# S. West - Astrophysics Group, Cavendish Laboratory, Cambridge, UK

## Contact Details

NameS. West |
||

AffiliationAstrophysics Group, Cavendish Laboratory, Cambridge, UK |
||

CityCambridge |
||

CountryUnited Kingdom |
||

## Pubs By Year |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (25) Cosmology and Nongalactic Astrophysics (9) Astrophysics (7) High Energy Physics - Theory (5) High Energy Physics - Lattice (4) General Relativity and Quantum Cosmology (3) High Energy Physics - Experiment (3) Mathematics - Differential Geometry (2) Computer Science - Programming Languages (2) Computer Science - Distributed; Parallel; and Cluster Computing (2) Mathematics - Mathematical Physics (2) Mathematical Physics (2) Nonlinear Sciences - Exactly Solvable and Integrable Systems (1) Computer Science - Software Engineering (1) Physics - Accelerator Physics (1) High Energy Astrophysical Phenomena (1) Quantitative Biology - Molecular Networks (1) Mathematics - Dynamical Systems (1) Solar and Stellar Astrophysics (1) |

## Publications Authored By S. West

Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. Read More

**Authors:**The CLIC, CLICdp collaborations, :, M. J. Boland, U. Felzmann, P. J. Giansiracusa, T. G. Lucas, R. P. Rassool, C. Balazs, T. K. Charles, K. Afanaciev, I. Emeliantchik, A. Ignatenko, V. Makarenko, N. Shumeiko, A. Patapenka, I. Zhuk, A. C. Abusleme Hoffman, M. A. Diaz Gutierrez, M. Vogel Gonzalez, Y. Chi, X. He, G. Pei, S. Pei, G. Shu, X. Wang, J. Zhang, F. Zhao, Z. Zhou, H. Chen, Y. Gao, W. Huang, Y. P. Kuang, B. Li, Y. Li, J. Shao, J. Shi, C. Tang, X. Wu, L. Ma, Y. Han, W. Fang, Q. Gu, D. Huang, X. Huang, J. Tan, Z. Wang, Z. Zhao, T. Laštovička, U. Uggerhoj, T. N. Wistisen, A. Aabloo, K. Eimre, K. Kuppart, S. Vigonski, V. Zadin, M. Aicheler, E. Baibuz, E. Brücken, F. Djurabekova, P. Eerola, F. Garcia, E. Haeggström, K. Huitu, V. Jansson, V. Karimaki, I. Kassamakov, A. Kyritsakis, S. Lehti, A. Meriläinen, R. Montonen, T. Niinikoski, K. Nordlund, K. Österberg, M. Parekh, N. A. Törnqvist, J. Väinölä, M. Veske, W. Farabolini, A. Mollard, O. Napoly, F. Peauger, J. Plouin, P. Bambade, I. Chaikovska, R. Chehab, M. Davier, W. Kaabi, E. Kou, F. LeDiberder, R. Pöschl, D. Zerwas, B. Aimard, G. Balik, J. -P. Baud, J. -J. Blaising, L. Brunetti, M. Chefdeville, C. Drancourt, N. Geoffroy, J. Jacquemier, A. Jeremie, Y. Karyotakis, J. M. Nappa, S. Vilalte, G. Vouters, A. Bernard, I. Peric, M. Gabriel, F. Simon, M. Szalay, N. van der Kolk, T. Alexopoulos, E. N. Gazis, N. Gazis, E. Ikarios, V. Kostopoulos, S. Kourkoulis, P. D. Gupta, P. Shrivastava, H. Arfaei, M. K. Dayyani, H. Ghasem, S. S. Hajari, H. Shaker, Y. Ashkenazy, H. Abramowicz, Y. Benhammou, O. Borysov, S. Kananov, A. Levy, I. Levy, O. Rosenblat, G. D'Auria, S. Di Mitri, T. Abe, A. Aryshev, T. Higo, Y. Makida, S. Matsumoto, T. Shidara, T. Takatomi, Y. Takubo, T. Tauchi, N. Toge, K. Ueno, J. Urakawa, A. Yamamoto, M. Yamanaka, R. Raboanary, R. Hart, H. van der Graaf, G. Eigen, J. Zalieckas, E. Adli, R. Lillestøl, L. Malina, J. Pfingstner, K. N. Sjobak, W. Ahmed, M. I. Asghar, H. Hoorani, S. Bugiel, R. Dasgupta, M. Firlej, T. A. Fiutowski, M. Idzik, M. Kopec, M. Kuczynska, J. Moron, K. P. Swientek, W. Daniluk, B. Krupa, M. Kucharczyk, T. Lesiak, A. Moszczynski, B. Pawlik, P. Sopicki, T. Wojtoń, L. Zawiejski, J. Kalinowski, M. Krawczyk, A. F. Żarnecki, E. Firu, V. Ghenescu, A. T. Neagu, T. Preda, I-S. Zgura, A. Aloev, N. Azaryan, J. Budagov, M. Chizhov, M. Filippova, V. Glagolev, A. Gongadze, S. Grigoryan, D. Gudkov, V. Karjavine, M. Lyablin, A. Olyunin, A. Samochkine, A. Sapronov, G. Shirkov, V. Soldatov, A. Solodko, E. Solodko, G. Trubnikov, I. Tyapkin, V. Uzhinsky, A. Vorozhtov, E. Levichev, N. Mezentsev, P. Piminov, D. Shatilov, P. Vobly, K. Zolotarev, I. Bozovic Jelisavcic, G. Kacarevic, S. Lukic, G. Milutinovic-Dumbelovic, M. Pandurovic, U. Iriso, F. Perez, M. Pont, J. Trenado, M. Aguilar-Benitez, J. Calero, L. Garcia-Tabares, D. Gavela, J. L. Gutierrez, D. Lopez, F. Toral, D. Moya, A. Ruiz Jimeno, I. Vila, T. Argyropoulos, C. Blanch Gutierrez, M. Boronat, D. Esperante, A. Faus-Golfe, J. Fuster, N. Fuster Martinez, N. Galindo Muñoz, I. García, J. Giner Navarro, E. Ros, M. Vos, R. Brenner, T. Ekelöf, M. Jacewicz, J. Ögren, M. Olvegård, R. Ruber, V. Ziemann, D. Aguglia, N. Alipour Tehrani, A. Andersson, F. Andrianala, F. Antoniou, K. Artoos, S. Atieh, R. Ballabriga Sune, M. J. Barnes, J. Barranco Garcia, H. Bartosik, C. Belver-Aguilar, A. Benot Morell, D. R. Bett, S. Bettoni, G. Blanchot, O. Blanco Garcia, X. A. Bonnin, O. Brunner, H. Burkhardt, S. Calatroni, M. Campbell, N. Catalan Lasheras, M. Cerqueira Bastos, A. Cherif, E. Chevallay, B. Constance, R. Corsini, B. Cure, S. Curt, B. Dalena, D. Dannheim, G. De Michele, L. De Oliveira, N. Deelen, J. P. Delahaye, T. Dobers, S. Doebert, M. Draper, F. Duarte Ramos, A. Dubrovskiy, K. Elsener, J. Esberg, M. Esposito, V. Fedosseev, P. Ferracin, A. Fiergolski, K. Foraz, A. Fowler, F. Friebel, J-F. Fuchs, C. A. Fuentes Rojas, A. Gaddi, L. Garcia Fajardo, H. Garcia Morales, C. Garion, L. Gatignon, J-C. Gayde, H. Gerwig, A. N. Goldblatt, C. Grefe, A. Grudiev, F. G. Guillot-Vignot, M. L. Gutt-Mostowy, M. Hauschild, C. Hessler, J. K. Holma, E. Holzer, M. Hourican, D. Hynds, Y. Inntjore Levinsen, B. Jeanneret, E. Jensen, M. Jonker, M. Kastriotou, J. M. K. Kemppinen, R. B. Kieffer, W. Klempt, O. Kononenko, A. Korsback, E. Koukovini Platia, J. W. Kovermann, C-I. Kozsar, I. Kremastiotis, S. Kulis, A. Latina, F. Leaux, P. Lebrun, T. Lefevre, L. Linssen, X. Llopart Cudie, A. A. Maier, H. Mainaud Durand, E. Manosperti, C. Marelli, E. Marin Lacoma, R. Martin, S. Mazzoni, G. Mcmonagle, O. Mete, L. M. Mether, M. Modena, R. M. Münker, T. Muranaka, E. Nebot Del Busto, N. Nikiforou, D. Nisbet, J-M. Nonglaton, F. X. Nuiry, A. Nürnberg, M. Olvegard, J. Osborne, S. Papadopoulou, Y. Papaphilippou, A. Passarelli, M. Patecki, L. Pazdera, D. Pellegrini, K. Pepitone, E. Perez Codina, A. Perez Fontenla, T. H. B. Persson, M. Petrič, F. Pitters, S. Pittet, F. Plassard, R. Rajamak, S. Redford, Y. Renier, S. F. Rey, G. Riddone, L. Rinolfi, E. Rodriguez Castro, P. Roloff, C. Rossi, V. Rude, G. Rumolo, A. Sailer, E. Santin, D. Schlatter, H. Schmickler, D. Schulte, N. Shipman, E. Sicking, R. Simoniello, P. K. Skowronski, P. Sobrino Mompean, L. Soby, M. P. Sosin, S. Sroka, S. Stapnes, G. Sterbini, R. Ström, I. Syratchev, F. Tecker, P. A. Thonet, L. Timeo, H. Timko, R. Tomas Garcia, P. Valerio, A. L. Vamvakas, A. Vivoli, M. A. Weber, R. Wegner, M. Wendt, B. Woolley, W. Wuensch, J. Uythoven, H. Zha, P. Zisopoulos, M. Benoit, M. Vicente Barreto Pinto, M. Bopp, H. H. Braun, M. Csatari Divall, M. Dehler, T. Garvey, J. Y. Raguin, L. Rivkin, R. Zennaro, A. Aksoy, Z. Nergiz, E. Pilicer, I. Tapan, O. Yavas, V. Baturin, R. Kholodov, S. Lebedynskyi, V. Miroshnichenko, S. Mordyk, I. Profatilova, V. Storizhko, N. Watson, A. Winter, J. Goldstein, S. Green, J. S. Marshall, M. A. Thomson, B. Xu, W. A. Gillespie, R. Pan, M. A Tyrk, D. Protopopescu, A. Robson, R. Apsimon, I. Bailey, G. Burt, D. Constable, A. Dexter, S. Karimian, C. Lingwood, M. D. Buckland, G. Casse, J. Vossebeld, A. Bosco, P. Karataev, K. Kruchinin, K. Lekomtsev, L. Nevay, J. Snuverink, E. Yamakawa, V. Boisvert, S. Boogert, G. Boorman, S. Gibson, A. Lyapin, W. Shields, P. Teixeira-Dias, S. West, R. Jones, N. Joshi, R. Bodenstein, P. N. Burrows, G. B. Christian, D. Gamba, C. Perry, J. Roberts, J. A. Clarke, N. A. Collomb, S. P. Jamison, B. J. A. Shepherd, D. Walsh, M. Demarteau, J. Repond, H. Weerts, L. Xia, J. D. Wells, C. Adolphsen, T. Barklow, M. Breidenbach, N. Graf, J. Hewett, T. Markiewicz, D. McCormick, K. Moffeit, Y. Nosochkov, M. Oriunno, N. Phinney, T. Rizzo, S. Tantawi, F. Wang, J. Wang, G. White, M. Woodley

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Read More

**Authors:**Jalal Abdallah, Henrique Araujo, Alexandre Arbey, Adi Ashkenazi, Alexander Belyaev, Joshua Berger, Celine Boehm, Antonio Boveia, Amelia Brennan, Jim Brooke, Oliver Buchmueller, Matthew Buckley, Giorgio Busoni, Lorenzo Calibbi, Sushil Chauhan, Nadir Daci, Gavin Davies, Isabelle De Bruyn, Paul De Jong, Albert De Roeck, Kees de Vries, Daniele Del Re, Andrea De Simone, Andrea Di Simone, Caterina Doglioni, Matthew Dolan, Herbi K. Dreiner, John Ellis, Sarah Eno, Erez Etzion, Malcolm Fairbairn, Brian Feldstein, Henning Flaecher, Eric Feng, Patrick Fox, Marie-Hélène Genest, Loukas Gouskos, Johanna Gramling, Ulrich Haisch, Roni Harnik, Anthony Hibbs, Siewyan Hoh, Walter Hopkins, Valerio Ippolito, Thomas Jacques, Felix Kahlhoefer, Valentin V. Khoze, Russell Kirk, Andreas Korn, Khristian Kotov, Shuichi Kunori, Greg Landsberg, Sebastian Liem, Tongyan Lin, Steven Lowette, Robyn Lucas, Luca Malgeri, Sarah Malik, Christopher McCabe, Alaettin Serhan Mete, Enrico Morgante, Stephen Mrenna, Yu Nakahama, Dave Newbold, Karl Nordstrom, Priscilla Pani, Michele Papucci, Sophio Pataraia, Bjoern Penning, Deborah Pinna, Giacomo Polesello, Davide Racco, Emanuele Re, Antonio Walter Riotto, Thomas Rizzo, David Salek, Subir Sarkar, Steven Schramm, Patrick Skubic, Oren Slone, Juri Smirnov, Yotam Soreq, Timothy Sumner, Tim M. P. Tait, Marc Thomas, Ian Tomalin, Christopher Tunnell, Alessandro Vichi, Tomer Volansky, Neal Weiner, Stephen M. West, Monika Wielers, Steven Worm, Itay Yavin, Bryan Zaldivar, Ning Zhou, Kathryn Zurek

**Category:**High Energy Physics - Phenomenology

This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. Read More

We investigate the interactions of large composite dark matter (DM) states with the Standard Model (SM) sector. Elastic scattering with SM nuclei can be coherently enhanced by factors as large as A^2, where A is the number of constituents in the composite state (there exist models in which DM states of very large A > 10^8 may be realised). This enhancement, for a given direct detection event rate, weakens the expected signals at colliders by up to 1/A. Read More

We examine the production of dark matter by decaying topological defects in the high mass region $m_{\mathrm{DM}} \gg m_W$ of the Inert Doublet Model, extended with an extra U(1) gauge symmetry. The density of dark matter states (the neutral Higgs states of the inert doublet) is determined by the interplay of the freeze-out mechanism and the additional production of dark matter states from the decays of topological defects, in this case cosmic strings. These decays increase the predicted relic abundance compared to the standard freeze-out only case, and as a consequence the viable parameter space of the Inert Doublet Model can be widened substantially. Read More

We investigate the physics of dark matter models featuring composite bound states carrying a large conserved dark "nucleon" number. The properties of sufficiently large dark nuclei may obey simple scaling laws, and we find that this scaling can determine the number distribution of nuclei resulting from Big Bang Dark Nucleosynthesis. For plausible models of asymmetric dark matter, dark nuclei of large nucleon number, e. Read More

Making threaded programs safe and easy to reason about is one of the chief difficulties in modern programming. This work provides an efficient execution model for SCOOP, a concurrency approach that provides not only data race freedom but also pre/postcondition reasoning guarantees between threads. The extensions we propose influence both the underlying semantics to increase the amount of concurrent execution that is possible, exclude certain classes of deadlocks, and enable greater performance. Read More

The relationship between components of biochemical network and the resulting dynamics of the overall system is a key focus of computational biology. However, as these networks and resulting mathematical models are inherently complex and non-linear, the understanding of this relationship becomes challenging. Among many approaches, model reduction methods provide an avenue to extract components responsible for the key dynamical features of the system. Read More

We study dark matter production by decaying topological defects, in particular cosmic strings. In topological defect or "top-down" (TD) scenarios, the dark matter injection rate varies as a power law with time with exponent $p-4$. We find a formula in closed form for the yield for all $p < 3/2$, which accurately reproduces the solution of the Boltzmann equation. Read More

Developers face a wide choice of programming languages and libraries supporting multicore computing. Ever more diverse paradigms for expressing parallelism and synchronization become available while their influence on usability and performance remains largely unclear. This paper describes an experiment comparing four markedly different approaches to parallel programming: Chapel, Cilk, Go, and Threading Building Blocks (TBB). Read More

The development of concurrent applications is challenging because of the complexity of concurrent designs and the hazards of concurrent programming. Architectural modeling using the Unified Modeling Language (UML) can support the development process, but the problem of mapping the model to a concurrent implementation remains. This paper addresses this problem by defining a scheme to map concurrent UML designs to a concurrent object-oriented program. Read More

There are several ways to explain the dark matter relic density other than by the ordinary freeze-out scenario. For example, the freeze-in mechanism may constitute an alternative for generating the correct relic density for dark matter candidates whose predicted freeze-out abundance is too low due to a large total annihilation cross section. Here we show that although such a mechanism could explain why a dark matter candidate has the correct relic density, some candidates may still be ruled out because they would lead to a large gamma ray flux in dwarf spheroidal galaxies or a large elastic scattering rate in direct detection experiments. Read More

It is argued that experimental constraints on theories of asymmetric dark matter (ADM) almost certainly require that the DM be part of a richer hidden sector of interacting states of comparable mass or lighter. A general requisite of models of ADM is that the vast majority of the symmetric component of the DM number density must be removed in order to explain the observed relationship $\Omega_B\sim\Omega_{DM}$ via the DM asymmetry. Demanding the efficient annihilation of the symmetric component leads to a tension with experimental limits if the annihilation is directly to Standard Model (SM) degrees of freedom. Read More

**Authors:**G. Brooijmans, B. Gripaios, F. Moortgat, J. Santiago, P. Skands, D. Albornoz Vásquez, B. C. Allanach, A. Alloul, A. Arbey, A. Azatov, H. Baer, C. Balázs, A. Barr, L. Basso, M. Battaglia, P. Bechtle, G. Bélanger, A. Belyaev, K. Benslama, L. Bergström, A. Bharucha, C. Boehm, M. Bondarenko, O. Bondu, E. Boos, F. Boudjema, T. Bringmann, M. Brown, V. Bunichev, S. Calvet, M. Campanelli, A. Carmona, D. G. Cerdeño, M. Chala, R. S. Chivukula, D. Chowdhury, N. D. Christensen, M. Cirelli, S. Cox, K. Cranmer, J. Da Silva, T. Delahaye, A. De Roeck, A. Djouadi, E. Dobson, M. Dolan, F. Donato, G. Drieu La Rochelle, G. Duda, C. Duhr, B. Dumont, J. Edsjö, J. Ellis, C. Evoli, A. Falkowski, M. Felcini, B. Fuks, E. Gabrielli, D. Gaggero, S. Gascon-Shotkin, D. K. Ghosh, A. Giammanco, R. M. Godbole, P. Gondolo, T. Goto, D. Grasso, P. Gris, D. Guadagnoli, J. F. Gunion, U. Haisch, L. Hartgring, S. Heinemeyer, M. Hirsch, J. Hewett, A. Ismail, T. Jeltema, M. Kadastik, M. Kakizaki, K. Kannike, S. Khalil, J-L. Kneur, M. Krämer, S. Kraml, S. Kreiss, J. Lavalle, R. Leane, J. Lykken, L. Maccione, F. Mahmoudi, M. Mangano, S. P. Martin, D. Maurin, G. Moreau, S. Moretti, I. Moskalenko, G. Moultaka, M. Muhlleitner, I. Niessen, B. O'Leary, E. Orlando, P. Panci, G. Polesello, W. Porod, T. Porter, S. Profumo, H. Prosper, A. Pukhov, A. Racioppi, M. Raidal, M. Rausch de Traubenberg, A. Renaud, J. Reuter, T. G. Rizzo, T. Robens, A. Y. Rodríguez-Marrero, P. Salati, C. Savage, P. Scott, S. Sekmen, A. Semenov, C. -L. Shan, C. Shepherd-Themistocleous, E. H. Simmons, P. Slavich, C. Speckner, F. Staub, A. Strong, R. Taillet, F. S. Thomas, M. C. Thomas, I. Tomalin, M. Tytgat, M. Ughetto, L. Valéry, D. G. E. Walker, A. Weiler, S. M. West, C. D. White, A. J. Williams, A. Wingerter, C. Wymant, J. -H. Yu, C. -P. Yuan, D. Zerwas

We present the activities of the "New Physics" working group for the "Physics at TeV Colliders" workshop (Les Houches, France, 30 May-17 June, 2011). Our report includes new agreements on formats for interfaces between computational tools, new tool developments, important signatures for searches at the LHC, recommendations for presentation of LHC search results, as well as additional phenomenological studies. Read More

**Authors:**AMI Consortium, :, T. W. Shimwell, R. W. Barker, P. Biddulph, D. Bly, R. C. Boysen, A. R. Brown, M. L. Brown, C. Clementson, M. Crofts, T. L. Culverhouse, J. Czeres, R. J. Dace, M. L. Davies, R. D'Alessandro, P. Doherty, K. Duggan, J. A. Ely, M. Felvus, F. Feroz, W. Flynn, T. M. O. Franzen, J. Geisbusch, R. Genova-Santos, K. J. B. Grainge, W. F. Grainger, D. Hammett, M. P. Hobson, C. M. Holler, N. Hurley-Walker, R. Jilley, T. Kaneko, R. Kneissl, K. Lancaster, A. N. Lasenby, P. J. Marshall, F. Newton, O. Norris, I. Northrop, D. M. Odell, M. Olamaie, Y. C. Perrott J. C. Pober, G. G. Pooley, M. W. Pospieszalski, V. Quy, C. Rodriguez-Gonzalvez, R. D. E. Saunders, A. M. M. Scaife, M. P. Schammel, J. Schofield, P. F. Scott, C. Shaw, H. Smith, D. J. Titterington, M. Velic, E. M. Waldram, S. West, B. A. Wood, G. Yassin, J. T. L. Zwart

**Category:**Cosmology and Nongalactic Astrophysics

We present an interesting Sunyaev-Zel'dovich (SZ) detection in the first of the Arcminute Microkelvin Imager (AMI) 'blind', degree-square fields to have been observed down to our target sensitivity of 100{\mu}Jy/beam. In follow-up deep pointed observations the SZ effect is detected with a maximum peak decrement greater than 8 \times the thermal noise. No corresponding emission is visible in the ROSAT all-sky X-ray survey and no cluster is evident in the Palomar all-sky optical survey. Read More

The escape fraction at infinity is evaluated for massless particles produced in collisions of weakly interacting particles accreted into a density spike near the particle horizon of an extremal Kerr black hole, for the case of equatorial orbits. We compare with the Schwarzschild case, and argue that in the case of extremal black holes, redshifted signatures can be produced that could potentially explore the physics of particle collisions at centre of mass energies that extend beyond those of any feasible terrestrial accelerator. Read More

We propose a unified theory of dark matter (DM) genesis and baryogenesis. It explains the observed link between the DM density and the baryon density, and is fully testable by a combination of collider experiments and precision tests. Our theory utilises the "thermal freeze-in" mechanism of DM production, generating particle anti-particle asymmetries in decays from visible to hidden sectors. Read More

We calculate solar models including dark matter (DM) weakly-interacting massive particles (WIMPs) of mass 5-50 GeV and test these models against helioseismic constraints on sound speed, convection zone depth, convection zone helium abundance, and small separations of low-degree p-modes. Our main conclusion is that both direct detection experiments and particle accelerators may be complemented by using the Sun as a probe for WIMP DM particles in the 5-50 GeV mass range. The DM most sensitive to this probe has suppressed annihilations and a large spin-dependent elastic scattering cross section. Read More

We propose an alternate, calculable mechanism of dark matter genesis, "thermal freeze-in," involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional "thermal freeze-out" production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Read More

We show that intermediate mass black holes conjectured to be the early precursors of supermassive black holes and surrounded by relic cold dark matter density spikes can act as particle accelerators with collisions, in principle, at arbitrarily high centre of mass energies in the case of Kerr black holes. While the ejecta from such interactions will be highly redshifted, we may anticipate the possibility of a unique probe of Planck-scale physics. Read More

We argue that WIMP dark matter can annihilate via long-lived "WIMPonium" bound states in reasonable particle physics models of dark matter (DM). WIMPonium bound states can occur at or near threshold leading to substantial enhancements in the DM annihilation rate, closely related to the Sommerfeld effect. Large "boost factor" amplifications in the annihilation rate can thus occur without large density enhancements, possibly preferring colder less dense objects such as dwarf galaxies as locations for indirect DM searches. Read More

**Authors:**AMI Consortium

^{1}, :

^{2}, J. T. L. Zwart

^{3}, R. W. Barker

^{4}, P. Biddulph

^{5}, D. Bly

^{6}, R. C. Boysen

^{7}, A. R. Brown

^{8}, C. Clementson

^{9}, M. Crofts

^{10}, T. L. Culverhouse

^{11}, J. Czeres

^{12}, R. J. Dace

^{13}, M. L. Davies

^{14}, R. D'Alessandro

^{15}, P. Doherty

^{16}, K. Duggan

^{17}, J. A. Ely

^{18}, M. Felvus

^{19}, F. Feroz

^{20}, W. Flynn

^{21}, T. M. O. Franzen

^{22}, J. Geisbüsch

^{23}, R. Génova-Santos

^{24}, K. J. B. Grainge

^{25}, W. F. Grainger

^{26}, D. Hammett

^{27}, R. E. Hills

^{28}, M. P. Hobson

^{29}, C. M. Holler

^{30}, N. Hurley-Walker

^{31}, R. Jilley

^{32}, M. E. Jones

^{33}, T. Kaneko

^{34}, R. Kneissl

^{35}, K. Lancaster

^{36}, A. N. Lasenby

^{37}, P. J. Marshall

^{38}, F. Newton

^{39}, O. Norris

^{40}, I. Northrop

^{41}, D. M. Odell

^{42}, J. C. Pober

^{43}, G. G. Pooley

^{44}, V. Quy

^{45}, C. Rodríguez-Gonzálvez

^{46}, R. D. E. Saunders

^{47}, A. M. Scaife

^{48}, J. Schofield

^{49}, P. F. Scott

^{50}, C. Shaw

^{51}, T. W. Shimwell

^{52}, H. Smith

^{53}, A. C. Taylor

^{54}, D. J. Titterington

^{55}, M. Velić

^{56}, E. M. Waldram

^{57}, S. West

^{58}, B. A. Wood

^{59}, G. Yassin

^{60}

**Affiliations:**

^{1}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{2}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{3}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{4}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{5}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{6}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{7}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{8}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{9}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{10}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{11}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{12}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{13}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{14}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{15}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{16}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{17}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{18}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{19}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{20}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{21}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{22}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{23}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{24}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{25}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{26}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{27}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{28}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{29}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{30}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{31}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{32}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{33}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{34}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{35}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{36}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{37}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{38}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{39}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{40}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{41}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{42}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{43}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{44}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{45}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{46}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{47}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{48}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{49}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{50}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{51}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{52}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{53}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{54}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{55}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{56}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{57}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{58}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{59}Astrophysics Group, Cavendish Laboratory, Cambridge, UK,

^{60}Astrophysics Group, Cavendish Laboratory, Cambridge, UK

**Category:**Astrophysics

The Arcminute Microkelvin Imager is a pair of interferometer arrays operating with six frequency channels spanning 13.9-18.2 GHz, with very high sensitivity to angular scales 30''-10'. Read More

Motivated by Higgs Portal and Hidden Valley models, heavy particle dark matter that communicates with the supersymmetric Standard Model via pure Higgs sector interactions is considered. We show that a thermal relic abundance consistent with the measured density of dark matter is possible for masses up to $\sim 30\tev$. For dark matter masses above $\sim 1\tev$, non-perturbative Sommerfeld corrections to the annihilation rate are large, and have the potential to greatly affect indirect detection signals. Read More

We consider, in the effective field theory context, anomalies of gauge field theories on a slice of a five-dimensional, Anti-de Sitter geometry and their four-dimensional, holographic duals. A consistent effective field theory description can always be found, notwithstanding the presence of the anomalies and without modifying the degrees of freedom of the theory. If anomalies do not vanish, the d=4 theory contains additional pseudoscalar states, which are either present in the low-energy theory as physical, light states, or are eaten by (would-be massless) gauge bosons. Read More

We argue that supersymmetric flat direction vacuum expectation values can decay non-perturbatively via preheating. Considering a toy U(1) gauge theory, we explicitly calculate the scalar potential, in the unitary gauge, for excitations around several flat directions. We show that the mass matrix for the excitations has non-diagonal entries which vary with the phase of the flat direction vacuum expectation value. Read More

We present a supersymmetric model of electroweak symmetry-breaking exhibiting improved naturalness, wherein the stop mass can be pushed beyond the reach of the Large Hadron Collider without unnatural fine tuning. This implies that supersymmetry may still solve the hierarchy problem, even if it eludes detection at the LHC. Read More

It is known that the cosmological baryon density ($\Omega_{\rm{b}}$) and dark matter density ($\Omega_{\rm{dm}}$) have strikingly similar values. However, in most theories of the early Universe, each density is explained by separate dynamics and consequently there is no compelling reason for this observation. In this note, I briefly review a model in which the dark matter species possesses a particle-antiparticle asymmetry. Read More

We review the subject of four dimensional anti-self-dual conformal structures with signature (+ + - -). Both local and global questions are discussed. Most of the material is well known in the literature and we present it in a way which underlines the connection with integrable systems. Read More

It is known that the cosmological baryon density (Omega(b)) and dark matter density (Omega(dm)) have strikingly similar values. However, in most theories of the early Universe, each density is explained by separate dynamics and consequently there is no compelling reason for this observation. In this note, I briefly review a model in which the dark matter possesses a particle-antiparticle asymmetry. Read More

Many models of electroweak symmetry-breaking with an extended Higgs sector exhibit improved naturalness, wherein the new physics scale, at which quadratic divergences of Higgs mass parameters due to top quark loops are cut off, can be pushed beyond the reach of the Large Hadron Collider without unnatural fine tuning. Such models include examples where the new physics is supersymmetry, implying that supersymmetry may still solve the hierarchy problem, even if it eludes detection at the LHC. Read More

Using twistor methods, we explicitly construct all local forms of four--dimensional real analytic neutral signature anti--self--dual conformal structures $(M,[g])$ with a null conformal Killing vector. We show that $M$ is foliated by anti-self-dual null surfaces, and the two-dimensional leaf space inherits a natural projective structure. The twistor space of this projective structure is the quotient of the twistor space of $(M,[g])$ by the group action induced by the conformal Killing vector. Read More

**Authors:**AMI Collaboration, R. Barker, P. Biddulph, D. Bly, R. Boysen, A. Brown, C. Clementson, M. Crofts, T. Culverhouse, J. Czeres, R. Dace, R. D'Alessandro, P. Doherty, P. Duffett-Smith, K. Duggan, J. Ely, M. Felvus, W. Flynn, J. Geisbuesch, K. Grainge, W. Grainger, D. Hammet, R. Hills, M. Hobson, C. Holler, R. Jilley, M. Jones, T. Kaneko, R. Kneissl, K. Lancaster, A. Lasenby, P. Marshall, F. Newton, O. Norris, I. Northrop, G. Pooley, V. Quy, R. Saunders, A. Scaife, J. Schofield, P. Scott, C. Shaw, A. Taylor, D. Titterington, M. Velic, E. Waldram, S. West, B. Wood, G. Yassin, J. Zwart

**Category:**Astrophysics

We report the first detection of a Sunyaev-Zel'dovich (S-Z) decrement with the Arcminute Microkelvin Imager (AMI). We have made commissioning observations towards the cluster A1914 and have measured an integrated flux density of -8.61 mJy in a uv-tapered map with noise level 0. Read More

The inferred values of the cosmological baryon and dark matter densities are strikingly similar, but in most theories of the early universe there is no true explanation of this fact; in particular, the baryon asymmetry and thus density depends upon unknown, and {\it a priori} unknown and possibly small, CP-violating phases which are independent of all parameters determining the dark matter density. We consider models of dark matter possessing a particle-antiparticle asymmetry where this asymmetry determines both the baryon asymmetry and strongly effects the dark matter density, thus naturally linking $\Omega_{\rm{b}}$ and $\Omega_{\rm{dm}}$. We show that sneutrinos can play the role of such dark matter in a previously studied variant of the MSSM in which the light neutrino masses result from higher-dimensional supersymmetry-breaking terms. Read More

In the context of supersymmetric theories, a weakly broken gauged SO(3) flavour symmetry is used to produce two highly degenerate right handed (RH) neutrinos. It is then shown that this SO(3) flavour symmetry is compatible with all fermion masses and mixings if it is supplemented with a further SU(3) flavour symmetry. A specific Susy breaking model is used to generate the light neutrino masses as well as a natural model of TeV scale resonant leptogenesis. Read More

We propose a model of TeV-scale resonant leptogenesis based upon recent models of the generation of light neutrino masses from supersymmetry-breaking effects with TeV-scale right-handed (rhd) neutrinos, $N_i$. The model leads to naturally large cosmological lepton asymmetries via the resonant behaviour of the one-loop self-energy contribution to $N_i$ decay. Our model addresses the primary problems of previous phenomenological studies of low-energy leptogenesis: a rational for TeV-scale rhd neutrinos with small Yukawa couplings so that the out-of equilibrium condition for $N_i$ decay is satisfied; the origin of the tiny, but non-zero mass splitting required between at least two $N_i$ masses; and the necessary non-trivial breaking of flavour symmetries in the rhd neutrino sector. Read More

We analyze a class of supersymmetric models first introduced by Arkani-Hamed et al and Borzumati et al in which the light neutrino masses result from higher-dimensional supersymmetry-breaking terms in the MSSM super- and Kahler-potentials. The mechanism is closely related to the Giudice-Masiero mechanism for the MSSM $\mu$ parameter, and leads to TeV-scale right-handed neutrino and sneutrino states, that are in principle accessible to direct experimental study. The dominant contribution to the light neutrino (Majorana) mass matrix is a one-loop term induced by a lepton-number violating $B$-term for the sneutrino states that is naturally present. Read More

We present spectra of the optical transient (OT) associated with GRB 021004. The spectra show a blue continuum with superposed absorption features and one emission line. We confirm two intervening metal-line systems at z = 1. Read More

**Authors:**Paul L. Schechter

^{1}, Greg Burley

^{2}, Charles L. Hull

^{3}, Matt Johns

^{4}, Buddy Martin

^{5}, Skip Schaller

^{6}, Stephen A. Shectman

^{7}, Steven C. West

^{8}

**Affiliations:**

^{1}MIT,

^{2}Carnegie Obsevatories,

^{3}Carnegie Obsevatories,

^{4}Carnegie Obsevatories,

^{5}Steward Observatory,

^{6}Las Campanas Observatory,

^{7}Carnegie Obsevatories,

^{8}MMT Observatory

**Category:**Astrophysics

The Magellan active optics system has been operating continuously on the Baade 6.5-m since the start of science operations in February 2001. The active optical elements include the primary mirror, with 104 actuators, and the secondary mirror, with 5 positional degrees of freedom. Read More

A study is made of properties of the Z(3) interface which forms between the different ordered phases of pure SU(3) gauge theory above a critical temperature. The theory is simulated on a (2+1)-D lattice at various temperatures above this critical point. At high temperatures, the interface tension is shown to agree well with the prediction of perturbation theory. Read More

We study the interface between two different Z(3) vacua in the deconfined phase of SU(3) pure gauge theory in 2+1 dimensions just above the critical temperature. In simulations of the Euclidean lattice gauge theory formulation of the system we measure the fluctuations of the interface as the critical temperature is approached and as a function of system size. We show that the intrinsic width of the interface remains small even very close to the critical temperature. Read More

We study the high-temperature properties of the Z(3) interface which forms between the various ordered phases of pure SU(3) gauge theory above a critical temperature. On a (2+1)-D Euclidean lattice, we perform an accurate measurement of the interface tension, which shows good agreement with the prediction of perturbation theory. We also examine the behaviour of the Debye electric screening mass, and compare this with theoretical predictions. Read More

A study is made of some properties of this interface in the SU(3) pure gauge theory in 2+1 dimensions. At high temperatures, the interface tension is measured and shows agreement with the perturbative prediction. Near the critical temperature, the behaviour of the interface is examined, and its fluctuations compared to a scalar field theory model. Read More