T. Butterley

T. Butterley
Are you T. Butterley?

Claim your profile, edit publications, add additional information:

Contact Details

T. Butterley

Pubs By Year

Pub Categories

Instrumentation and Methods for Astrophysics (8)
Solar and Stellar Astrophysics (7)
Astrophysics (6)
Computer Science - Distributed; Parallel; and Cluster Computing (1)
Physics - Optics (1)
Physics - Instrumentation and Detectors (1)
High Energy Astrophysical Phenomena (1)
Astrophysics of Galaxies (1)
Earth and Planetary Astrophysics (1)

Publications Authored By T. Butterley

As telescopes become larger, into the era of ~40 m Extremely Large Telescopes, the high- resolution vertical profile of the optical turbulence strength is critical for the validation, optimization and operation of optical systems. The velocity of atmospheric optical turbulence is an important parameter for several applications including astronomical adaptive optics systems. Here, we compare the vertical profile of the velocity of the atmospheric wind above La Palma by means of a comparison of Stereo-SCIntillation Detection And Ranging (Stereo- SCIDAR) with the Global Forecast System models and nearby balloon-borne radiosondes. Read More

We present new time-resolved photometry of 74 cataclysmic variables (CVs), 47 of which are eclipsing. 13 of these eclipsing systems are newly discovered. For all 47 eclipsing systems we show high cadence (1-20 seconds) light curves obtained with the high-speed cameras ultracam and ultraspec. Read More

After more than 26 years in quiescence, the black hole transient V404 Cyg went into a luminous outburst in June 2015, and additional activity was detected in late December of the same year. Here, we present an optical spectroscopic follow-up of the December mini-outburst, together with X-ray, optical and radio monitoring that spanned more than a month. Strong flares with gradually increasing intensity are detected in the three spectral ranges during the ~10 days following the Swift trigger. Read More

We present long-term photometric observations of the young open cluster IC 348 with a baseline time-scale of 2.4 yr. Our study was conducted with several telescopes from the Young Exoplanet Transit Initiative (YETI) network in the Bessel $R$ band to find periodic variability of young stars. Read More

We present a long-term programme for timing the eclipses of white dwarfs in close binaries to measure apparent and/or real variations in their orbital periods. Our programme includes 67 close binaries, both detached and semi-detached and with M-dwarfs, K-dwarfs, brown dwarfs or white dwarfs secondaries. In total, we have observed more than 650 white dwarf eclipses. Read More

We report results of the first five observing campaigns for the open stellar cluster NGC 7243 in the frame of project Young Exoplanet Transit Initiative (YETI). The project focuses on the monitoring of young and nearby stellar clusters, with the aim to detect young transiting exoplanets, and to study other variability phenomena on time-scales from minutes to years. After five observing campaigns and additional observations during 2013 and 2014, a clear and repeating transit-like signal was detected in the light curve of J221550. Read More

Affiliations: 1Department of Physics and Astronomy, University of Sheffield, UK, 2Centre for Advanced Instrumentation, Department of Physics, University of Durham, UK, 3Department of Physics and Astronomy, University of Sheffield, UK, 4Department of Physics and Astronomy, University of Sheffield, UK, 5Centre for Advanced Instrumentation, Department of Physics, University of Durham, UK

pt5m is a 0.5m robotic telescope located on the roof of the 4.2m William Herschel Telescope (WHT) building, at the Roque de los Muchachos Observatory, La Palma. Read More

We report the discovery and characterisation of a deeply eclipsing AM CVn-system, Gaia14aae (= ASSASN-14cn). Gaia14aae was identified independently by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014) and by the Gaia Science Alerts project, during two separate outbursts. Read More

We present recent results from the initial testing of an Artificial Neural Network (ANN) based tomographic reconstructor Complex Atmospheric Reconstructor based on Machine lEarNing (CARMEN) on Canary, an Adaptive Optics demonstrator operated on the 4.2m William Herschel Telescope, La Palma. The reconstructor was compared with contemporaneous data using the Learn and Apply (L&A) tomographic reconstructor. Read More

The next generation of adaptive optics (AO) systems will require tomographic reconstruction techniques to map the optical refractive index fluctuations, generated by the atmospheric turbulence, along the line of sight to the astronomical target. These systems can be enhanced with data from an external atmospheric profiler. This is important for Extremely Large Telescope scale tomography. Read More

We present results from the first year of a campaign to characterize and monitor the optical turbulence profile at the SAAO Sutherland observing station in South Africa. A MASS-DIMM (MultiAperture Scintillation Sensor - Differential Image Motion Monitor) was commissioned in March 2010 to provide continuous monitoring of the seeing conditions. Over the first month of the campaign, a SLODAR (SLOpe Detection And Ranging) from Durham University was also installed allowing an independent verification of the performance of the MASS-DIMM device. Read More

We started a new project which aims to find compact hot subdwarf binaries at low Galactic latitudes. Targets are selected from several photometric surveys and a spectroscopic follow-up campaign to find radial velocity variations on timescales as short as tens of minutes has been started. Once radial variations are detected phase-resolved spectroscopy is obtained to measure the radial velocity curve and the mass function of the system. Read More

Modern adaptive optics (AO) systems for large telescopes require tomographic techniques to reconstruct the phase aberrations induced by the turbulent atmosphere along a line of sight to a target which is angularly separated from the guide sources that are used to sample the atmosphere. Multi-object adaptive optics (MOAO) is one such technique. Here, we present a method which uses an artificial neural network (ANN) to reconstruct the target phase given off-axis references sources. Read More

The EAGLE instrument for the E-ELT is a multi-IFU spectrograph, that uses a MOAO system for wavefront correction of interesting lines of sight. We present a Monte-Carlo AO simulation package that has been used to model the performace of EAGLE, and provide results, including comparisons with an analytical code. These results include an investigation of the performance of compressed reconstructor representations that have the potential to significantly reduce the complexity of a real-time control system when implemented. Read More

We report the development and first results of an instrument called Low Layer Scidar (LOLAS) which is aimed at the measurement of optical-turbulence profiles in the atmospheric boundary layer with high altitude-resolution. The method is based on the Generalized Scidar (GS) concept, but unlike the GS instruments which need a 1- m or larger telescope, LOLAS is implemented on a dedicated 40-cm telescope, making it an independent instrument. The system is designed for widely separated double-star targets, which enables the high altitude-resolution. Read More

Temporal fluctuations of the atmospheric piston are critical for interferometers as they determine their sensitivity. We characterize an instrumental set-up, termed the piston scope, that aims at measuring the atmospheric time constant, tau0, through the image motion in the focal plane of a Fizeau interferometer. High-resolution piston scope measurements have been obtained at the observatory of Paranal, Chile, in April 2006. Read More

Adaptive optics systems are essential on all large telescopes where image quality is important. These are complex systems with many design parameters requiring optimisation before good performance can be achieved. The simulation of adaptive optics systems is therefore necessary to categorise the expected performance. Read More

Using five independent analytic and Monte Carlo simulation codes, we have studied the performance of wide field ground layer adaptive optics (GLAO), which can use a single, relatively low order deformable mirror to correct the wavefront errors from the lowest altitude turbulence. GLAO concentrates more light from a point source in a smaller area on the science detector, but unlike traditional adaptive optics, images do not become diffraction-limited. Rather the GLAO point spread function (PSF) has the same functional form as a seeing-limited PSF, and can be characterized by familiar performance metrics such as Full-Width Half-Max (FWHM). Read More

A method for producing a laser guide star wavefront sensor for adaptive optics with reduced focal anisoplanatism is presented. A theoretical analysis and numerical simulations have been carried out and the results are presented. The technique, named SPLASH (Sky-Projected Laser Array Shack-Hartmann), is shown to suffer considerably less from focal anisoplanatism than a conventional laser guide star system. Read More

Numerical Simulation is an essential part of the design and optimisation of astronomical adaptive optics systems. Simulations of adaptive optics are computationally expensive and the problem scales rapidly with telescope aperture size, as the required spatial order of the correcting system increases. Practical realistic simulations of AO systems for extremely large telescopes are beyond the capabilities of all but the largest of modern parallel supercomputers. Read More