Shiyu Chang

Shiyu Chang
Are you Shiyu Chang?

Claim your profile, edit publications, add additional information:

Contact Details

Shiyu Chang

Pubs By Year

Pub Categories

Computer Science - Learning (11)
Computer Science - Computer Vision and Pattern Recognition (11)
Computer Science - Information Retrieval (2)
Statistics - Machine Learning (2)
Computer Science - Artificial Intelligence (2)
Physics - Physics and Society (1)
Computer Science - Data Structures and Algorithms (1)
Computer Science - Sound (1)
Computer Science - Neural and Evolutionary Computing (1)

Publications Authored By Shiyu Chang

Convolutional autoregressive models have recently demonstrated state-of-the-art performance on a number of generation tasks. While fast, parallel training methods have been crucial for their success, generation is typically implemented in a na\"{i}ve fashion where redundant computations are unnecessarily repeated. This results in slow generation, making such models infeasible for production environments. Read More

This paper presents an efficient implementation of the Wavenet generation process called Fast Wavenet. Compared to a naive implementation that has complexity O(2^L) (L denotes the number of layers in the network), our proposed approach removes redundant convolution operations by caching previous calculations, thereby reducing the complexity to O(L) time. Timing experiments show significant advantages of our fast implementation over a naive one. Read More

With the agreement of my coauthors, I Zhangyang Wang would like to withdraw the manuscript "Stacked Approximated Regression Machine: A Simple Deep Learning Approach". Some experimental procedures were not included in the manuscript, which makes a part of important claims not meaningful. In the relevant research, I was solely responsible for carrying out the experiments; the other coauthors joined in the discussions leading to the main algorithm. Read More

The increasing popularity of real-world recommender systems produces data continuously and rapidly, and it becomes more realistic to study recommender systems under streaming scenarios. Data streams present distinct properties such as temporally ordered, continuous and high-velocity, which poses tremendous challenges to traditional recommender systems. In this paper, we investigate the problem of recommendation with stream inputs. Read More

We investigate the $\ell_\infty$-constrained representation which demonstrates robustness to quantization errors, utilizing the tool of deep learning. Based on the Alternating Direction Method of Multipliers (ADMM), we formulate the original convex minimization problem as a feed-forward neural network, named \textit{Deep $\ell_\infty$ Encoder}, by introducing the novel Bounded Linear Unit (BLU) neuron and modeling the Lagrange multipliers as network biases. Such a structural prior acts as an effective network regularization, and facilitates the model initialization. Read More

In this paper, we design a Deep Dual-Domain ($\mathbf{D^3}$) based fast restoration model to remove artifacts of JPEG compressed images. It leverages the large learning capacity of deep networks, as well as the problem-specific expertise that was hardly incorporated in the past design of deep architectures. For the latter, we take into consideration both the prior knowledge of the JPEG compression scheme, and the successful practice of the sparsity-based dual-domain approach. Read More

Visual recognition research often assumes a sufficient resolution of the region of interest (ROI). That is usually violated in practice, inspiring us to explore the Very Low Resolution Recognition (VLRR) problem. Typically, the ROI in a VLRR problem can be smaller than $16 \times 16$ pixels, and is challenging to be recognized even by human experts. Read More

Image aesthetics assessment has been challenging due to its subjective nature. Inspired by the scientific advances in the human visual perception and neuroaesthetics, we design Brain-Inspired Deep Networks (BDN) for this task. BDN first learns attributes through the parallel supervised pathways, on a variety of selected feature dimensions. Read More

While sparse coding-based clustering methods have shown to be successful, their bottlenecks in both efficiency and scalability limit the practical usage. In recent years, deep learning has been proved to be a highly effective, efficient and scalable feature learning tool. In this paper, we propose to emulate the sparse coding-based clustering pipeline in the context of deep learning, leading to a carefully crafted deep model benefiting from both. Read More

Deep learning has been successfully applied to image super resolution (SR). In this paper, we propose a deep joint super resolution (DJSR) model to exploit both external and self similarities for SR. A Stacked Denoising Convolutional Auto Encoder (SDCAE) is first pre-trained on external examples with proper data augmentations. Read More

This paper proposes a decentralized recommender system by formulating the popular collaborative filleting (CF) model into a decentralized matrix completion form over a set of users. In such a way, data storages and computations are fully distributed. Each user could exchange limited information with its local neighborhood, and thus it avoids the centralized fusion. Read More

Single image super-resolution (SR) aims to estimate a high-resolution (HR) image from a lowresolution (LR) input. Image priors are commonly learned to regularize the otherwise seriously ill-posed SR problem, either using external LR-HR pairs or internal similar patterns. We propose joint SR to adaptively combine the advantages of both external and internal SR methods. Read More

Signed network analysis has attracted increasing attention in recent years. This is in part because research on signed network analysis suggests that negative links have added value in the analytical process. A major impediment in their effective use is that most social media sites do not enable users to specify them explicitly. Read More

Classifying large-scale image data into object categories is an important problem that has received increasing research attention. Given the huge amount of data, non-parametric approaches such as nearest neighbor classifiers have shown promising results, especially when they are underpinned by a learned distance or similarity measurement. Although metric learning has been well studied in the past decades, most existing algorithms are impractical to handle large-scale data sets. Read More

In this paper, we study the problem of recovering a sharp version of a given blurry image when the blur kernel is unknown. Previous methods often introduce an image-independent regularizer (such as Gaussian or sparse priors) on the desired blur kernel. We shall show that the blurry image itself encodes rich information about the blur kernel. Read More