R. Kieffer, I. Laktineh, N. Lumb, H. Mathez, L. Mirabito, A. Petrukhin, A. Steen, J. Berenguer Antequera, E. Calvo Alamillo, M. -C. Fouz, J. Marin, J. Puerta-Pelayo, A. Verdugo, F. Corriveau, B. Bobchenko, R. Chistov, M. Chadeeva, M. Danilov, A. Drutskoy, A. Epifantsev, O. Markin, D. Mironov, R. Mizuk, E. Novikov, V. Rusinov, E. Tarkovsky, D. Besson, P. Buzhan, A. Ilyin, E. Popova, M. Gabriel, C. Kiesling, N. van der Kolk, F. Simon, C. Soldner, M. Szalay, M. Tesar, L. Weuste, M. S. Amjad, J. Bonis, S. Callier, S. Conforti di Lorenzo, P. Cornebise, F. Dulucq, J. Fleury, T. Frisson, G. Martin-Chassard, R. Pöschl, L. Raux, F. Richard, J. Rouëné, N. Seguin-Moreau, Ch. de la Taille, M. Anduze, V. Boudry, J-C. Brient, C. Clerc, R. Cornat, M. Frotin, F. Gastaldi, A. Matthieu, P. Mora de Freitas, G. Musat, M. Ruan, H. Videau, J. Zacek, J. Cvach, P. Gallus, M. Havranek, M. Janata, J. Kvasnicka, D. Lednicky, M. Marcisovsky, I. Polak, J. Popule, L. Tomasek, M. Tomasek, P. Sicho, J. Smolik, V. Vrba, J. Zalesak, D. Jeans, S. Weber

Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using Geant4 version 9. Read More

2014Nov
Authors: The CALICE Collaboration, B. Bilki1, J. Repond2, J. Schlereth3, L. Xia4, Z. Deng5, Y. Li6, Y. Wang7, Q. Yue8, Z. Yang9, G. Eigen10, Y. Mikami11, T. Price12, N. K. Watson13, M. A. Thomson14, D. R. Ward15, D. Benchekroun16, A. Hoummada17, Y. Khoulaki18, C. Cârloganu19, S. Chang20, A. Khan21, D. H. Kim22, D. J. Kong23, Y. D. Oh24, G. C. Blazey25, A. Dyshkant26, K. Francis27, J. G. R. Lima28, P. Salcido29, V. Zutshi30, V. Boisvert31, B. Green32, A. Misiejuk33, F. Salvatore34, K. Kawagoe35, Y. Miyazaki36, Y. Sudo37, T. Suehara38, T. Tomita39, H. Ueno40, T. Yoshioka41, J. Apostolakis42, G. Folger43, G. Folger44, V. Ivantchenko45, A. Ribon46, V. Uzhinskiy47, S. Cauwenbergh48, M. Tytgat49, N. Zaganidis50, J. -Y. Hostachy51, L. Morin52, K. Gadow53, P. Göttlicher54, C. Günter55, K. Krüger56, B. Lutz57, M. Reinecke58, F. Sefkow59, N. Feege60, E. Garutti61, S. Laurien62, S. Lu63, I. Marchesini64, M. Matysek65, M. Ramilli66, A. Kaplan67, E. Norbeck68, D. Northacker69, Y. Onel70, E. J. Kim71, B. van Doren72, G. W. Wilson73, M. Wing74, B. Bobchenko75, M. Chadeeva76, R. Chistov77, M. Danilov78, A. Drutskoy79, A. Epifantsev80, O. Markin81, R. Mizuk82, E. Novikov83, V. Popov84, V. Rusinov85, E. Tarkovsky86, D. Besson87, E. Popova88, M. Gabriel89, C. Kiesling90, F. Simon91, C. Soldner92, M. Szalay93, M. Tesar94, L. Weuste95, M. S. Amjad96, J. Bonis97, S. Callier98, S. Conforti di Lorenzo99, P. Cornebise100, Ph. Doublet101, F. Dulucq102, M. Faucci-Giannelli103, J. Fleury104, T. Frisson105, B. Kégl106, N. van der Kolk107, H. Li108, G. Martin-Chassard109, F. Richard110, Ch. de la Taille111, R. Pöschl112, L. Raux113, J. Rouëné114, N. Seguin-Moreau115, M. Anduze116, V. Balagura117, E. Becheva118, V. Boudry119, J-C. Brient120, R. Cornat121, M. Frotin122, F. Gastaldi123, F. Magniette124, A. Matthieu125, P. Mora de Freitas126, H. Videau127, J-E. Augustin128, J. David129, P. Ghislain130, D. Lacour131, L. Lavergne132, J. Zacek133, J. Cvach134, P. Gallus135, M. Havranek136, M. Janata137, J. Kvasnicka138, D. Lednicky139, M. Marcisovsky140, I. Polak141, J. Popule142, L. Tomasek143, M. Tomasek144, P. Ruzicka145, P. Sicho146, J. Smolik147, V. Vrba148, J. Zalesak149, D. Jeans150, M. Götze151
Affiliations: 1Argonne National Laboratory, Argonne, USA, 2Argonne National Laboratory, Argonne, USA, 3Argonne National Laboratory, Argonne, USA, 4Argonne National Laboratory, Argonne, USA, 5Tsinghua University, Beijing, P.R. China, 6Tsinghua University, Beijing, P.R. China, 7Tsinghua University, Beijing, P.R. China, 8Tsinghua University, Beijing, P.R. China, 9Tsinghua University, Beijing, P.R. China, 10University of Bergen, Bergen, Norway, 11University of Birmingham, Birmingham, UK, 12University of Birmingham, Birmingham, UK, 13University of Birmingham, Birmingham, UK, 14University of Cambridge, Cambridge, UK, 15University of Cambridge, Cambridge, UK, 16Université Hassan II Aïn Chock, Faculté des sciences, Casablanca, Morocco, 17Université Hassan II Aïn Chock, Faculté des sciences, Casablanca, Morocco, 18Université Hassan II Aïn Chock, Faculté des sciences, Casablanca, Morocco, 19Clermont Université, Université Blaise Pascal, Clermont-Ferrand, France, 20Department of Physics, Kyungpook National University, Daegu, Republic of Korea, 21Department of Physics, Kyungpook National University, Daegu, Republic of Korea, 22Department of Physics, Kyungpook National University, Daegu, Republic of Korea, 23Department of Physics, Kyungpook National University, Daegu, Republic of Korea, 24Department of Physics, Kyungpook National University, Daegu, Republic of Korea, 25NICADD, Northern Illinois University, Department of Physics, DeKalb, USA, 26NICADD, Northern Illinois University, Department of Physics, DeKalb, USA, 27NICADD, Northern Illinois University, Department of Physics, DeKalb, USA, 28NICADD, Northern Illinois University, Department of Physics, DeKalb, USA, 29NICADD, Northern Illinois University, Department of Physics, DeKalb, USA, 30NICADD, Northern Illinois University, Department of Physics, DeKalb, USA, 31Royal Holloway University of London, Dept. of Physics, Egham, UK, 32Royal Holloway University of London, Dept. of Physics, Egham, UK, 33Royal Holloway University of London, Dept. of Physics, Egham, UK, 34Royal Holloway University of London, Dept. of Physics, Egham, UK, 35Department of Physics, Kyushu University, Fukuoka, Japan, 36Department of Physics, Kyushu University, Fukuoka, Japan, 37Department of Physics, Kyushu University, Fukuoka, Japan, 38Department of Physics, Kyushu University, Fukuoka, Japan, 39Department of Physics, Kyushu University, Fukuoka, Japan, 40Department of Physics, Kyushu University, Fukuoka, Japan, 41Department of Physics, Kyushu University, Fukuoka, Japan, 42CERN, Genève, Switzerland, 43CERN, Genève, Switzerland, 44CERN, Genève, Switzerland, 45CERN, Genève, Switzerland, 46CERN, Genève, Switzerland, 47CERN, Genève, Switzerland, 48Ghent University, Department of Physics and Astronomy, Gent, Belgium, 49Ghent University, Department of Physics and Astronomy, Gent, Belgium, 50Ghent University, Department of Physics and Astronomy, Gent, Belgium, 51Laboratoire de Physique Subatomique et de Cosmologie - Université Grenoble-Alpes, Grenoble, France, 52Laboratoire de Physique Subatomique et de Cosmologie - Université Grenoble-Alpes, Grenoble, France, 53DESY, Hamburg, Germany, 54DESY, Hamburg, Germany, 55DESY, Hamburg, Germany, 56DESY, Hamburg, Germany, 57DESY, Hamburg, Germany, 58DESY, Hamburg, Germany, 59DESY, Hamburg, Germany, 60Univ. Hamburg, Physics Department, Institut für Experimentalphysik, Hamburg, Germany, 61Univ. Hamburg, Physics Department, Institut für Experimentalphysik, Hamburg, Germany, 62Univ. Hamburg, Physics Department, Institut für Experimentalphysik, Hamburg, Germany, 63Univ. Hamburg, Physics Department, Institut für Experimentalphysik, Hamburg, Germany, 64Univ. Hamburg, Physics Department, Institut für Experimentalphysik, Hamburg, Germany, 65Univ. Hamburg, Physics Department, Institut für Experimentalphysik, Hamburg, Germany, 66Univ. Hamburg, Physics Department, Institut für Experimentalphysik, Hamburg, Germany, 67University of Heidelberg, Fakultät für Physik und Astronomie, Heidelberg, Germany, 68University of Iowa, Dept. of Physics and Astronomy, Iowa City, USA, 69University of Iowa, Dept. of Physics and Astronomy, Iowa City, USA, 70University of Iowa, Dept. of Physics and Astronomy, Iowa City, USA, 71Chonbuk National University, Jeonju, South Korea, 72University of Kansas, Department of Physics and Astronomy, Lawrence, USA, 73University of Kansas, Department of Physics and Astronomy, Lawrence, USA, 74Department of Physics and Astronomy, University College London, London, UK, 75Institute of Theoretical and Experimental Physics, Moscow, Russia, 76Institute of Theoretical and Experimental Physics, Moscow, Russia, 77Institute of Theoretical and Experimental Physics, Moscow, Russia, 78Institute of Theoretical and Experimental Physics, Moscow, Russia, 79Institute of Theoretical and Experimental Physics, Moscow, Russia, 80Institute of Theoretical and Experimental Physics, Moscow, Russia, 81Institute of Theoretical and Experimental Physics, Moscow, Russia, 82Institute of Theoretical and Experimental Physics, Moscow, Russia, 83Institute of Theoretical and Experimental Physics, Moscow, Russia, 84Institute of Theoretical and Experimental Physics, Moscow, Russia, 85Institute of Theoretical and Experimental Physics, Moscow, Russia, 86Institute of Theoretical and Experimental Physics, Moscow, Russia, 87MEPhI, Moscow, Russia, 88MEPhI, Moscow, Russia, 89Max Planck Inst. für Physik, Munich, Germany, 90Max Planck Inst. für Physik, Munich, Germany, 91Max Planck Inst. für Physik, Munich, Germany, 92Max Planck Inst. für Physik, Munich, Germany, 93Max Planck Inst. für Physik, Munich, Germany, 94Max Planck Inst. für Physik, Munich, Germany, 95Max Planck Inst. für Physik, Munich, Germany, 96Laboratoire de l'Accélérateur Linéaire, 97Laboratoire de l'Accélérateur Linéaire, 98Laboratoire de l'Accélérateur Linéaire, 99Laboratoire de l'Accélérateur Linéaire, 100Laboratoire de l'Accélérateur Linéaire, 101Laboratoire de l'Accélérateur Linéaire, 102Laboratoire de l'Accélérateur Linéaire, 103Laboratoire de l'Accélérateur Linéaire, 104Laboratoire de l'Accélérateur Linéaire, 105Laboratoire de l'Accélérateur Linéaire, 106Laboratoire de l'Accélérateur Linéaire, 107Laboratoire de l'Accélérateur Linéaire, 108Laboratoire de l'Accélérateur Linéaire, 109Laboratoire de l'Accélérateur Linéaire, 110Laboratoire de l'Accélérateur Linéaire, 111Laboratoire de l'Accélérateur Linéaire, 112Laboratoire de l'Accélérateur Linéaire, 113Laboratoire de l'Accélérateur Linéaire, 114Laboratoire de l'Accélérateur Linéaire, 115Laboratoire de l'Accélérateur Linéaire, 116Laboratoire Leprince-Ringuet, 117Laboratoire Leprince-Ringuet, 118Laboratoire Leprince-Ringuet, 119Laboratoire Leprince-Ringuet, 120Laboratoire Leprince-Ringuet, 121Laboratoire Leprince-Ringuet, 122Laboratoire Leprince-Ringuet, 123Laboratoire Leprince-Ringuet, 124Laboratoire Leprince-Ringuet, 125Laboratoire Leprince-Ringuet, 126Laboratoire Leprince-Ringuet, 127Laboratoire Leprince-Ringuet, 128Laboratoire de Physique Nucléaire et de Hautes Energies, 129Laboratoire de Physique Nucléaire et de Hautes Energies, 130Laboratoire de Physique Nucléaire et de Hautes Energies, 131Laboratoire de Physique Nucléaire et de Hautes Energies, 132Laboratoire de Physique Nucléaire et de Hautes Energies, 133Charles University, Institute of Particle \& Nuclear Physics, Prague, Czech Republic, 134Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 135Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 136Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 137Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 138Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 139Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 140Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 141Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 142Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 143Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 144Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 145Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 146Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 147Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 148Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 149Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic, 150Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan, 151Bergische Universität Wuppertal, Wuppertal, Germany

A detailed study of hadronic interactions is presented using data recorded with the highly granular CALICE silicon-tungsten electromagnetic calorimeter. Approximately 350,000 selected negatively charged pion events at energies between 2 and 10 GeV have been studied. The predictions of several physics models available within the Geant4 simulation tool kit are compared to this data. Read More

The International Large Detector (ILD) is a proposed detector for the International Linear Collider (ILC). It has been designed to achieve an excellent jet energy resolution by using Particle Flow Algorithms (PFA), which rely on the ability to separate nearby particles within jets. PFA requires calorimeters with high granularity. Read More

We evaluate the expected measurement accuracy of the branching ratio of the Standard Model Higgs boson decaying into tau lepton pairs $h \to \tau ^+ \tau ^-$ at the ILC with a center-of-mass energy of $\sqrt{s} = 500$ GeV with a full simulation of the ILD detector. We assume a Higgs mass of $M_h = 125$ GeV, a branching ratio of $\mathrm{BR}(h \to \tau ^+ \tau ^-) = 6.32 \%$, beam polarizations of $P(e^+, e^-) = (-0. Read More

One of the major physics goals at the ILC is the precise measurement of the Higgs coupling constants to b-quarks and c-quarks. To achieve this measurement, we need a high-performance vertex detector leading to precise flavor tagging. For this purpose, we are developing the Fine Pixel CCD (FPCCD) vertex detector. Read More

We report on the first measurement of the Breit-Wigner resonance of the transition from {\it ortho-}positronium to {\it para-}positronium. We have developed an optical system to accumulate a power of over 20 kW using a frequency-tunable gyrotron and a Fabry-P\'{e}rot cavity. This system opens a new era of millimeter-wave spectroscopy, and enables us to directly determine both the hyperfine interval and the decay width of {\it p-}Ps. Read More

2013Oct

This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Read More

We report on a study of top pair production at the International Linear Collider (ILC) around center of mass energy (E$_{\rm CM}$) = 350 GeV using an ILD detector simulator based on the Detailed Baseline Design (DBD) configuration. Here we will report on a result of 6-Jet final state, $t\ bar{t} \rightarrow bWbW \rightarrow bqqbqq$. A result for the 4-Jet final state, $t\ bar{t} \rightarrow bWbW \rightarrow bqqbl\nu$, which has almost the same statics as that of the 6-Jet final state will be included in the future. Read More

The ILC Higgs White Paper is a review of Higgs Boson theory and experiment at the International Linear Collider (ILC). Theory topics include the Standard Model Higgs, the two-Higgs doublet model, alternative approaches to electroweak symmetry breaking, and precision goals for Higgs boson experiments. Experimental topics include the measurement of the Higgs cross section times branching ratio for various Higgs decay modes at ILC center of mass energies of 250, 500, and 1000 GeV, and the extraction of Higgs couplings and the total Higgs width from these measurements. Read More

We evaluate the measurement accuracy of the branching ratio of $h \to \tau ^+ \tau ^-$ at $\sqrt{s} = 250$ GeV and 500 GeV at the ILC with the ILD detector simulation. For the $\sqrt{s} = 250$ GeV, we assume the Higgs mass of $M_h = 120$ GeV, branching ratio of $\mathrm{Br}(h \to \tau ^+ \tau ^-) = 8.0 \ %$, beam polarization of $P(e^-, e^+) = (-0. Read More

2013Jul
Authors: Halina Abramowicz, Angel Abusleme, Konstatin Afanaciev, Gideon Alexander, Niloufar Alipour Tehrani, Oscar Alonso, Kristoffer K. Andersen, Samir Arfaoui, Csaba Balazs, Tim Barklow, Marco Battaglia, Mathieu Benoit, Burak Bilki, Jean-Jacques Blaising, Mark Boland, Marça Boronat, Ivanka Božović Jelisavčić, Philip Burrows, Maximilien Chefdeville, Roberto Contino, Dominik Dannheim, Marcel Demarteau, Marco Aurelio Diaz Gutierrez, Angel Diéguez, Jorge Duarte Campderros, Gerald Eigen, Konrad Elsener, Dan Feldman, Uli Felzmann, Mirosław Firlej, Elena Firu, Tomasz Fiutowski, Kurt Francis, Frank Gaede, Ignacio García García, Veta Ghenescu, Gian Giudice, Norman Graf, Christian Grefe, Christophe Grojean, Rick S. Gupta, Michael Hauschild, Helga Holmestad, Marek Idzik, Christian Joram, Sergey Kananov, Yannis Karyotakis, Martin Killenberg, Wolfgang Klempt, Sabine Kraml, Beata Krupa, Szymon Kulis, Tomáš Laštovička, Greg LeBlanc, Aharon Levy, Itamar Levy, Lucie Linssen, Angela Lucaci Timoce, Strahinja Lukić, Vladimir Makarenko, John Marshall, Victoria Martin, Rune E. Mikkelsen, Gordana Milutinović-Dumbelović, Akiya Miyamoto, Klaus Mönig, Gudrid Moortgat-Pick, Jakub Moroń, Astrid Münnich, Alina Neagu, Mila Pandurović, Duccio Pappadopulo, Bogdan Pawlik, Werner Porod, Stéphane Poss, Titi Preda, Roger Rassool, Ricardo Rattazzi, Sophie Redford, Jose Repond, Sabine Riemann, Aidan Robson, Philipp Roloff, Eduardo Ros, Jonatan Rosten, Alberto Ruiz-Jimeno, Heidi Rzehak, André Sailer, Dieter Schlatter, Daniel Schulte, Felix Sefkow, Katja Seidel, Nikolai Shumeiko, Eva Sicking, Frank Simon, Jacob Smith, Christian Soldner, Steinar Stapnes, Jan Strube, Taikan Suehara, Krzysztof Świentek, Marco Szalay, Tomohiko Tanabe, Michal Tesař, Andrea Thamm, Mark Thomson, Juan Trenado Garcia, Ulrik I. Uggerhøj, Erik van der Kraaij, Iván Vila, Eva Vilella, Miguel Angel Villarejo, Marcelo Alonso Vogel Gonzalez, Marcel Vos, Nigel Watson, Harry Weerts, James D. Wells, Lars Weuste, Tobias N. Wistisen, Kent Wootton, Lei Xia, Leszek Zawiejski, Ion-Sorin Zgura

This paper summarizes the physics potential of the CLIC high-energy e+e- linear collider. It provides input to the Snowmass 2013 process for the energy-frontier working groups on The Higgs Boson (HE1), Precision Study of Electroweak Interactions (HE2), Fully Understanding the Top Quark (HE3), as well as The Path Beyond the Standard Model -- New Particles, Forces, and Dimensions (HE4). It is accompanied by a paper describing the CLIC accelerator study, submitted to the Frontier Capabilities group of the Snowmass process. Read More

2012Jul
Affiliations: 1Orsay and KEK, Tsukuba, 2Valencia U., IFIC, 3SLAC, 4Daresbury, 5Oxford U., JAI, 6KEK, Tsukuba, 7KEK, Tsukuba, 8Beijing, Inst. High Energy Phys., 9SLAC, 10Oxford U., JAI, 11Royal Holloway, U. of London, 12Savoie U., 13Royal Holloway, U. of London, 14Royal Holloway, U. of London, 15Oxford U., JAI, 16Oxford U., JAI, 17Oxford U., JAI, 18Oxford U., JAI, 19CERN, 20Royal Holloway, U. of London, 21DESY, 22Valencia U., IFIC, 23KEK, Tsukuba, 24Beijing, Inst. High Energy Phys., 25Savoie U., 26Fermilab, 27Ecole Polytechnique, 28KEK, Tsukuba, 29Kyungpook Natl. U., 30KEK, Tsukuba, 31Pohang Accelerator Lab., 32Pohang Accelerator Lab., 33Kyoto U., Inst. Chem. Res., 34Savoie U., 35Daresbury, 36Tokyo U., 37Royal Holloway, U. of London, 38Kyungpook Natl. U., 39Kyungpook Natl. U., 40Pohang Accelerator Lab., 41Tokyo U., 42KEK, Tsukuba, 43KEK, Tsukuba, 44KEK, Tsukuba, 45SLAC, 46University Coll. London, 47KEK, Tsukuba, 48SLAC, 49Royal Holloway, U. of London, 50KEK, Tsukuba, 51Tokyo U., 52SLAC, 53Tohoku U., 54KEK, Tsukuba, 55Tokyo U., 56Pohang Accelerator Lab., 57Brookhaven, 58SLAC, 59Oxford U., JAI, 60SLAC, 61SLAC, 62Orsay and KEK, Tsukuba, 63Oxford U., JAI, 64Orsay, 65Fermilab, 66Tohoku U., 67Manchester U., 68CERN, 69SLAC, 70SLAC, 71Tokyo U., 72KEK, Tsukuba, 73Oxford U., JAI, 74Hiroshima U., 75KEK, Tsukuba, 76KEK, Tsukuba, 77CERN, 78KEK, Tsukuba, 79Oxford U., JAI, 80Ecole Polytechnique, 81SLAC, 82Oxford U., JAI, 83Fermilab, 84SLAC, 85SLAC, 86Liverpool U., 87SLAC, 88Tokyo U., 89Tokyo U., 90SLAC, 91Tokyo U., 92KEK, Tsukuba, 93SLAC, 94CERN

ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U. Read More

We report the first direct measurement of the hyperfine transition of the ground state positronium. The hyperfine structure between ortho-positronium and para-positronium is about 203 GHz. We develop a new optical system to accumulate about 10 kW power using a gyrotron, a mode converter, and a Fabry-P\'{e}rot cavity. Read More

In collider physics at the TeV scale, there are many important processes which involve six or more jets. The sensitivity of the physics analysis depends critically on the performance of the jet clustering algorithm. We present a full detector simulation study for the ILC of our new algorithm which makes use of secondary vertices which improves the reconstruction of b jets. Read More

The large hadron collider (LHC) is anticipated to provide signals of new physics at the TeV scale, which are likely to involve production of a WIMP dark matter candidate. The international linear collider (ILC) is to sort out these signals and lead us to some viable model of the new physics at the TeV scale. In this article, we discuss how the ILC can discriminate new physics models, taking the following three examples: the inert Higgs model, the supersymmetric model, and the littlest Higgs model with T-parity. Read More

Positronium is an ideal system for the research of the bound state QED. The hyperfine splitting of positronium (Ps-HFS, about 203 GHz) is an important observable but all previous measurements of Ps-HFS had been measured indirectly using Zeeman splitting. There might be the unknown systematic errors on the uniformity of magnetic field. Read More

Positronium is an ideal system for the research of the quantum electrodynamics (QED) in bound state. The hyperfine splitting (HFS) of positronium, $\Delta_{\mathrm{HFS}}$, gives a good test of the bound state calculations and probes new physics beyond the Standard Model. A new method of QED calculations has revealed the discrepancy by 15\,ppm (3. Read More

The ILC physics working group is a mixture of experimentalists and theorists mainly working in Japan. It has its origin in the previous LC physics study group and has been reformed with the initiative of a JSPS Creative Scientific Research project: "Research and Development of a Novel Detector System for the International Linear Collider". The working group is, however, formally independent of the JSPS project and is open to everybody who is interested in ILC physics. Read More

We investigate the possibility of the identification of TeV physics models including WIMP dark matter at the International Linear Collider. Many TeV physics models contain a WIMP dark matter (chi^0) and charged new particle (chi^{pm}) which interacts with the WIMP dark matter via the vertex chi^{pm} chi^0 W^{mp}. Through Monte Carlo simulations, we study the process, e^+e^- to chi^+ chi^- to chi^0 chi^0 W^+ W^-, because the signal contains the fruitful information of the model. Read More

Identification of beyond-standard-models including WIMP dark matter is studied in four particle final state with a W boson pair and a WIMP pair at the International Linear Collider. Models with different spin structures give distinguishable production angle distributions. After the mass determination in each model, the production angle is reconstructed using the four momentum of W bosons with a back-to-back constraint. Read More

Positronium is an ideal system for the research of the bound state QED. The hyperfine splitting of positronium (Ps-HFS: about 203 GHz) is sensitive to new physics beyond the Standard Model via a vacuum oscillation between an ortho-Ps and a virtual photon. Previous experimental results of the Ps-HFS show 3. Read More

Hyperfine splitting of positronium is an important parameter for particle physics. This paper gives experimental techniques and results of R&D studies of our experiment to observe direct hyperfine transition of ortho-positronium to para-positronium. Read More

The beam test for the Shintake monitor succeeded in measuring signal modulation with the laser interference fringe pattern in November 2009. We have studied the error sources, and evaluated the systematic error to be less than 30% for 1 minute measurements. This paper centers on the evaluation of the Shintake monitor performance through analyzing beam tests deta. Read More

A beam size monitor so called Shintake monitor, which uses the inverse Compton scattering between the laser interference fringe and the electron beam was designed for and installed at ATF2. The commissioning at ATF2 was started in the end of 2008 and succeeded in the measurement of the fringe pattern from the scattered gamma-rays. The present status of the Shintake monitor is described here. Read More

We consider analysis targets at the International Linear Collider in which only a single photon can be observed. For such processes, we have developed a method which uses likelihood distributions using the full event information (photon energy and angle). The method was applied to a search for neutralino pair production with a photon from initial state radiation (ISR) in the case of supergravity in which the neutralino is the lightest supersymmetric particle. Read More

The ground state hyperfine splitting of positronium, $\Delta_{\mathrm{HFS}}$, is sensitive to high order corrections of QED. A new calculation up to $\mathrm{O}(\alpha ^3 \ln \alpha)$ has revealed a $3.9\sigma$ discrepancy between the QED prediction and the experimental results. Read More

Positronium is an ideal system for the research of the QED, especially for the QED in bound state. The discrepancy of 3.9\sigma is found recently between the measured HFS values and the QED prediction ($O(\alpha^3)$). Read More

The ground state hyperfine splitting in positronium, $\Delta _{\mathrm{HFS}}$, is sensitive to high order corrections of QED. A new calculation up to $O(\alpha ^3)$ has revealed a $3.9 \sigma$ discrepancy between the QED prediction and the experimental results. Read More

Tau-pair process has been analyzed in the ILD detector model as a benchmark process for LoI. Results of background rejection, forward-backward asymmetry and polarization measurements are obtained with full detector simulation. Read More

One of the benchmark processes for the optimisation of the detector concepts proposed for the International Linear Collider is Chargino and Neutralino pair production in an mSugra scenario where Chargino-1 and Neutralino-2 are mass degenerate and decay into W+Neutralino-1 and Z+Neutralino-1, respectively. In this case the separation of both processes in the fully hadronic decay mode is very sensitive to the jet energy resolution and thus to the particle flow performance. The mass resolutions and cross-section uncertainties achievable with the ILD detector concept are studied in full simulation at a center of mass energy of 500 GeV, an integrated luminosity of 500 fb-1 and beam polarisations of P(e+,e-) = (30%, -80%). Read More

Tau-pair process has been analyzed in the ILD detector model as a benchmark process for LoI. Results of background rejection, forward-backward asymmetry and polarization measurements are obtained with full detector simulation. Impact of detector parameters for tau-pair analysis is also discussed in this paper. Read More

The fully hadronic final states of two signal processes from an mSUGRA inspired scenario (SUSY-P5) are studied within a full simulation of the LDC' detector model. These are chargino pair and neutralino pair production, i.e. Read More

We developed an electron beam size monitor for extremely small beam sizes. It uses a laser interference fringe for a scattering target with the electron beam. Our target performance is < 2 nm systematic error for 37 nm beam size and < 10% statistical error in a measurement using 90 electron bunches for 25 - 6000 nm beam size. Read More

Positronium is an ideal system for the research of the bound state QED. New precise measurement of orthopositronium decay rate has been performed with an accuracy of 150 ppm, and the result combined with the last three is 7.0401 +- 0. Read More

Shintake monitor is a nanometer-scale electron beam size monitor. It probes a electron beam by an interference fringe pattern formed by split laser beams. Minimum measurable beam size by this method is less than 1/10 of laser wavelength. Read More