Sujith Ravi

Sujith Ravi
Are you Sujith Ravi?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Sujith Ravi
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Learning (3)
 
Computer Science - Artificial Intelligence (2)
 
Computer Science - Computation and Language (2)
 
Statistics - Machine Learning (1)
 
Physics - Physics and Society (1)
 
Computer Science - Neural and Evolutionary Computing (1)
 
Computer Science - Computer Vision and Pattern Recognition (1)

Publications Authored By Sujith Ravi

Label propagation is a powerful and flexible semi-supervised learning technique on graphs. Neural networks, on the other hand, have proven track records in many supervised learning tasks. In this work, we propose a training framework with a graph-regularised objective, namely "Neural Graph Machines", that can combine the power of neural networks and label propagation. Read More

Query-based video summarization is the task of creating a brief visual trailer, which captures the parts of the video (or a collection of videos) that are most relevant to the user-issued query. In this paper, we propose an unsupervised label propagation approach for this task. Our approach effectively captures the multimodal semantics of queries and videos using state-of-the-art deep neural networks and creates a summary that is both semantically coherent and visually attractive. Read More

In this paper we propose and investigate a novel end-to-end method for automatically generating short email responses, called Smart Reply. It generates semantically diverse suggestions that can be used as complete email responses with just one tap on mobile. The system is currently used in Inbox by Gmail and is responsible for assisting with 10% of all mobile responses. Read More

Public debates are a common platform for presenting and juxtaposing diverging views on important issues. In this work we propose a methodology for tracking how ideas flow between participants throughout a debate. We use this approach in a case study of Oxford-style debates---a competitive format where the winner is determined by audience votes---and show how the outcome of a debate depends on aspects of conversational flow. Read More

Traditional graph-based semi-supervised learning (SSL) approaches, even though widely applied, are not suited for massive data and large label scenarios since they scale linearly with the number of edges $|E|$ and distinct labels $m$. To deal with the large label size problem, recent works propose sketch-based methods to approximate the distribution on labels per node thereby achieving a space reduction from $O(m)$ to $O(\log m)$, under certain conditions. In this paper, we present a novel streaming graph-based SSL approximation that captures the sparsity of the label distribution and ensures the algorithm propagates labels accurately, and further reduces the space complexity per node to $O(1)$. Read More