Stefan Nimmrichter

Stefan Nimmrichter
Are you Stefan Nimmrichter?

Claim your profile, edit publications, add additional information:

Contact Details

Stefan Nimmrichter

Pubs By Year

Pub Categories

Quantum Physics (24)
Physics - Atomic Physics (5)
Physics - Optics (4)
Physics - Atomic and Molecular Clusters (3)
Physics - Mesoscopic Systems and Quantum Hall Effect (2)

Publications Authored By Stefan Nimmrichter

Quantum enhanced microscopy allows for measurements at high sensitivities and low damage. Recently, multi-pass microscopy was introduced as such a scheme, exploiting the sensitivity enhancement offered by multiple photon-sample interactions. Here we theoretically and numerically compare three different contrast enhancing techniques that are all based on self-imaging cavities: CW cavity enhanced microscopy, cavity ring-down microscopy and multi-pass microscopy. Read More

We study how matter-wave interferometry with Bose-Einstein condensates is affected by hypothetical collapse models and by environmental decoherence processes. Motivated by recent atom fountain experiments with macroscopic arm separations, we focus on the observable signatures of first-order and higher-order coherence for different two-mode superposition states, and on their scaling with particle number. This can be used not only to assess the impact of environmental decoherence on many-body coherence, but also to quantify the extent to which macrorealistic collapse models are ruled out by such experiments. Read More

Thermodynamics is one of the oldest and well-established branches of physics that sets boundaries to what can possibly be achieved in macroscopic systems. While it started as a purely classical theory, it was realized in the early days of quantum mechanics that large quantum devices, such as masers or lasers, can be treated with the thermodynamic formalism. Remarkable progress has been made recently in the miniaturization of heat engines all the way to the single Brownian particle as well as to a single atom. Read More

The triumph of heat engines is their ability to convert the disordered energy of thermal sources into useful mechanical motion. In recent years, much effort has been devoted to generalizing thermodynamic notions to the quantum regime, partly motivated by the promise of surpassing classical heat engines. Here, we instead adopt a bottom-up approach: we propose a realistic autonomous heat engine that can serve as a testbed for quantum effects in the context of thermodynamics. Read More

We present a theory for the diffraction of large molecules or nanoparticles at a standing light wave. Such particles can act as a genuine photon absorbers due to their numerous internal degrees of freedom effecting fast internal energy conversion. Our theory incorporates the interplay of three light-induced properties: the coherent phase modulation due to the dipole interaction, a non-unitary absorption-induced amplitude modulation described as a generalized measurement, and a coherent recoil splitting that resembles a quantum random walk in steps of the photon momentum. Read More

Diffraction of matter-waves is an important demonstration of the fact that objects in nature possess a mixture of particle-like and wave-like properties. Unlike in the case of light diffraction, matter-waves are subject to a vacuum-mediated interaction with diffraction obstacles. Here we present a detailed account of this effect through the calculation of the attractive Casimir-Polder potential between a dielectric sphere and an atomic beam. Read More

We study the interaction of dielectric rods and disks with the laser field of a high finesse cavity. The quantum master equation for the coupled particle-cavity dynamics, including Rayleigh scattering, is derived for particle sizes comparable to the laser wavelength. We demonstrate that such anisotropic nanoparticles can be captured from free flight at velocities higher than those required to capture dielectric spheres of the same volume, and that efficient ro-translational cavity cooling into the deep quantum regime is achievable. Read More

Optical control of nanoscale objects has recently developed into a thriving field of research with far-reaching promises for precision measurements, fundamental quantum physics and studies on single-particle thermodynamics. Here, we demonstrate the optical manipulation of silicon nanorods in high vacuum. Initially, we sculpture these particles into a silicon substrate with a tailored geometry to facilitate their launch into high vacuum by laser-induced mechanical cleavage. Read More

We discuss modern developments in quantum optics with organic molecules, clusters and nanoparticles -- in particular recent realizations of near-field matter-wave interferometry. A unified theoretical description in phase space allows us to describe quantum interferometry in position space and in the time domain on an equal footing. In order to establish matter-wave interferometers as a universal tool, which can accept and address a variety of nanoparticles, we elaborate on new quantum optical elements, such as diffraction gratings made of matter and light, as well as their absorptive and dispersive interaction with complex materials. Read More

We show that the Schr\"{o}dinger-Newton equation, which describes the nonlinear time evolution of self-gravitating quantum matter, can be made compatible with the no-signaling requirement by elevating it to a stochastic differential equation. In the deterministic form of the equation, as studied so far, the nonlinearity would lead to diverging energy corrections for localized wave packets and would create observable correlations admitting faster-than-light communication. By regularizing the divergencies and adding specific random jumps or a specific Brownian noise process, the effect of the nonlinearity vanishes in the stochastic average and gives rise to a linear and Galilean invariant evolution of the density operator. Read More

We investigate the influence of thermally activated internal molecular dynamics on the phase shifts of matter waves inside a molecule interferometer. While de Broglie physics generally describes only the center-of-mass motion of a quantum object, our experiment demonstrates that the translational quantum phase is sensitive to dynamic conformational state changes inside the diffracted molecules. The structural flexibility of tailor-made hot organic particles is sufficient to admit a mixture of strongly fluctuating dipole moments. Read More

Quantum experiments with nanomechanical oscillators are regarded as a testbed for hypothetical modifications of the Schr\"{o}dinger equation, which predict a breakdown of the superposition principle and induce classical behavior at the macro-scale. It is generally believed that the sensitivity to these unconventional effects grows with the mass of the mechanical quantum system. Here we show that the opposite is the case for optomechanical systems in the presence of generic noise sources, such as thermal and measurement noise. Read More

Matter-wave interferometry with atoms and molecules has attracted a rapidly growing interest over the past two decades, both in demonstrations of fundamental quantum phenomena and in quantum-enhanced precision measurements. Such experiments exploit the non-classical superposition of two or more position and momentum states which are coherently split and rejoined to interfere. Here, we present the experimental realization of a universal near-field interferometer built from three short-pulse single-photon ionization gratings. Read More

Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories---conceived to explain the apparent quantum to classical transition---forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled, and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over more than 150 nm. Read More

Laser cooling has given a boost to atomic physics throughout the last thirty years since it allows one to prepare atoms in motional states which can only be described by quantum mechanics. Most methods, such as Doppler cooling, polarization gradient cooling or sub-recoil laser cooling rely, however, on a near-resonant and cyclic coupling between laser light and well-defined internal states. Although this feat has recently even been achieved for diatomic molecules, it is very hard for mesoscopic particles. Read More

We propose an experimentally accessible, objective measure for the macroscopicity of superposition states in mechanical quantum systems. Based on the observable consequences of a minimal, macrorealist extension of quantum mechanics, it allows one to quantify the degree of macroscopicity achieved in different experiments. Read More

We review recent progress and future prospects of matter wave interferometry with complex organic molecules and inorganic clusters. Three variants of a near-field interference effect, based on diffraction by material nanostructures, at optical phase gratings, and at ionizing laser fields are considered. We discuss the theoretical concepts underlying these experiments and the experimental challenges. Read More

We propose to test the theory of continuous spontaneous localization (CSL) in an all-optical time-domain Talbot-Lau interferometer for clusters with masses exceeding 1000000 amu. By assessing the relevant environmental decoherence mechanisms, as well as the growing size of the particles relative to the grating fringes, we argue that it will be feasible to test the quantum superposition principle in a mass range excluded by recent estimates of the CSL effect. Read More

We discuss the concept of an all-optical and ionizing matter-wave interferometer in the time domain. The proposed setup aims at testing the wave nature of highly massive clusters and molecules, and it will enable new precision experiments with a broad class of atoms, using the same laser system. The propagating particles are illuminated by three pulses of a standing ultraviolet laser beam, which detaches an electron via efficient single photon-absorption. Read More

We consider various effects that are encountered in matter wave interference experiments with massive nanoparticles. The text-book example of far-field interference at a grating is compared with diffraction into the dark field behind an opaque aperture, commonly designated as Poisson's spot or the spot of Arago. Our estimates indicate that both phenomena may still be observed in a mass range exceeding present-day experiments by at least two orders of magnitude. Read More

We derive a master equation for the motion of a polarizable particle weakly interacting with one or several strongly pumped cavity modes. We focus here on massive particles with complex internal structure such as large molecules and clusters, for which we assume a linear scalar polarizability mediating the particle-light interaction. The predicted friction and diffusion coefficients are in good agreement with former semiclassical calculations for atoms and small molecules in weakly pumped cavities, while the current rigorous quantum treatment and numerical assessment sheds a light on the feasibility of experiments that aim at optically manipulating beams of massive molecules with multimode cavities. Read More

Kapitza-Dirac-Talbot-Lau interferometry (KDTLI) has recently been established for demonstrating the quantum wave nature of large molecules. A phase space treatment permits us to derive closed equations for the near-field interference pattern, as well as for the Moire-type pattern that would arise if the molecules were to be treated as classical particles. The model provides a simple and elegant way to account for the molecular phase shifts related to the optical dipole potential as well as for the incoherent effect of photon absorption at the second grating. Read More

We propose a new method to measure the absolute photon absorption cross section of neutral molecules in a molecular beam. It is independent of our knowledge of the particle beam density, nor does it rely on photo-induced fragmentation or ionization. The method is based on resolving the recoil resulting from photon absorption by means of near-field matter-wave interference, and it thus applies even to very dilute beams with low optical densities. Read More

A generalized description of Talbot-Lau interference with matter waves is presented, which accounts for arbitrary grating interactions and realistic beam characteristics. The dispersion interaction between the beam particles and the optical elements strongly influences the interference pattern in this near-field effect, and it is known to dominate the fringe visibility if increasingly massive and complex particles are used. We provide a general description of the grating interaction process by combining semiclassical scattering theory with a phase space formulation. Read More