Sreenivas Gollapudi

Sreenivas Gollapudi
Are you Sreenivas Gollapudi?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Sreenivas Gollapudi
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Data Structures and Algorithms (3)
 
Computer Science - Information Retrieval (3)
 
Computer Science - Computer Science and Game Theory (3)
 
Computer Science - Learning (1)
 
Computer Science - Databases (1)

Publications Authored By Sreenivas Gollapudi

We consider the problem of approximating a given matrix by a low-rank matrix so as to minimize the entrywise $\ell_p$-approximation error, for any $p \geq 1$; the case $p = 2$ is the classical SVD problem. We obtain the first provably good approximation algorithms for this version of low-rank approximation that work for every value of $p \geq 1$, including $p = \infty$. Our algorithms are simple, easy to implement, work well in practice, and illustrate interesting tradeoffs between the approximation quality, the running time, and the rank of the approximating matrix. Read More

We show that the multiplicative weight update method provides a simple recipe for designing and analyzing optimal Bayesian Incentive Compatible (BIC) auctions, and reduces the time complexity of the problem to pseudo-polynomial in parameters that depend on single agent instead of depending on the size of the joint type space. We use this framework to design computationally efficient optimal auctions that satisfy ex-post Individual Rationality in the presence of constraints such as (hard, private) budgets and envy-freeness. We also design optimal auctions when buyers and a seller's utility functions are non-linear. Read More

Recent work in commerce search has shown that understanding the semantics in user queries enables more effective query analysis and retrieval of relevant products. However, due to lack of sufficient domain knowledge, user queries often include terms that cannot be mapped directly to any product attribute. For example, a user looking for {\tt designer handbags} might start with such a query because she is not familiar with the manufacturers, the price ranges, and/or the material that gives a handbag designer appeal. Read More

Web search engines and specialized online verticals are increasingly incorporating results from structured data sources to answer semantically rich user queries. For example, the query \WebQuery{Samsung 50 inch led tv} can be answered using information from a table of television data. However, the users are not domain experts and quite often enter values that do not match precisely the underlying data. Read More

We present a formal model for studying fashion trends, in terms of three parameters of fashionable items: (1) their innate utility; (2) individual boredom associated with repeated usage of an item; and (3) social influences associated with the preferences from other people. While there are several works that emphasize the effect of social influence in understanding fashion trends, in this paper we show how boredom plays a strong role in both individual and social choices. We show how boredom can be used to explain the cyclic choices in several scenarios such as an individual who has to pick a restaurant to visit every day, or a society that has to repeatedly `vote' on a single fashion style from a collection. Read More

Most learning to rank research has assumed that the utility of different documents is independent, which results in learned ranking functions that return redundant results. The few approaches that avoid this have rather unsatisfyingly lacked theoretical foundations, or do not scale. We present a learning-to-rank formulation that optimizes the fraction of satisfied users, with several scalable algorithms that explicitly takes document similarity and ranking context into account. Read More

Click through rates (CTR) offer useful user feedback that can be used to infer the relevance of search results for queries. However it is not very meaningful to look at the raw click through rate of a search result because the likelihood of a result being clicked depends not only on its relevance but also the position in which it is displayed. One model of the browsing behavior, the {\em Examination Hypothesis} \cite{RDR07,Craswell08,DP08}, states that each position has a certain probability of being examined and is then clicked based on the relevance of the search snippets. Read More

In this paper, we present the first approximation algorithms for the problem of designing revenue optimal Bayesian incentive compatible auctions when there are multiple (heterogeneous) items and when bidders can have arbitrary demand and budget constraints. Our mechanisms are surprisingly simple: We show that a sequential all-pay mechanism is a 4 approximation to the revenue of the optimal ex-interim truthful mechanism with discrete correlated type space for each bidder. We also show that a sequential posted price mechanism is a O(1) approximation to the revenue of the optimal ex-post truthful mechanism when the type space of each bidder is a product distribution that satisfies the standard hazard rate condition. Read More