Serguei Komissarov

Serguei Komissarov
Are you Serguei Komissarov?

Claim your profile, edit publications, add additional information:

Contact Details

Serguei Komissarov

Pubs By Year

Pub Categories

High Energy Astrophysical Phenomena (11)
Astrophysics (3)
Astrophysics of Galaxies (1)
Physics - Plasma Physics (1)

Publications Authored By Serguei Komissarov

In this contribution we review the recent progress in the modeling of Pulsar Wind Nebulae (PWN). We start with a brief overview of the relevant physical processes in the magnetosphere, the wind-zone and the inflated nebula bubble. Radiative signatures and particle transport processes obtained from 3D simulations of PWN are discussed in the context of optical and X-ray observations. Read More

The jets from active galactic nuclei exhibit stability which seems to be far superior compared to that of terrestrial and laboratory jets. They manage to propagate over distances up to a billion of initial jet radii. Yet this may not be an indication of some exotic physics but mainly a reflection of the specific environment these jets propagate through. Read More

In a prior paper (Kim et al. 2015) we considered the linear stability of magnetized jets that carry no net electric current and do not have current sheets. In this paper, in addition to physically well-motivated magnetic field structures, we also include the effects of jet shear. Read More

The stability of current sheets in collisionless relativistic pair plasma was studied via two-dimensional two-fluid relativistic magnetohydrodynamic simulations with vanishing internal friction between fluids. In particular, we investigated the linear growth of the tearing and drift-kink modes in the current sheets both with and without the guide field and obtained the growth rates which are very similar to what has been found in the corresponding PIC simulations. This suggests that the two-fluid simulations can be useful in studying the large-scale dynamics of astrophysical relativistic plasmas in problems involving magnetic reconnection. Read More

Affiliations: 1Purdue University, 2The University of Leeds, 3The University of Leeds

We model the inner knot of the Crab Nebula as a synchrotron emission coming from the non-spherical MHD termination shock of relativistic pulsar wind. The post-shock flow is mildly relativistic; as a result the Doppler-beaming has a strong impact on the shock appearance. The model can reproduce the knot location, size, elongation, brightness distribution, luminosity and polarization provided the effective magnetization of the section of the pulsar wind producing the knot is low, $\sigma \leq 1$. Read More

In this paper we discuss the development of Rayleigh-Taylor filaments in axisymmetric simulations of Pulsar wind nebulae (PWN). High-resolution adaptive mesh refinement magnetohydrodynamic (MHD) simulations are used to resolve the non-linear evolution of the instability. The typical separation of filaments is mediated by the turbulent flow in the nebula and hierarchical growth of the filaments. Read More

In this paper we give a detailed account of the first 3D relativistic magnetohydrodynamic (MHD) simulations of Pulsar Wind Nebulae (PWN), with parameters most suitable for the Crab Nebula. In order to clarify the new features specific to 3D models, reference 2D simulations have been carried out as well. Compared to the previous 2D simulations, we considered pulsar winds with much stronger magnetisation, up to \sigma=3, and accounted more accurately for the anticipated magnetic dissipation in the striped zone of these winds. Read More

The paper describes an explicit multi-dimensional numerical scheme for Special Relativistic Two-Fluid Magnetohydrodynamics of electron-positron plasma and a suit of test problems. The scheme utilizes Cartesian grid and the third order WENO interpolation. The time integration is carried out using the third order TVD method of Runge-Kutta type, thus ensuring overall third order accuracy on smooth solutions. Read More

We present first results of three dimensional relativistic magnetohydrodynamical simulations of Pulsar Wind Nebulae. They show that the kink instability and magnetic dissipation inside these nebulae may be the key processes allowing to reconcile their observations with the theory of pulsar winds. In particular, the size of the termination shock, obtained in the simulations, agrees very well with the observations even for Poynting-dominated pulsar winds. Read More

In this paper we propose a new plausible mechanism of supernova explosions specific to close binary systems. The starting point is the common envelope phase in the evolution of a binary consisting of a red super giant and a neutron star. As the neutron star spirals towards the center of its companion it spins up via disk accretion. Read More

The strong variability of magnetic central engines of AGN and GRBs may result in highly intermittent strongly magnetized relativistic outflows. We find a new magnetic acceleration mechanism for such impulsive flows that can be much more effective than the acceleration of steady-state flows. This impulsive acceleration results in kinetic-energy-dominated flows at astrophysically relevant distances from the central source. Read More

We present a relativistic-MHD numerical study of axisymmetric, magnetically driven jets with parameters applicable to gamma-ray burst (GRB) flows. We also present analytic expressions for the asymptotic jet shape and other flow parameters that agree very well with the numerical results. All current-carrying outflows exhibit self-collimation and consequent acceleration near the rotation axis, but unconfined outflows lose causal connectivity across the jet and therefore do not collimate or accelerate efficiently in their outer regions. Read More

In this study we explore the magnetic mechanism of hypernovae and relativistic jets of long duration gamma ray bursts within the collapsar scenario. This is an extension of our earlier work [1]. We track the collapse of massive rotating stars onto a rotating central black hole using axisymmetric general relativistic magnetohydrodynamic code that utilizes a realistic equation of state and takes into account the cooling associated with emission of neutrinos and the energy losses due to dissociation of nuclei. Read More

We present numerical simulations of cold, axisymmetric, magnetically driven relativistic outflows. The outflows are initially sub-Alfv\'enic and Poynting flux-dominated, with total--to--rest-mass energy flux ratio up to $\mu \sim 620$. To study the magnetic acceleration of jets we simulate flows confined within a funnel with rigid wall of prescribed shape, which we take to be $z\propto r^a$ (in cylindrical coordinates, with $a$ ranging from 1 to 2). Read More