Sam Falle - School of Applied Mathematics, University of Leeds, Leeds, UK

Sam Falle
Are you Sam Falle?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Sam Falle
Affiliation
School of Applied Mathematics, University of Leeds, Leeds, UK
City
Leeds
Country
United Kingdom

Pubs By Year

Pub Categories

 
Astrophysics of Galaxies (3)
 
Physics - Fluid Dynamics (2)
 
Astrophysics (1)
 
Nonlinear Sciences - Pattern Formation and Solitons (1)

Publications Authored By Sam Falle

2017Apr
Authors: Derek Ward-Thompson, Kate Pattle, Pierre Bastien, Ray S. Furuya, Woojin Kwon, Shih-Ping Lai, Keping Qiu, David Berry, Minho Choi, Simon Coudé, James Di Francesco, Thiem Hoang, Erica Franzmann, Per Friberg, Sarah F. Graves, Jane S. Greaves, Martin Houde, Doug Johnstone, Jason M. Kirk, Patrick M. Koch, Jungmi Kwon, Chang Won Lee, Di Li, Brenda C. Matthews, Joseph C. Mottram, Harriet Parsons, Andy Pon, Ramprasad Rao, Mark Rawlings, Hiroko Shinnaga, Sarah Sadavoy, Sven van Loo, Yusuke Aso, Do-Young Byun, Eswariah Chakali, Huei-Ru Chen, Mike C. -Y. Chen, Wen Ping Chen, Tao-Chung Ching, Jungyeon Cho, Antonio Chrysostomou, Eun Jung Chung, Yasuo Doi, Emily Drabek-Maunder, Stewart P. S. Eyres, Jason Fiege, Rachel K. Friesen, Gary Fuller, Tim Gledhill, Matt J. Griffin, Qilao Gu, Tetsuo Hasegawa, Jennifer Hatchell, Saeko S. Hayashi, Wayne Holland, Tsuyoshi Inoue, Shu-ichiro Inutsuka, Kazunari Iwasaki, Il-Gyo Jeong, Ji-hyun Kang, Miju Kang, Sung-ju Kang, Koji S. Kawabata, Francisca Kemper, Gwanjeong Kim, Jongsoo Kim, Kee-Tae Kim, Kyoung Hee Kim, Mi-Ryang Kim, Shinyoung Kim, Kevin M. Lacaille, Jeong-Eun Lee, Sang-Sung Lee, Dalei Li, Hua-bai Li, Hong-Li Liu, Junhao Liu, Sheng-Yuan Liu, Tie Liu, A-Ran Lyo, Steve Mairs, Masafumi Matsumura, Gerald H. Moriarty-Schieven, Fumitaka Nakamura, Hiroyuki Nakanishi, Nagayoshi Ohashi, Takashi Onaka, Nicolas Peretto, Tae-Soo Pyo, Lei Qian, Brendan Retter, John Richer, Andrew Rigby, Jean-François Robitaille, Giorgio Savini, Anna M. M. Scaife, Archana Soam, Motohide Tamura, Ya-Wen Tang, Kohji Tomisaka, Hongchi Wang, Jia-Wei Wang, Anthony P. Whitworth, Hsi-Wei Yen, Hyunju Yoo, Jinghua Yuan, Chuan-Peng Zhang, Guoyin Zhang, Jianjun Zhou, Lei Zhu, Philippe André, C. Darren Dowell, Sam Falle, Yusuke Tsukamoto

We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 (SCUBA-2) camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope (JCMT) in Hawaii. We discuss the survey's aims and objectives. We describe the rationale behind the survey, and the questions which the survey will aim to answer. Read More

The present study addresses the reaction zone structure and burning mechanism of unstable detonations. Experiments investigated mainly two-dimensional methane-oxygen cellular detonations in a thin channel geometry. The sufficiently high temporal resolution permitted to determine the PDF of the shock distribution, a power-law with an exponent of -3, and the burning rate of unreacted pockets from their edges - through surface turbulent flames with a speed approximately 3-7 times larger than the laminar one at the local conditions. Read More

The regulation of galactic-scale star formation rates (SFRs) is a basic problem for theories of galaxy formation and evolution: which processes are responsible for making observed star formation rates so inefficient compared to maximal rates of gas content divided by dynamical timescale? Here we study the effect of magnetic fields of different strengths on the evolution of giant molecular clouds (GMCs) within a kiloparsec patch of a disk galaxy and resolving scales down to $\simeq0.5\:{\rm{pc}}$. Including an empirically motivated prescription for star formation from dense gas ($n_{\rm{H}}>10^5\:{\rm{cm}^{-3}}$) at an efficiency of 2\% per local free-fall time, we derive the amount of suppression of star formation by magnetic fields compared to the nonmagnetized case. Read More

Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. Read More

We present simulations of the evolution of self-gravitating dense gas on kiloparsec-size scales in a galactic disk, designed to study dense clump formation from giant molecular clouds (GMCs). These dense clumps are expected to be the precursors to star clusters and this process may be the rate limiting step controling star formation rates in galactic systems as described by the Kennicutt-Schmidt relation. The evolution of these simulated GMCs and clumps is determined by self-gravity balanced by turbulent pressure support and the large scale galactic shear. Read More

2008Jan
Affiliations: 1School of Physics & Astronomy, University of Leeds, Leeds, UK, 2School of Physics & Astronomy, University of Leeds, Leeds, UK, 3School of Physics & Astronomy, University of Leeds, Leeds, UK, 4School of Applied Mathematics, University of Leeds, Leeds, UK
Category: Astrophysics

Recent data support the idea that the filaments observed in H_alpha emission near the centres of some galaxy clusters were shaped by bulk flows within their intracluster media. We present numerical simulations of evaporated clump material interacting with impinging winds to investigate this possibility. In each simulation, a clump falls due to gravity while the drag of a wind retards the fall of evaporated material leading to elongation of the tail. Read More