T. R. Taylor

T. R. Taylor
Are you T. R. Taylor?

Claim your profile, edit publications, add additional information:

Contact Details

Name
T. R. Taylor
Affiliation
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Theory (33)
 
High Energy Physics - Phenomenology (26)
 
High Energy Physics - Experiment (12)
 
Computer Science - Neural and Evolutionary Computing (4)
 
Mathematics - Mathematical Physics (3)
 
Mathematical Physics (3)
 
General Relativity and Quantum Cosmology (3)
 
Quantitative Biology - Populations and Evolution (3)
 
Mathematics - Number Theory (2)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (2)
 
Computer Science - Multiagent Systems (2)
 
Quantitative Biology - Neurons and Cognition (2)
 
Quantitative Biology - Quantitative Methods (1)
 
Physics - Superconductivity (1)
 
Physics - Popular Physics (1)
 
Astrophysics (1)
 
Mathematics - Probability (1)
 
High Energy Astrophysical Phenomena (1)
 
Physics - Instrumentation and Detectors (1)
 
Instrumentation and Methods for Astrophysics (1)
 
Mathematics - Algebraic Geometry (1)
 
Cosmology and Nongalactic Astrophysics (1)
 
Physics - Optics (1)
 
Mathematics - Dynamical Systems (1)

Publications Authored By T. R. Taylor

This a pedagogical introduction to scattering amplitudes in gauge theories. It proceeds from Dirac equation and Weyl fermions to the two pivot points of current developments: the recursion relations of Britto, Cachazo, Feng and Witten, and the unitarity cut method pioneered by Bern, Dixon, Dunbar and Kosower. In ten lectures, it covers the basic elements of on-shell methods. Read More

We investigate left-right symmetric extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. The left-handed and right-handed fermions transform as doublets under Sp(1)_L and Sp(1)_R, and so their masses must be generated by the introduction of Higgs fields in a bi-fundamental (2,2) representation under the two Sp(1) gauge groups. For such D-brane configurations the left-right symmetry must be broken by Higgs fields in the doublet representation of Sp(1)_R and therefore Majorana mass terms are suppressed by some higher physics scale. Read More

We obtain new relations between Einstein-Yang-Mills (EYM) amplitudes involving N gauge bosons plus a single graviton and pure Yang-Mills amplitudes involving N gauge bosons plus one additional vector boson inserted in a way typical for a gauge boson of a "spectator" group commuting with the group associated to original N gauge bosons. We show that such EYM amplitudes satisfy U(1) decoupling relations similar to Kleiss-Kuijf relations for Yang-Mills amplitudes. We consider a D-brane embedding of EYM amplitudes in the framework of disk amplitudes involving open and closed strings. Read More

Motivated by the recent update on LHC searches for narrow and broad resonances decaying into diphotons we reconsider the possibility that the observed peak in the invariant mass spectrum at M_{\gamma \gamma} = 750 GeV originates from a closed string (possibly axionic) excitation \varphi (associated with low mass scale string theory) that has a coupling with gauge kinetic terms. We reevaluate the production of \varphi by photon fusion to accommodate recent developments on additional contributions to relativistic light-light scattering. We also study the production of \varphi via gluon fusion. Read More

We show that low-mass-scale string compactifications, with a generic D-brane configuration that realizes the standard model by open strings, can explain the relatively broad peak in the diphoton invariant mass spectrum at 750 GeV recently reported by the ATLAS and CMS collaborations. Under reasonable assumptions, we demonstrate that the excess could originate from a closed string (possibly axionic) excitation \varphi that has a coupling with gauge kinetic terms. We estimate the \varphi production rate from photon-photon fusion in elastic pp scattering, using the effective photon and narrow width approximations. Read More

The application of evolution in the digital realm, with the goal of creating artificial intelligence and artificial life, has a history as long as that of the digital computer itself. We illustrate the intertwined history of these ideas, starting with the early theoretical work of John von Neumann and the pioneering experimental work of Nils Aall Barricelli. We argue that evolutionary thinking and artificial life will continue to play an integral role in the future development of the digital world. Read More

At the tree level, the scattering processes involving open and closed strings are described by a disk world-sheet with vertex operator insertions at the boundary and in the bulk. Such amplitudes can be decomposed as certain linear combinations of pure open string amplitudes. While previous relations have been established on the double cover (complex sphere) in this letter we derive them on the disk (upper complex half plane) allowing for different momenta of the left- and right-movers of the closed string. Read More

For two massless particles i and j, the collinear limit is a special kinematic configuration in which the particles propagate with parallel four-momentum vectors, with the total momentum P distributed as p_i=xP and p_j=(1-x)P, so that s_{ij}=(p_i+p_j)^2=P^2=0. In Yang-Mills theory, if i and j are among N gauge bosons participating in a scattering process, it is well known that the partial amplitudes associated to the (single trace) group factors with adjacent i and j are singular in the collinear limit and factorize at the leading order into N-1-particle amplitudes times the universal, x-dependent Altarelli-Parisi factors. We give a precise definition of the collinear limit and show that at the tree level, the subleading, non-singular terms are related to the amplitudes with a single graviton inserted instead of two collinear gauge bosons. Read More

Open-ended evolutionary dynamics remains an elusive goal for artificial evolutionary systems. Many ideas exist in the biological literature beyond the basic Darwinian requirements of variation, differential reproduction and inheritance. I argue that these ideas can be seen as aspects of five fundamental requirements for open-ended evolution: (1) robustly reproductive individuals, (2) a medium allowing the possible existence of a practically unlimited diversity of individuals and interactions, (3) individuals capable of producing more complex offspring, (4) mutational pathways to other viable individuals, and (5) drive for continued evolution. Read More

Very recently, the ATLAS and CMS collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8 -2.0 TeV. Read More

We express all tree-level graviton amplitudes in Einstein's gravity as the collinear limits of a linear combination of pure Yang-Mills amplitudes in which each graviton is represented by two gauge bosons, each of them carrying exactly one half of graviton's momentum and helicity. Read More

We consider the problem of fusing measurements from multiple sensors, where the sensing regions overlap and data are non-negative---possibly resulting from a count of indistinguishable discrete entities. Because of overlaps, it is, in general, impossible to fuse this information to arrive at an accurate estimate of the overall amount or count of material present in the union of the sensing regions. Here we study the range of overall values consistent with the data. Read More

We show that the mixed gravitational/gauge superstring amplitudes describing decays of massless closed strings - gravitons or dilatons - into a number of gauge bosons, can be written at the tree (disk) level as linear combinations of pure open string amplitudes in which the graviton (or dilaton) is replaced by a pair of collinear gauge bosons. Each of the constituent gauge bosons carry exactly one half of the original closed string momentum, while their +/- 1 helicities add up to +/- 2 for the graviton or to 0 for the dilaton. Read More

[Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. Read More

A brief survey is presented of the first 18 years of web-based Artificial Life ("WebAL") research and applications, covering the period 1995-2013. The survey is followed by a short discussion of common methodologies employed and current technologies relevant to WebAL research. The paper concludes with a quick look at what the future may hold for work in this exciting area. Read More

Proceedings of WebAL-1: Workshop on Artificial Life and the Web 2014, held at the 14th International Conference on the Synthesis and Simulation of Living Systems (ALIFE 14), New York, NY, 31 July 2014. Read More

We show that the single trace heterotic N-point tree-level gauge amplitude A_HET can be obtained from the corresponding type I amplitude A_I by the single-valued (sv) projection: A_HET=sv(A_I). This projection maps multiple zeta values to single-valued multiple zeta values. The latter represent a subclass of multiple zeta values originating from single-valued multiple polylogarithms at unity. Read More

The observation of apparent power-laws in neuronal systems has led to the suggestion that the brain is at, or close to, a critical state and may be a self-organised critical system. Within the framework of self-organised criticality a separation of timescales is thought to be crucial for the observation of power-law dynamics and computational models are often constructed with this property. However, this is not necessarily a characteristic of physiological neural networks - external input does not only occur when the network is at rest/a steady state. Read More

We explain what features of string theory can be tested at the LHC. We review the present bounds on the string mass and on extra gauge bosons as well as the prospects for the upcoming experiments. Read More

We extend the recently established Mellin correspondence of supergravity and superstring amplitudes to the case of arbitrary helicity configurations. The amplitudes are discussed in the framework of Grassmannian varieties. We generalize Hodges' determinant to a function of two sets of independent coordinates and show that tree-level supergravity amplitudes can be obtained by contour integrations of both sets in separate Grassmannians while in superstring theory, one set of coordinates is identified with string vertex positions at the disk boundary and Mellin transformed into generalized hypergeometric functions of Mandelstam invariants. Read More

We report on extensive testing carried out on the optical fibers for the VIRUS instrument. The primary result of this work explores how 10+ years of simulated wear on a VIRUS fiber bundle affects both transmission and focal ratio degradation (FRD) of the optical fibers. During the accelerated lifetime tests we continuously monitored the fibers for signs of FRD. Read More

At the tree level, the maximally helicity violating amplitudes of N gauge bosons in open superstring theory and of N gravitons in supergravity are known to have simple representations in terms of tree graphs. For superstrings, the graphs encode integral representations of certain generalized Gaussian hypergeometric functions of kinematic invariants while for supergravity, they represent specific kinematic expressions constructed from spinor-helicity variables. We establish a superstring/supergravity correspondence for this class of amplitudes, by constructing a mapping between the positions of gauge boson vertices at the disk boundary and the helicity spinors associated to gravitons. Read More

Over the years numerous models of SIS (susceptible - infected - susceptible) disease dynamics unfolding on networks have been proposed. Here, we discuss the links between many of these models and how they can be viewed as more general motif-based models. We illustrate how the different models can be derived from one another and, where this is not possible, discuss extensions to established models that enables this derivation. Read More

In this paper we study a simple model of a purely excitatory neural network that, by construction, operates at a critical point. This model allows us to consider various markers of criticality and illustrate how they should perform in a finite-size system. By calculating the exact distribution of avalanche sizes we are able to show that, over a limited range of avalanche sizes which we precisely identify, the distribution has scale free properties but is not a power law. Read More

The latest results of the ATLAS and CMS experiments point to a preferred narrow Higgs mass range (m_h \simeq 124 - 126 GeV) in which the effective potential of the Standard Model (SM) develops a vacuum instability at a scale 10^{9} -10^{11} GeV, with the precise scale depending on the precise value of the top quark mass and the strong coupling constant. Motivated by this experimental situation, we present here a detailed investigation about the stability of the SM^{++} vacuum, which is characterized by a simple extension of the SM obtained by adding to the scalar sector a complex SU(2) singlet that has the quantum numbers of the right-handed neutrino, H", and to the gauge sector an U(1) that is broken by the vacuum expectation value of H". We derive the complete set of renormalization group equations at one loop. Read More

We discuss the phenomenology and cosmology of a Standard-like Model inspired by string theory, in which the gauge fields are localized on D-branes wrapping certain compact cycles on an underlying geometry, whose intersection can give rise to chiral fermions. The energy scale associated with string physics is assumed to be near the Planck mass. To develop our program in the simplest way, we work within the construct of a minimal model with gauge-extended sector U (3)_B \times Sp (1)_L \times U (1)_{I_R} \times U (1)_L. Read More

We obtain simple expressions for tree-level maximally helicity violating amplitudes of N gauge bosons from disk world-sheets of open superstrings. The amplitudes are written in terms of (N-3)! hypergeometric integrals depending on kinematic parameters, weighted by certain kinematic factors. The integrals are transcendental in a strict sense defined in this work. Read More

Vertical cavity surface emitting terahertz lasers can be realized in conventional semiconductor microcavities with embedded quantum wells in the strong coupling regime. The cavity is to be pumped optically at half the frequency of the 2p exciton state. Once a threshold population of 2p excitons is achieved, a stimulated terahertz transition populates the lower exciton-polariton branch, and the cavity starts emitting laser light both in the optical and terahertz ranges. Read More

In this paper we present a model describing Susceptible-Infected-Susceptible (SIS) type epidemics spreading on a dynamic contact network with random link activation and deletion where link ac- tivation can be locally constrained. We use and adapt a improved effective degree compartmental modelling framework recently proposed by Lindquist et al. [J. Read More

We study higher level Regge resonances of open superstrings, focusing on the universal part of the Neveu-Schwarz sector common to all D-brane realizations of the standard model. For Regge states with masses far above the fundamental string scale, we discuss the spin-dependence of their decay rates into massless gauge bosons. Extending our previous work on lowest level string excitations, we study the second mass level at which spins range from 0 to 3. Read More

We investigate the ground states of a Bose-Einstein condensate of indirect excitons coupled to an electron gas. We show that in a properly designed system, the crossing of a roton minimum into the negative energy domain can result in the appearance of the supersolid phase, characterized by periodicity in both real and reciprocal space. Accounting for the spin-dependent exchange interaction of excitons we obtain ferromagnetic supersolid domains. Read More

Massive Z'-gauge bosons act as excellent harbingers for string compactifications with a low string scale. In D-brane models they are associated to U(1) gauge symmetries that are either anomalous in four dimensions or exhibit a hidden higher dimensional anomaly. We discuss the possible signals of massive Z'-gauge bosons at hadron collider machines (Tevatron, LHC) in a minimal D-brane model consisting out of four stacks of D-branes. Read More

The invariant mass distribution of dijets produced in association with W bosons, recently observed by the CDF Collaboration at Tevatron, reveals an excess in the dijet mass range 120-160 GeV/c^2, 3\sigma beyond Standard Model expectations. We show that such an excess is a generic feature of low mass string theory, due to the production and decay of a leptophobic Z', a singlet partner of SU(3) gluons coupled primarily to the U(1) baryon number. In this framework, U(1) and SU(3) appear as subgroups of U(3) associated with open strings ending on a stack of 3 D-branes. Read More

A Bose--Einstein condensate of exciton polaritons coexisting with a Fermi gas of electrons has been recently proposed as a promising system for realisation of room-temperature superconductivity [Phys. Rev. Lett. Read More

If the fundamental mass scale of superstring theory is as low as few TeVs, the massive modes of vibrating strings, Regge excitations, will be copiously produced at the Large Hadron Collider (LHC). We discuss the complementary signals of low mass superstrings at the proposed electron-positron facility (CLIC), in e^+e^- and \gamma \gamma collisions. We examine all relevant four-particle amplitudes evaluated at the center of mass energies near the mass of lightest Regge excitations and extract the corresponding pole terms. Read More

We discuss direct production of Regge excitations in the collisions of massless four-dimensional superstring states, focusing on the first excited level of open strings ending on D-branes extending into higher dimensions. We construct covariant vertex operators and identify ``universal'' Regge states with the internal parts either trivial or determined by the world-sheet SCFT describing superstrings propagating on an arbitrary Calabi-Yau manifold. We evaluate the amplitudes involving one such massive state and up to three massless ones and express them in the helicity basis. Read More

We calculate the spectrum of elementary excitations in a two-dimensional exciton superfluid in the vicinity of a two-dimensional electron gas. We show that attraction of excitons due to their scattering with free electrons may lead to formation of a roton minimum. The energy of this minimum may go below the ground state energy which manifests breaking of the superfluidity. Read More

We consider string realizations of the Randall-Sundrum effective theory for electroweak symmetry breaking and explore the search for the lowest massive Regge excitation of the gluon and of the extra (color singlet) gauge boson inherent of D-brane constructions. In these curved backgrounds, the higher-spin Regge recurrences of Standard Model fields localized near the IR brane are warped down to close to the TeV range and hence can be produced at collider experiments. Assuming that the theory is weakly coupled, we make use of four gauge boson amplitudes evaluated near the first Regge pole to determine the discovery potential of LHC. Read More

A deformation of the N=2 topological string partition function is analyzed by considering higher dimensional F-terms of the type W^{2g}*Upsilon^n, where W is the chiral Weyl superfield and each Upsilon factor stands for the chiral projection of a real function of N=2 vector multiplets. These terms generate physical amplitudes involving two anti-self-dual Riemann tensors, 2g-2 anti-self-dual graviphoton field strengths and 2n self-dual field strengths from the matter vector multiplets. Their coefficients F_{g,n} generalizing the genus g partition function F_{g,0} of the topological twisted type II theory, can be used to define a generating functional by introducing deformation parameters besides the string coupling. Read More

The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Read More

We consider extensions of the standard model based on open strings ending on D-branes, in which gauge bosons and their associated gauginos exist as strings attached to stacks of D-branes, and chiral matter exists as strings stretching between intersecting D-branes. Under the assumptions that the fundamental string scale is in the TeV range and the theory is weakly coupled, we study models of supersymmetry for which signals of annihilating neutralino dark matter are observable. In particular, we construct a model with a supersymmetric R-symmetry violating (but R-parity conserving) effective Lagrangian that allows for the s-wave annihilation of neutralinos, once gauginos acquire mass through an unspecified mechanism. Read More

We consider extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundamental string mass scale is in the TeV range and the theory is weakly coupled, we review possible signals of string physics at the Large Hadron Collider. Read More

We extend the study of scattering amplitudes presented in ``The LHC String Hunter's Companion'' to the case of five-point processes that may reveal the signals of low mass strings at the LHC and are potentially useful for detailed investigations of fundamental Regge excitations. In particular, we compute the full-fledged string disk amplitudes describing all 2->3 parton scattering subprocesses leading to the production of three hadronic jets. We cast our results in a form suitable for the implementation of stringy partonic cross sections in the LHC data analysis. Read More

We consider extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundamental string mass scale is in the TeV range and the theory is weakly coupled, we discuss possible signals of string physics at the Large Hadron Collider (LHC). In previous works, direct channel excitations of Regge recurrences in parton-parton scattering supplied the outstanding new signature. Read More

We consider extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Assuming that the fundamental string mass scale is in the TeV range and the theory is weakly coupled, we discuss possible signals of string physics at the Large Hadron Collider (LHC). In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. Read More

The mass scale of fundamental strings can be as low as few TeV/c^2 provided that spacetime extends into large extra dimensions. We discuss the phenomenological aspects of weakly coupled low mass string theory related to experimental searches for physics beyond the Standard Model at the Large Hadron Collider (LHC). We consider the extensions of the Standard Model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. Read More

With the advent of the LHC there is widespread interest in the discovery potential for physics beyond the standard model. In TeV-scale open string theory, the new physics can be manifest in the excitation and decay of new resonant structures, corresponding to Regge recurrences of standard model particles. An essential input for the prediction of invariant mass spectra of the decay products (which could serve to identify the resonance as a string excitation) are the partial and total widths of the decay products. Read More

The LHC program will include the identification of events with single prompt high-k_\perp photons as probes of new physics. We show that this channel is uniquely suited to search for experimental evidence of TeV-scale open string theory. At the parton level, we analyze single photon production in gluon fusion, gg \to \gamma g, with open string states propagating in intermediate channels. Read More

The mass scale M_s of superstring theory is an arbitrary parameter that can be as low as few TeVs if the Universe contains large extra dimensions. We propose a search for the effects of Regge excitations of fundamental strings at LHC, in the process p p \to \gamma jet. The underlying parton process is dominantly the single photon production in gluon fusion, g g \to \gamma g, with open string states propagating in intermediate channels. Read More

We evaluate all next-to-maximal helicity violating (NMHV) six-gluon amplitudes in type I open superstring theory in four dimensions, at the disk level, to all orders in alpha'. Although the computation utilizes supersymmetric Ward identities, the result holds for all compactifications, even for those that break supersymmetry and is completely model-independent. Together with the maximally helicity violating (MHV) amplitudes presented in the previous work, our results provide the complete six-gluon disk amplitude. Read More