T. Liu - University of Maryland

T. Liu
Are you T. Liu?

Claim your profile, edit publications, add additional information:

Contact Details

Name
T. Liu
Affiliation
University of Maryland
City
College Park
Country
United States

Pubs By Year

External Links

Pub Categories

 
Computer Science - Learning (6)
 
Nuclear Experiment (5)
 
Physics - Materials Science (5)
 
Computer Science - Computation and Language (5)
 
Astrophysics of Galaxies (4)
 
High Energy Astrophysical Phenomena (4)
 
Quantum Physics (3)
 
High Energy Physics - Experiment (3)
 
Mathematics - Information Theory (2)
 
Computer Science - Computer Science and Game Theory (2)
 
Physics - Superconductivity (2)
 
Physics - Accelerator Physics (2)
 
Computer Science - Information Theory (2)
 
High Energy Physics - Phenomenology (2)
 
Computer Science - Computer Vision and Pattern Recognition (2)
 
Statistics - Methodology (2)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (2)
 
Statistics - Machine Learning (2)
 
Cosmology and Nongalactic Astrophysics (2)
 
Computer Science - Artificial Intelligence (2)
 
Nonlinear Sciences - Pattern Formation and Solitons (1)
 
Physics - Soft Condensed Matter (1)
 
Mathematics - Algebraic Geometry (1)
 
Mathematics - Number Theory (1)
 
Mathematics - Numerical Analysis (1)
 
Computer Science - Databases (1)
 
Computer Science - Computers and Society (1)
 
Instrumentation and Methods for Astrophysics (1)
 
Physics - Chemical Physics (1)
 
Physics - Classical Physics (1)
 
General Relativity and Quantum Cosmology (1)
 
Physics - Instrumentation and Detectors (1)
 
Nuclear Theory (1)
 
Mathematics - Optimization and Control (1)
 
Physics - Strongly Correlated Electrons (1)

Publications Authored By T. Liu

2017Mar
Affiliations: 1Joint Institute of Nuclear Research, 141980 Dubna, Russia, 2Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 3LabCAF. F. Física, Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain, 4Joint Institute of Nuclear Research, 141980 Dubna, Russia, 5Physik Department E12, Technische Universität München, 85748 Garching, Germany, 6LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 7Physik Department E12, Technische Universität München, 85748 Garching, Germany, 8Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France, 9LabCAF. F. Física, Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain, 10Joint Institute of Nuclear Research, 141980 Dubna, Russia, 11Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 12Physik Department E12, Technische Universität München, 85748 Garching, Germany, 13Physik Department E12, Technische Universität München, 85748 Garching, Germany, 14Joint Institute of Nuclear Research, 141980 Dubna, Russia, 15Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, 95125 Catania, Italy, 16LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 17Physik Department E12, Technische Universität München, 85748 Garching, Germany, 18Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 19Technische Universität Darmstadt, 64289 Darmstadt, Germany, 20LabCAF. F. Física, Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain, 21Physik Department E12, Technische Universität München, 85748 Garching, Germany, 22Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 23Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia, 24Technische Universität Darmstadt, 64289 Darmstadt, Germany, 25Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia, 26Technische Universität Darmstadt, 64289 Darmstadt, Germany, 27GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 28Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France, 29GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 30Joint Institute of Nuclear Research, 141980 Dubna, Russia, 31Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy, 32Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia, 33Physik Department E12, Technische Universität München, 85748 Garching, Germany, 34Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 35Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia, 36GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 37GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 38GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 39Technische Universität Darmstadt, 64289 Darmstadt, Germany, 40Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 41Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic, 42Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic, 43Physik Department E12, Technische Universität München, 85748 Garching, Germany, 44Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 45II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 46Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic, 47Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia, 48Joint Institute of Nuclear Research, 141980 Dubna, Russia, 49Physik Department E12, Technische Universität München, 85748 Garching, Germany, 50GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 51Physik Department E12, Technische Universität München, 85748 Garching, Germany, 52Institute of Theoretical and Experimental Physics, 117218 Moscow, Russia, 53Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France, 54LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 55Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 56Physik Department E12, Technische Universität München, 85748 Garching, Germany, 57LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 58Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 59II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 60Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 61Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 62Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 63Physik Department E12, Technische Universität München, 85748 Garching, Germany, 64Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 65Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 66Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 67Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus, 68GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 69Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 70GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 71Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 72Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France, 73Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia, 74Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 75Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia, 76Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 77Lawrence Berkeley National Laboratory, Berkeley, USA, 78GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 79Physik Department E12, Technische Universität München, 85748 Garching, Germany, 80Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic, 81Dipartimento di Fisica and INFN, Università di Torino, 10125 Torino, Italy, 82II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 83Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 84Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 85GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 86Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 87Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 88Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic, 89GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 90Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 91Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus, 92Joint Institute of Nuclear Research, 141980 Dubna, Russia, 93Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic, 94Physik Department E12, Technische Universität München, 85748 Garching, Germany, 95Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 96Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 97GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 98Joint Institute of Nuclear Research, 141980 Dubna, Russia, 99NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia, 100NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia

Baryon resonance production in proton-proton collisions at a kinetic beam energy of 1.25 GeV is investigated. The multi-differential data were measured by the HADES collaboration. Read More

2017Mar
Authors: J. Adamczewski-Musch1, O. Arnold2, E. T. Atomssa3, C. Behnke4, A. Belounnas5, A. Belyaev6, J. C. Berger-Chen7, J. Biernat8, A. Blanco9, C. Blume10, M. Böhmer11, P. Bordalo12, S. Chernenko13, L. Chlad14, C. Deveaux15, J. Dreyer16, A. Dybczak17, E. Epple18, L. Fabbietti19, O. Fateev20, P. Filip21, P. Finocchiaro22, P. Fonte23, C. Franco24, J. Friese25, I. Fröhlich26, T. Galatyuk27, J. A. Garzón28, R. Gernhäuser29, M. Golubeva30, F. Guber31, M. Gumberidze32, S. Harabasz33, T. Heinz34, T. Hennino35, S. Hlavac36, C. Höhne37, R. Holzmann38, A. Ierusalimov39, A. Ivashkin40, B. Kämpfer41, T. Karavicheva42, B. Kardan43, I. Koenig44, W. Koenig45, B. W. Kolb46, G. Korcyl47, G. Kornakov48, R. Kotte49, W. Kühn50, A. Kugler51, T. Kunz52, A. Kurepin53, A. Kurilkin54, P. Kurilkin55, V. Ladygin56, R. Lalik57, K. Lapidus58, A. Lebedev59, T. Liu60, L. Lopes61, M. Lorenz62, T. Mahmoud63, L. Maier64, A. Mangiarotti65, J. Markert66, S. Maurus67, V. Metag68, J. Michel69, E. Morinière70, D. M. Mihaylov71, S. Morozov72, C. Müntz73, R. Münzer74, L. Naumann75, K. N. Nowakowski76, M. Palka77, Y. Parpottas78, V. Pechenov79, O. Pechenova80, O. Petukhov81, J. Pietraszko82, W. Przygoda83, S. Ramos84, B. Ramstein85, A. Reshetin86, P. Rodriguez-Ramos87, P. Rosier88, A. Rost89, A. Sadovsky90, P. Salabura91, T. Scheib92, H. Schuldes93, E. Schwab94, F. Scozzi95, F. Seck96, P. Sellheim97, J. Siebenson98, L. Silva99, Yu. G. Sobolev100, S. Spataro101, H. Ströbele102, J. Stroth103, P. Strzempek104, C. Sturm105, O. Svoboda106, P. Tlusty107, M. Traxler108, H. Tsertos109, E. Usenko110, V. Wagner111, C. Wendisch112, M. G. Wiebusch113, J. Wirth114, Y. Zanevsky115, P. Zumbruch116, A. V. Sarantsev117
Affiliations: 1GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 2Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 3Institut de Physique Nucléaire, 4Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 5Institut de Physique Nucléaire, 6Joint Institute for Nuclear Research, 141980 Dubna, Russia, 7Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 8Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 9LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 10Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 11Physik Department E12, Technische Universität München, 85748 Garching, Germany, 12LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 13Joint Institute for Nuclear Research, 141980 Dubna, Russia, 14Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 15II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 16Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 17Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 18Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 19Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 20Joint Institute for Nuclear Research, 141980 Dubna, Russia, 21Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia, 22Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, 95125 Catania, Italy, 23LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 24LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 25Physik Department E12, Technische Universität München, 85748 Garching, Germany, 26Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 27Technische Universität Darmstadt, 64289 Darmstadt, Germany, 28LabCAF. F. Física, Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain, 29Physik Department E12, Technische Universität München, 85748 Garching, Germany, 30Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 31Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 32Technische Universität Darmstadt, 64289 Darmstadt, Germany, 33Technische Universität Darmstadt, 64289 Darmstadt, Germany, 34GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 35Institut de Physique Nucléaire, 36Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia, 37II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 38GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 39Joint Institute for Nuclear Research, 141980 Dubna, Russia, 40Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 41Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 42Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 43Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 44GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 45GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 46GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 47Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 48Technische Universität Darmstadt, 64289 Darmstadt, Germany, 49Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 50II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 51Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 52Physik Department E12, Technische Universität München, 85748 Garching, Germany, 53Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 54Joint Institute for Nuclear Research, 141980 Dubna, Russia, 55Joint Institute for Nuclear Research, 141980 Dubna, Russia, 56Joint Institute for Nuclear Research, 141980 Dubna, Russia, 57Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 58Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 59Institute for Theoretical and Experimental Physics, 117218 Moscow, Russia, 60Institut de Physique Nucléaire, 61LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 62Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 63II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 64Physik Department E12, Technische Universität München, 85748 Garching, Germany, 65LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 66Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 67Physik Department E12, Technische Universität München, 85748 Garching, Germany, 68II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 69Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 70Institut de Physique Nucléaire, 71Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 72Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 73Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 74Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 75Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 76Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 77Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 78Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus, 79GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 80Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 81Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 82GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 83Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 84LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 85Institut de Physique Nucléaire, 86Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 87Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 88Institut de Physique Nucléaire, 89Technische Universität Darmstadt, 64289 Darmstadt, Germany, 90Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 91Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 92Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 93Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 94GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 95Technische Universität Darmstadt, 64289 Darmstadt, Germany, 96Technische Universität Darmstadt, 64289 Darmstadt, Germany, 97Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 98Physik Department E12, Technische Universität München, 85748 Garching, Germany, 99LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 100Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 101Dipartimento di Fisica and INFN, Università di Torino, 10125 Torino, Italy, 102Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 103Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 104Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 105GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 106Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 107Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 108GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 109Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus, 110Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 111Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 112GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 113Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 114Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 115Joint Institute for Nuclear Research, 141980 Dubna, Russia, 116GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 117NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia

We report on the investigation of dielectron production in tagged quasi-free neutron-proton collisions by using a deuteron beam of kinetic energy 1.25 GeV/u inpinging on a liquid hydrogen target. Our measurements with HADES confirm a significant excess of $e^+e^-$ pairs above the $\pi^{0}$ mass in the exclusive channel $dp \to npe^{+}e^{-}(p_{spect})$ as compared to the exclusive channel $ppe^{+}e^{-}$ measured in proton-proton collisions at the same energy. Read More

2017Mar
Authors: J. Adamczewski-Musch1, O. Arnold2, E. T. Atomssa3, C. Behnke4, A. Belounnas5, A. Belyaev6, J. C. Berger-Chen7, J. Biernat8, A. Blanco9, C. Blume10, M. Böhmer11, P. Bordalo12, S. Chernenko13, L. Chlad14, C. Deveaux15, J. Dreyer16, A. Dybczak17, E. Epple18, L. Fabbietti19, O. Fateev20, P. Filip21, P. Finocchiaro22, P. Fonte23, C. Franco24, J. Friese25, I. Fröhlich26, T. Galatyuk27, J. A. Garzón28, R. Gernhäuser29, M. Golubeva30, F. Guber31, M. Gumberidze32, S. Harabasz33, T. Heinz34, T. Hennino35, S. Hlavac36, C. Höhne37, R. Holzmann38, A. Ierusalimov39, A. Ivashkin40, B. Kämpfer41, T. Karavicheva42, B. Kardan43, I. Koenig44, W. Koenig45, B. W. Kolb46, G. Korcyl47, G. Kornakov48, R. Kotte49, W. Kühn50, A. Kugler51, T. Kunz52, A. Kurepin53, A. Kurilkin54, P. Kurilkin55, V. Ladygin56, R. Lalik57, K. Lapidus58, A. Lebedev59, T. Liu60, L. Lopes61, M. Lorenz62, T. Mahmoud63, L. Maier64, A. Mangiarotti65, J. Markert66, S. Maurus67, V. Metag68, J. Michel69, E. Morinière70, D. M. Mihaylov71, S. Morozov72, C. Müntz73, R. Münzer74, L. Naumann75, K. N. Nowakowski76, M. Palka77, Y. Parpottas78, V. Pechenov79, O. Pechenova80, O. Petukhov81, J. Pietraszko82, W. Przygoda83, S. Ramos84, B. Ramstein85, A. Reshetin86, P. Rodriguez-Ramos87, P. Rosier88, A. Rost89, A. Sadovsky90, P. Salabura91, T. Scheib92, H. Schuldes93, E. Schwab94, F. Scozzi95, F. Seck96, P. Sellheim97, J. Siebenson98, L. Silva99, Yu. G. Sobolev100, S. Spataro101, H. Ströbele102, J. Stroth103, P. Strzempek104, C. Sturm105, O. Svoboda106, P. Tlusty107, M. Traxler108, H. Tsertos109, E. Usenko110, V. Wagner111, C. Wendisch112, M. G. Wiebusch113, J. Wirth114, Y. Zanevsky115, P. Zumbruch116, A. V. Sarantsev117
Affiliations: 1GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 2Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 3Institut de Physique Nucléaire, 4Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 5Institut de Physique Nucléaire, 6Joint Institute for Nuclear Research, 141980 Dubna, Russia, 7Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 8Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 9LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 10Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 11Physik Department E12, Technische Universität München, 85748 Garching, Germany, 12LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 13Joint Institute for Nuclear Research, 141980 Dubna, Russia, 14Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 15II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 16Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 17Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 18Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 19Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 20Joint Institute for Nuclear Research, 141980 Dubna, Russia, 21Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia, 22Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, 95125 Catania, Italy, 23LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 24LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 25Physik Department E12, Technische Universität München, 85748 Garching, Germany, 26Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 27Technische Universität Darmstadt, 64289 Darmstadt, Germany, 28LabCAF. F. Física, Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain, 29Physik Department E12, Technische Universität München, 85748 Garching, Germany, 30Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 31Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 32Technische Universität Darmstadt, 64289 Darmstadt, Germany, 33Technische Universität Darmstadt, 64289 Darmstadt, Germany, 34GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 35Institut de Physique Nucléaire, 36Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia, 37II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 38GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 39Joint Institute for Nuclear Research, 141980 Dubna, Russia, 40Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 41Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 42Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 43Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 44GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 45GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 46GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 47Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 48Technische Universität Darmstadt, 64289 Darmstadt, Germany, 49Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 50II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 51Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 52Physik Department E12, Technische Universität München, 85748 Garching, Germany, 53Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 54Joint Institute for Nuclear Research, 141980 Dubna, Russia, 55Joint Institute for Nuclear Research, 141980 Dubna, Russia, 56Joint Institute for Nuclear Research, 141980 Dubna, Russia, 57Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 58Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 59Institute for Theoretical and Experimental Physics, 117218 Moscow, Russia, 60Institut de Physique Nucléaire, 61LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 62Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 63II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 64Physik Department E12, Technische Universität München, 85748 Garching, Germany, 65LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 66Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 67Physik Department E12, Technische Universität München, 85748 Garching, Germany, 68II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany, 69Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 70Institut de Physique Nucléaire, 71Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 72Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 73Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 74Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 75Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany, 76Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 77Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 78Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus, 79GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 80Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 81Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 82GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 83Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 84LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 85Institut de Physique Nucléaire, 86Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 87Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 88Institut de Physique Nucléaire, 89Technische Universität Darmstadt, 64289 Darmstadt, Germany, 90Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 91Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 92Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 93Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 94GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 95Technische Universität Darmstadt, 64289 Darmstadt, Germany, 96Technische Universität Darmstadt, 64289 Darmstadt, Germany, 97Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 98Physik Department E12, Technische Universität München, 85748 Garching, Germany, 99LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal, 100Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 101Dipartimento di Fisica and INFN, Università di Torino, 10125 Torino, Italy, 102Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 103Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 104Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland, 105GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 106Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 107Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 108GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 109Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus, 110Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia, 111Nuclear Physics Institute, Czech Academy of Sciences, 25068 Rez, Czech Republic, 112GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 113Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany, 114Excellence Cluster 'Origin and Structure of the Universe', 85748 Garching, Germany, 115Joint Institute for Nuclear Research, 141980 Dubna, Russia, 116GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, 117NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia

We report on the investigation of $\Delta$(1232) production and decay in proton-proton collisions at a kinetic energy of 1.25 GeV measured with HADES. Exclusive dilepton decay channels $ppe^{+}e^{-}$ and $ppe^{+}e^{-}\gamma$ have been studied and compared with the partial wave analysis of the hadronic $pp\pi^{0}$ channel. Read More

Quasi-lossless and asymmetric sound transports, which are exceedingly desirable in various modern physical systems, are almost based on nonlinear or angular-momentum biasing effects with extremely high power levels and complex modulation schemes. A practical route for the steerable sound transport along any arbitrary acoustic pathway, especially in a 3D acoustic network, could revolutionize the sound power flow and the sound communication. Here, we design an acoustic device consisting of a regular-tetrahedral cavity with four cylindrical waveguides. Read More

In this article, we designed and synthesized a novel small molecule acceptor of ITCPTC with thiophene-fused ending group by employing a new active methylene precursor of CPTCN. The ITCPTC based polymer solar cells with PBT1-EH as donor achieved very high PCEs of up to 11.8% with a remarkably enhanced fill factor (FF) of 0. Read More

We introduce a notion of algorithmic stability of learning algorithms---that we term hypothesis stability---that captures stability of the hypothesis output by the learning algorithm in the normed space of functions from which hypotheses are selected. The main result of the paper bounds the generalization error of any learning algorithm in terms of its hypothesis stability. The bounds are based on martingale inequalities in the Banach space to which the hypotheses belong. Read More

We present a detailed spectral analysis of the brightest Active Galactic Nuclei (AGN) identified in the 7Ms Chandra Deep Field-South (CDF-S) survey over a time span of 16 years. Using a model of an intrinsically absorbed power-law plus reflection, with a possible soft excess and narrow Fe K\alpha line, we perform a systematic X-ray spectral analysis, both on the total 7Ms exposure and in four different periods with lengths of 2-21 months. With this approach, we not only present the power-law slopes, column densities N_H, observed fluxes, and intrinsic (absorption-corrected) rest-frame 2-10 keV luminosities L_X for our sample of AGNs, but also identify significant spectral variabilities among them on time scales of a few years. Read More

2017Mar
Authors: CDF Collaboration, T. Aaltonen, M. G. Albrow, S. Amerio, D. Amidei, A. Anastassov, A. Annovi, J. Antos, G. Apollinari, J. A. Appel, T. Arisawa, A. Artikov, J. Asaadi, W. Ashmanskas, B. Auerbach, A. Aurisano, F. Azfar, W. Badgett, T. Bae, A. Barbaro-Galtieri, V. E. Barnes, B. A. Barnett, P. Barria, P. Bartos, M. Bauce, F. Bedeschi, S. Behari, G. Bellettini, J. Bellinger, D. Benjamin, A. Beretvas, A. Bhatti, K. R. Bland, B. Blumenfeld, A. Bocci, A. Bodek, D. Bortoletto, J. Boudreau, A. Boveia, L. Brigliadori, C. Bromberg, E. Brucken, J. Budagov, H. S. Budd, K. Burkett, G. Busetto, P. Bussey, P. Butti, A. Buzatu, A. Calamba, S. Camarda, M. Campanelli, F. Canelli, B. Carls, D. Carlsmith, R. Carosi, S. Carrillo, B. Casal, M. Casarsa, A. Castro, P. Catastini, D. Cauz, V. Cavaliere, A. Cerri, L. Cerrito, Y. C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, K. Cho, D. Chokheli, A. Clark, C. Clarke, M. E. Convery, J. Conway, M. Corbo, M. Cordelli, C. A. Cox, D. J. Cox, M. Cremonesi, D. Cruz, J. Cuevas, R. Culbertson, N. d'Ascenzo, M. Datta, P. de Barbaro, L. Demortier, M. Deninno, F. Devoto, M. D'Errico, A. Di Canto, B. Di Ruzza, J. R. Dittmann, M. D'Onofrio, S. Donati, M. Dorigo, A. Driutti, K. Ebina, R. Edgar, R. Erbacher, S. Errede, B. Esham, S. Farrington, J. P. Fernández Ramos, R. Field, G. Flanagan, R. Forrest, M. Franklin, J. C. Freeman, H. Frisch, Y. Funakoshi, C. Galloni, A. F. Garfinkel, P. Garosi, H. Gerberich, E. Gerchtein, S. Giagu, V. Giakoumopoulou, K. Gibson, C. M. Ginsburg, N. Giokaris, P. Giromini, V. Glagolev, D. Glenzinski, M. Gold, D. Goldin, A. Golossanov, G. Gomez, G. Gomez-Ceballos, M. Goncharov, O. González López, I. Gorelov, A. T. Goshaw, K. Goulianos, E. Gramellini, C. Grosso-Pilcher, J. Guimaraes da Costa, S. R. Hahn, J. Y. Han, F. Happacher, K. Hara, M. Hare, R. F. Harr, T. Harrington-Taber, K. Hatakeyama, C. Hays, J. Heinrich, M. Herndon, A. Hocker, Z. Hong, W. Hopkins, S. Hou, R. E. Hughes, U. Husemann, M. Hussein, J. Huston, G. Introzzi, M. Iori, A. Ivanov, E. James, D. Jang, B. Jayatilaka, E. J. Jeon, S. Jindariani, M. Jones, K. K. Joo, S. Y. Jun, T. R. Junk, M. Kambeitz, T. Kamon, P. E. Karchin, A. Kasmi, Y. Kato, W. Ketchum, J. Keung, B. Kilminster, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kim, Y. J. Kim, N. Kimura, M. Kirby, K. Kondo, D. J. Kong, J. Konigsberg, A. V. Kotwal, M. Kreps, J. Kroll, M. Kruse, T. Kuhr, M. Kurata, A. T. Laasanen, S. Lammel, M. Lancaster, K. Lannon, G. Latino, H. S. Lee, J. S. Lee, S. Leo, S. Leone, J. D. Lewis, A. Limosani, E. Lipeles, A. Lister, Q. Liu, T. Liu, S. Lockwitz, A. Loginov, A. Lucà, D. Lucchesi, J. Lueck, P. Lujan, P. Lukens, G. Lungu, J. Lys, R. Lysak, R. Madrak, P. Maestro, S. Malik, G. Manca, A. Manousakis-Katsikakis, L. Marchese, F. Margaroli, P. Marino, K. Matera, M. E. Mattson, A. Mazzacane, P. Mazzanti, R. McNulty, A. Mehta, P. Mehtala, C. Mesropian, T. Miao, D. Mietlicki, A. Mitra, H. Miyake, S. Moed, N. Moggi, C. S. Moon, R. Moore, M. J. Morello, A. Mukherjee, Th. Muller, P. Murat, M. Mussini, J. Nachtman, Y. Nagai, J. Naganoma, I. Nakano, A. Napier, J. Nett, T. Nigmanov, L. Nodulman, S. Y. Noh, O. Norniella, L. Oakes, S. H. Oh, Y. D. Oh, T. Okusawa, R. Orava, L. Ortolan, C. Pagliarone, E. Palencia, P. Palni, V. Papadimitriou, W. Parker, G. Pauletta, M. Paulini, C. Paus, T. J. Phillips, G. Piacentino, E. Pianori, J. Pilot, K. Pitts, C. Plager, L. Pondrom, S. Poprocki, K. Potamianos, F. Prokoshin, A. Pranko, F. Ptohos, G. Punzi, I. Redondo Fernández, P. Renton, M. Rescigno, F. Rimondi, L. Ristori, A. Robson, T. Rodriguez, S. Rolli, M. Ronzani, R. Roser, J. L. Rosner, F. Ruffini, A. Ruiz, J. Russ, V. Rusu, W. K. Sakumoto, Y. Sakurai, L. Santi, K. Sato, V. Saveliev, A. Savoy-Navarro, P. Schlabach, E. E. Schmidt, T. Schwarz, L. Scodellaro, F. Scuri, S. Seidel, Y. Seiya, A. Semenov, F. Sforza, S. Z. Shalhout, T. Shears, P. F. Shepard, M. Shimojima, M. Shochet, I. Shreyber-Tecker, A. Simonenko, P. Sinervo, K. Sliwa, J. R. Smith, F. D. Snider, V. Sorin, H. Song, M. Stancari, R. St. Denis, D. Stentz, J. Strologas, Y. Sudo, A. Sukhanov, I. Suslov, K. Takemasa, Y. Takeuchi, J. Tang, M. Tecchio, P. K. Teng, J. Thom, E. Thomson, V. Thukral, D. Toback, S. Tokar, K. Tollefson, T. Tomura, D. Tonelli, S. Torre, D. Torretta, P. Totaro, M. Trovato, F. Ukegawa, S. Uozumi, F. Vázquez, G. Velev, C. Vellidis, C. Vernieri, M. Vidal, R. Vilar, J. Vizán, M. Vogel, G. Volpi, P. Wagner, R. Wallny, S. M. Wang, D. Waters, W. C. Wester III, D. Whiteson, A. B. Wicklund, S. Wilbur, H. H. Williams, J. S. Wilson, P. Wilson, B. L. Winer, P. Wittich, S. Wolbers, H. Wolfe, T. Wright, X. Wu, Z. Wu, K. Yamamoto, D. Yamato, T. Yang, U. K. Yang, Y. C. Yang, W. -M. Yao, G. P. Yeh, K. Yi, J. Yoh, K. Yorita, T. Yoshida, G. B. Yu, I. Yu, A. M. Zanetti, Y. Zeng, C. Zhou, S. Zucchelli

A measurement of the inclusive production cross section of isolated prompt photons in proton-antiproton collisions at center-of-mass energy $\sqrt{s}$=1.96TeV is presented. The results are obtained using the full Run II data sample collected with the Collider Detector at the Fermilab Tevatron, which corresponds to an integrated luminosity of 9. Read More

Screened modified gravity (SMG) is a kind of scalar-tensor theory with screening mechanisms, which can suppress the fifth force in dense regions and allow theories to evade the solar system and laboratory tests. In this paper, we investigate how the screening mechanisms in SMG affect the gravitational radiation damping effects, calculate in detail the rate of the energy loss due to the emission of tensor and scalar gravitational radiations, and derive their contributions to the change in the orbital period of the binary system. We find that the scalar radiation depends on the screened parameters and the propagation speed of scalar waves, and the scalar dipole radiation dominates the orbital decay of the binary system. Read More

Machine learning is essentially the sciences of playing with data. An adaptive data selection strategy, enabling to dynamically choose different data at various training stages, can reach a more effective model in a more efficient way. In this paper, we propose a deep reinforcement learning framework, which we call \emph{\textbf{N}eural \textbf{D}ata \textbf{F}ilter} (\textbf{NDF}), to explore automatic and adaptive data selection in the training process. Read More

Spatiotemporal gene expression data of the human brain offer insights on the spa- tial and temporal patterns of gene regulation during brain development. Most existing methods for analyzing these data consider spatial and temporal profiles separately with the implicit assumption that different brain regions develop in similar trajectories, and that the spatial patterns of gene expression remain similar at different time points. Al- though these analyses may help delineate gene regulation either spatially or temporally, they are not able to characterize heterogeneity in temporal dynamics across different brain regions, or the evolution of spatial patterns of gene regulation over time. Read More

We present a parallel network of 16 demagnetization refrigerators mounted on a cryofree dilution refrigerator aimed to cool nanoelectronic devices to sub-millikelvin temperatures. To measure the refrigerator temperature, the thermal motion of electrons in a Ag wire -- thermalized by a spot-weld to one of the Cu nuclear refrigerators -- is inductively picked-up by a superconducting gradiometer and amplified by a SQUID mounted at 4 K. The noise thermometer as well as other thermometers are used to characterize the performance of the system, finding magnetic field independent heat-leaks of a few nW/mol, cold times of several days below 1 mK, and a lowest temperature of 150 microK of one of the nuclear stages in a final field of 80 mT, close to the intrinsic SQUID noise of about 100 microK. Read More

Using Kim's variational formulation (with a slight yet important modification), we derive the ARMA(k) Gaussian feedback capacity, i.e., the feedback capacity of an additive channel where the noise is a k-th order autoregressive moving average Gaussian process. Read More

Suicide is an important but often misunderstood problem, one that researchers are now seeking to better understand through social media. Due in large part to the fuzzy nature of what constitutes suicidal risks, most supervised approaches for learning to automatically detect suicide-related activity in social media require a great deal of human labor to train. However, humans themselves have diverse or conflicting views on what constitutes suicidal thoughts. Read More

Recent simulations on super-Eddington accretion flows have shown that, apart from the diffusion process, the vertical advection based on magnetic buoyancy can be a more efficient process to release the trapped photons in the optically thick disk. As a consequence, the radiative luminosity from the accretion disk can be far beyond the Eddington value. Following this spirit, we revisit the structure and radiation of hyper-accretion disks with mass accretion rates in the range $10^{-3}\sim 10~M_{\sun}~{\rm s}^{-1}$. Read More

Using semi-tensor product of matrices, the structures of several kinds of symmetric games are investigated via the linear representation of symmetric group in the structure vector of games as its representation space. First of all, the symmetry, described as the action of symmetric group on payoff functions, is converted into the product of permutation matrices with structure vectors of payoff functions. Using the linear representation of the symmetric group in structure vectors, the algebraic conditions for the ordinary, weighted, renaming and name-irrelevant symmetries are obtained respectively as the invariance under the corresponding linear representations. Read More

We consider the $(n,k,d,\ell)$ secure exact-repair regenerating code problem, which generalizes the $(n,k,d)$ exact-repair regenerating code problem with the additional constraint that the stored file needs to be kept information-theoretically secure against an eavesdropper, who can access the data transmitted to regenerate a total of $\ell$ different failed nodes. For all known results on this problem, the achievable tradeoff regions between the normalized storage capacity and repair bandwidth have a single corner point, achieved by a scheme proposed by Shah, Rashmi and Kumar (the SRK point). Since the achievable tradeoff regions of the exact-repair regenerating code problem without any secrecy constraints are known to have multiple corner points in general, these existing results suggest a phase-change-like behavior, i. Read More

We investigate the hidden strange light baryon-meson system. With the resonating-group method, two bound states, $\eta-N$ and $\phi-N$, are found in the quark delocalization color screening model. Focusing on the $\phi-N$ bound state around 1950 MeV, we obtain the total decay width of about 4 MeV by calculating the phase shifts in the resonance scattering processes. Read More

In this paper, we focus on the personalized response generation for conversational systems. Based on the sequence to sequence learning, especially the encoder-decoder framework, we propose a two-phase approach, namely initialization then adaptation, to model the responding style of human and then generate personalized responses. For evaluation, we propose a novel human aided method to evaluate the performance of the personalized response generation models by online real-time conversation and offline human judgement. Read More

Topological phononic states, facilitating acoustic unique transports immunizing to defects and disorders, have significantly revolutionized our scientific cognition of acoustic wave systems. Up to now, the theoretical and experimental demonstrations of topologically protected one-way transports with pseudospin states in a phononic crystal beyond the graphene lattice with C6v symmetry are still unexploited. Furthermore, the tunable topological states, in form of robust reconfigurable acoustic pathways, have been evaded in the topological phononic insulators. Read More

Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle x-ray scattering at an x-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. Read More

Here we present a study of magnetism in \CTO\ anatase films grown by pulsed laser deposition under a variety of oxygen partial pressures and deposition rates. Energy-dispersive spectrometry and transition electron microscopy analyses indicate that a high deposition rate leads to a homogeneous microstructure, while very low rate or postannealing results in cobalt clustering. Depth resolved low-energy muon spin rotation experiments show that films grown at a low oxygen partial pressure ($\approx 10^{-6}$ torr) with a uniform structure are fully magnetic, indicating intrinsic ferromagnetism. Read More

The human visual system excels at detecting local blur of visual images, but the underlying mechanism is mysterious. Traditional views of blur such as reduction in local or global high-frequency energy and loss of local phase coherence have fundamental limitations. For example, they cannot well discriminate flat regions from blurred ones. Read More

This paper considers an empirical likelihood inference for parameters defined by general estimating equations, when data are missing at random. The efficiency of existing estimators depends critically on correctly specifying the conditional expectation of the estimating function given the observed components of the random observations. When the conditional expectation is not correctly specified, the efficiency of estimation can be severely compromised even if the propensity function (of missingness) is correctly specified. Read More

We observed thirteen Planck cold clumps with the James Clerk Maxwell Telescope/SCUBA-2 and with the Nobeyama 45 m radio telescope. The N$_2$H$^+$ distribution obtained with the Nobeyama telescope is quite similar to SCUBA-2 dust distribution. The 82 GHz HC$_3$N, 82 GHz CCS, and 94 GHz CCS emission are often distributed differently with respect to the N$_2$H$^+$ emission. Read More

We construct an irreducible s- and t-channel tensor basis for Bhabha scattering like amplitudes based on the properties of the underlying Lorentz symmetry in four space-time dimensions. In the given basis the calculation of amplitude contractions like the amplitude square reduces to the contraction of their corresponding coefficient tensors. Further the basis retains the full amplitude information and thus can be applied in off-shell cases. Read More

Fully Convolution Networks (FCN) have achieved great success in dense prediction tasks including semantic segmentation. In this paper, we start from discussing FCN by understanding its architecture limitations in building a strong segmentation network. Next, we present our Improved Fully Convolution Network (IFCN). Read More

The realization of cross-Kerr nonlinearity is an important task for many applications in quantum information processing. In this work, we propose a method for realizing cross-Kerr nonlinearity interaction between two superconducting coplanar waveguide resonators coupled by a three-level superconducting flux qutrit (coupler). By employing the qutrit-resonator dispersive interaction, we derive an effective Hamiltonian involving two-photon number operators and a coupler operator. Read More

Selling reserved instances (or virtual machines) is a basic service in cloud computing. In this paper, we consider a more flexible pricing model for instance reservation, in which a customer can propose the time length and number of resources of her request, while in today's industry, customers can only choose from several predefined reservation packages. Under this model, we design randomized mechanisms for customers coming online to optimize social welfare and providers' revenue. Read More

We report the discovery and characterization of a novel 112-type iron pnictide EuFeAs2, with La-doping induced superconductivity in a series of Eu1-xLaxFeAs2. The polycrystalline samples were synthesized through solid state reaction method only within a very narrow temperature window around 1073 K. Small single crystals were also grown from a flux method with the size about 100 um. Read More

We present X-ray source catalogs for the $\approx7$ Ms exposure of the Chandra Deep Field-South (CDF-S), which covers a total area of 484.2 arcmin$^2$. Utilizing WAVDETECT for initial source detection and ACIS Extract for photometric extraction and significance assessment, we create a main source catalog containing 1008 sources that are detected in up to three X-ray bands: 0. Read More

Decision tree (and its extensions such as Gradient Boosting Decision Trees and Random Forest) is a widely used machine learning algorithm, due to its practical effectiveness and model interpretability. With the emergence of big data, there is an increasing need to parallelize the training process of decision tree. However, most existing attempts along this line suffer from high communication costs. Read More

Truth discovery is to resolve conflicts and find the truth from multiple-source statements. Conventional methods mostly research based on the mutual effect between the reliability of sources and the credibility of statements, however, pay no attention to the mutual effect among the credibility of statements about the same object. We propose memory network based models to incorporate these two ideas to do the truth discovery. Read More

In this paper, the theoretical aspects behind longitudinal RF capture are reviewed and the capture process is simulated via a program based on this theory. Four kinds of cases with different initial distribution and capture curve are considered, i.e. Read More

Recently there has been reinvigorated interest in the superconducting proximity effect, driven by predictions of the emergence of Majorana fermions. To help guide this search, we have developed a phenomenological model for the tunneling spectra in anisotropic superconductor-normal metal proximity devices. We combine successful approaches used in s-wave proximity and standard d-wave tunneling to reproduce tunneling spectra in d-wave proximity devices, and clarify the origin of various features. Read More

Recent developments for mathematical modeling and numerical simulation of biomolecular systems raise new demands for qualified, stable, and efficient surface meshing, especially in implicit-solvent modeling. In our former work, we have developed an algorithm for manifold triangular meshing for large Gaussian molecular surfaces, TMSmesh. In this paper, we present new algorithms to greatly improve the meshing efficiency and qualities, and implement into a new program version, TMSmesh 2. Read More

While neural machine translation (NMT) is making good progress in the past two years, tens of millions of bilingual sentence pairs are needed for its training. However, human labeling is very costly. To tackle this training data bottleneck, we develop a dual-learning mechanism, which can enable an NMT system to automatically learn from unlabeled data through a dual-learning game. Read More

Recurrent neural networks (RNNs) have achieved state-of-the-art performances in many natural language processing tasks, such as language modeling and machine translation. However, when the vocabulary is large, the RNN model will become very big (e.g. Read More

For a perfect field $k$ of characteristic $p>0$ and a smooth and proper formal scheme $\mathscr{X}$ over the ring of integers of a finite and totally ramified extension $K$ of $W(k)[1/p]$, we propose a cohomological construction of the Breuil-Kisin modules attached to the $p$-adic \'etale cohomology $H^i_{\mathrm{\'et}}(\mathscr{X}_{\overline{K}},\mathbf{Z}_p)$. We then prove that our proposal works when $p>2$, $i < p-1$, and the crystalline cohomology of the special fiber of $\mathscr{X}$ is torsion-free in degrees $i$ and $i+1$. Read More

We study the domain walls which form when Bose condensates acquire a double-well dispersion. Experiments have observed such domain walls in condensates driven across a $\mathbb{Z}_2$ symmetry-breaking phase transition in a shaken optical lattice. We derive a generic model to describe the dispersion and to compute the wavefunctions and energies of the domain walls. Read More

2016Oct
Authors: CDF Collaboration, T. Aaltonen, S. Amerio, D. Amidei, A. Anastassov, A. Annovi, J. Antos, G. Apollinari, J. A. Appel, T. Arisawa, A. Artikov, J. Asaadi, W. Ashmanskas, B. Auerbach, A. Aurisano, F. Azfar, W. Badgett, T. Bae, A. Barbaro-Galtieri, V. E. Barnes, B. A. Barnett, P. Barria, P. Bartos, M. Bauce, F. Bedeschi, S. Behari, G. Bellettini, J. Bellinger, D. Benjamin, A. Beretvas, A. Bhatti, K. R. Bland, B. Blumenfeld, A. Bocci, A. Bodek, D. Bortoletto, J. Boudreau, A. Boveia, L. Brigliadori, C. Bromberg, E. Brucken, J. Budagov, H. S. Budd, K. Burkett, G. Busetto, P. Bussey, P. Butti, A. Buzatu, A. Calamba, S. Camarda, M. Campanelli, F. Canelli, B. Carls, D. Carlsmith, R. Carosi, S. Carrillo, B. Casal, M. Casarsa, A. Castro, P. Catastini, D. Cauz, V. Cavaliere, A. Cerri, L. Cerrito, Y. C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, K. Cho, D. Chokheli, A. Clark, C. Clarke, M. E. Convery, J. Conway, M. Corbo, M. Cordelli, C. A. Cox, D. J. Cox, M. Cremonesi, D. Cruz, J. Cuevas, R. Culbertson, N. d'Ascenzo, M. Datta, P. de Barbaro, L. Demortier, M. Deninno, F. Devoto, M. D'Errico, A. Di Canto, B. Di Ruzza, J. R. Dittmann, M. D'Onofrio, S. Donati, M. Dorigo, A. Driutti, K. Ebina, R. Edgar, R. Erbacher, S. Errede, B. Esham, S. Farrington, J. P. Fernández Ramos, R. Field, G. Flanagan, R. Forrest, M. Franklin, J. C. Freeman, H. Frisch, Y. Funakoshi, C. Galloni, A. F. Garfinkel, P. Garosi, H. Gerberich, E. Gerchtein, S. Giagu, V. Giakoumopoulou, K. Gibson, C. M. Ginsburg, N. Giokaris, P. Giromini, V. Glagolev, D. Glenzinski, M. Gold, D. Goldin, A. Golossanov, G. Gomez, G. Gomez-Ceballos, M. Goncharov, O. González López, I. Gorelov, A. T. Goshaw, K. Goulianos, E. Gramellini, C. Grosso-Pilcher, J. Guimaraes da Costa, S. R. Hahn, J. Y. Han, F. Happacher, K. Hara, M. Hare, R. F. Harr, T. Harrington-Taber, K. Hatakeyama, C. Hays, J. Heinrich, M. Herndon, A. Hocker, Z. Hong, W. Hopkins, S. Hou, R. E. Hughes, U. Husemann, M. Hussein, J. Huston, G. Introzzi, M. Iori, A. Ivanov, E. James, D. Jang, B. Jayatilaka, E. J. Jeon, S. Jindariani, M. Jones, K. K. Joo, S. Y. Jun, T. R. Junk, M. Kambeitz, T. Kamon, P. E. Karchin, A. Kasmi, Y. Kato, W. Ketchum, J. Keung, B. Kilminster, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kim, Y. J. Kim, N. Kimura, M. Kirby, K. Kondo, D. J. Kong, J. Konigsberg, A. V. Kotwal, M. Kreps, J. Kroll, M. Kruse, T. Kuhr, M. Kurata, A. T. Laasanen, S. Lammel, M. Lancaster, K. Lannon, G. Latino, H. S. Lee, J. S. Lee, S. Leo, S. Leone, J. D. Lewis, A. Limosani, E. Lipeles, A. Lister, Q. Liu, T. Liu, S. Lockwitz, A. Loginov, A. Lucà, D. Lucchesi, J. Lueck, P. Lujan, P. Lukens, G. Lungu, J. Lys, R. Lysak, R. Madrak, P. Maestro, S. Malik, G. Manca, A. Manousakis-Katsikakis, L. Marchese, F. Margaroli, P. Marino, K. Matera, M. E. Mattson, A. Mazzacane, P. Mazzanti, R. McNulty, A. Mehta, P. Mehtala, C. Mesropian, T. Miao, D. Mietlicki, A. Mitra, H. Miyake, S. Moed, N. Moggi, C. S. Moon, R. Moore, M. J. Morello, A. Mukherjee, Th. Muller, P. Murat, M. Mussini, J. Nachtman, Y. Nagai, J. Naganoma, I. Nakano, A. Napier, J. Nett, T. Nigmanov, L. Nodulman, S. Y. Noh, O. Norniella, L. Oakes, S. H. Oh, Y. D. Oh, T. Okusawa, R. Orava, L. Ortolan, C. Pagliarone, E. Palencia, P. Palni, V. Papadimitriou, W. Parker, G. Pauletta, M. Paulini, C. Paus, T. J. Phillips, G. Piacentino, E. Pianori, J. Pilot, K. Pitts, C. Plager, L. Pondrom, S. Poprocki, K. Potamianos, F. Prokoshin, A. Pranko, F. Ptohos, G. Punzi, I. Redondo Fernández, P. Renton, M. Rescigno, F. Rimondi, L. Ristori, A. Robson, T. Rodriguez, S. Rolli, M. Ronzani, R. Roser, J. L. Rosner, F. Ruffini, A. Ruiz, J. Russ, V. Rusu, W. K. Sakumoto, Y. Sakurai, L. Santi, K. Sato, V. Saveliev, A. Savoy-Navarro, P. Schlabach, E. E. Schmidt, T. Schwarz, L. Scodellaro, F. Scuri, S. Seidel, Y. Seiya, A. Semenov, F. Sforza, S. Z. Shalhout, T. Shears, P. F. Shepard, M. Shimojima, M. Shochet, I. Shreyber-Tecker, A. Simonenko, K. Sliwa, J. R. Smith, F. D. Snider, V. Sorin, H. Song, M. Stancari, R. St. Denis, D. Stentz, J. Strologas, Y. Sudo, A. Sukhanov, I. Suslov, K. Takemasa, Y. Takeuchi, J. Tang, M. Tecchio, P. K. Teng, J. Thom, E. Thomson, V. Thukral, D. Toback, S. Tokar, K. Tollefson, T. Tomura, D. Tonelli, S. Torre, D. Torretta, P. Totaro, M. Trovato, F. Ukegawa, S. Uozumi, F. Vázquez, G. Velev, C. Vellidis, C. Vernieri, M. Vidal, R. Vilar, J. Vizán, M. Vogel, G. Volpi, P. Wagner, R. Wallny, S. M. Wang, D. Waters, W. C. Wester III, D. Whiteson, A. B. Wicklund, S. Wilbur, H. H. Williams, J. S. Wilson, P. Wilson, B. L. Winer, P. Wittich, S. Wolbers, H. Wolfe, T. Wright, X. Wu, Z. Wu, K. Yamamoto, D. Yamato, T. Yang, U. K. Yang, Y. C. Yang, W. -M. Yao, G. P. Yeh, K. Yi, J. Yoh, K. Yorita, T. Yoshida, G. B. Yu, I. Yu, A. M. Zanetti, Y. Zeng, C. Zhou, S. Zucchelli

We report on a measurement of the $D^{+}$-meson production cross section as a function of transverse momentum ($p_T$) in proton-antiproton ($p\bar{p}$) collisions at 1.96 TeV center-of-mass energy, using the full data set collected by the Collider Detector at Fermilab in Tevatron Run II and corresponding to 10 fb$^{-1}$ of integrated luminosity. We use $D^{+} \to K^-\pi^+\pi^+$ decays fully reconstructed in the central rapidity region $|y|<1$ with transverse momentum down to 1. Read More

Two dimensional (2D) materials provide a unique platform to explore the full potential of magnetic proximity driven phenomena, which can be further used for applications in next generation spintronic devices. Of particular interest is to understand and control spin currents in graphene by the magnetic exchange field of a nearby ferromagnetic material in graphene/ferromagnetic-insulator (FMI) heterostructures. Here, we present the experimental study showing the strong modulation of spin currents in graphene layers by controlling the direction of the exchange field due to FMI magnetization. Read More

In a quasi-one-dimensional magnetic fluid, both gravito-thermal and magneto-thermal convections were observed in a horizontal temperature gradient, applied field, and field gradient. The interplay between the two convective motions crucially depends on the relative orientation of the gradient of temperature to that of applied field. The magnetic field-induced flows either enhance the convective heat transfer when the gradients of temperature and field are parallel to each other, or suppress it when the two gradients are antiparallel, where the convection roll in zero field was replaced by two localized flows at the two ends of the sample cell. Read More

A qudit ($d$-level quantum systems) has a large Hilbert space and thus can be used to achieve many quantum information and communication tasks. Here, we propose a method to transfer arbitrary $d$-dimensional quantum states (known or unknown) between two superconducting qudits coupled to a single cavity. The state transfer can be performed fast because of employing resonant interactions only. Read More

This paper investigates the problem of network embedding, which aims at learning low-dimensional vector representation of nodes in networks. Most existing network embedding methods rely solely on the network structure, i.e. Read More

Compared with a qubit, a qutrit (i.e., three-level quantum system) has a larger Hilbert space and thus can be used to encode more information in quantum information processing and communication. Read More

2016Oct

The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in $^3$He($e,e^{\prime}\pi^{\pm}$)$X$ have been measured for the first time in Jefferson Lab experiment E06-010 performed with a $5.9\,$GeV $e^-$ beam on a $^3$He target. The experiment focuses on the valence quark region, covering a kinematic range $0. Read More

Electron beam probe (EBP) is a new principle detector, which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. Read More