Saba Sehrish

Saba Sehrish
Are you Saba Sehrish?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Saba Sehrish
Affiliation
Location

Pubs By Year

Pub Categories

 
Cosmology and Nongalactic Astrophysics (2)
 
Instrumentation and Methods for Astrophysics (2)
 
Computer Science - Distributed; Parallel; and Cluster Computing (1)

Publications Authored By Saba Sehrish

2017Mar
Affiliations: 1Fermi National Accelerator Laboratory, 2Fermi National Accelerator Laboratory, 3Princeton University, 4Fermi National Accelerator Laboratory, 5Fermi National Accelerator Laboratory, 6Princeton University, 7Fermi National Accelerator Laboratory, 8Fermi National Accelerator Laboratory now Johns Hopkins University, 9Princeton University, 10Fermi National Accelerator Laboratory

Experimental Particle Physics has been at the forefront of analyzing the worlds largest datasets for decades. The HEP community was the first to develop suitable software and computing tools for this task. In recent times, new toolkits and systems collectively called Big Data technologies have emerged to support the analysis of Petabyte and Exabyte datasets in industry. Read More

Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to study, characterize, and ultimately understand the physics behind the two major components of the 'Dark Universe', dark energy and dark matter. In addition, the surveys also probe primordial perturbations and carry out fundamental measurements, such as determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical role in the interpretation of the data and extraction of the physics of interest. Read More

Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Read More