S. Ward - Fermilab

S. Ward
Are you S. Ward?

Claim your profile, edit publications, add additional information:

Contact Details

S. Ward
United States

Pubs By Year

External Links

Pub Categories

Physics - Strongly Correlated Electrons (3)
Physics - Accelerator Physics (1)
Physics - Popular Physics (1)

Publications Authored By S. Ward

The magnetic insulator Yttrium Iron Garnet can be grown with exceptional quality, has a ferrimagnetic transition temperature of nearly 600 K, and is used in microwave and spintronic devices that can operate at room temperature. The most accurate prior measurements of the magnon spectrum date back nearly 40 years, but cover only 3 of the lowest energy modes out of 20 distinct magnon branches. Here we have used time-of-flight inelastic neutron scattering to measure the full magnon spectrum throughout the Brillouin zone. Read More

The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin ladder material, we probe the leading multiparticle excitation by characterizing the two-magnon bound state at zero field. By applying high magnetic fields, we create and select the singlet (longitudinal) and triplet (transverse) excitations of the fully spin-polarized ladder, which have not been observed previously and are close analogs of the modes anticipated in a polarized Haldane chain. Read More

The results of experimental tests of a novel method for moving large (pyramid construction size) stone blocks by rolling them are presented. The method is implemented by tying 12 identical rods of appropriately chosen radius to the faces of the block forming a rough dodecagon prism. Experiments using a 1,000 kg block show that it can be moved across level open ground with a dynamic coefficient of friction of less than 0. Read More

Magnetic insulators have proven to be usable as quantum simulators for itinerant interacting quantum systems. In particular the compound (C$_{5}$H$_{12}$N)$_{2}$CuBr$_{4}$ (short (Hpip)$_{2}$CuBr$_{4}$) was shown to be a remarkable realization of a Tomonaga-Luttinger liquid (TLL) and allowed to quantitatively test the TLL theory. Substitution weakly disorders this class of compounds and allows thus to use them to tackle questions pertaining to the effect of disorder in TLL as well, such as the formation of the Bose glass. Read More

Affiliations: 1Fermilab, 2Fermilab, 3Fermilab, 4Fermilab, 5Fermilab, 6Fermilab, 7Fermilab, 8Fermilab, 9Fermilab, 10Fermilab, 11Fermilab, 12Fermilab, 13Fermilab

Fermilab Main Injector has been operating at high Beam Power levels since 2008 when multi-batch slip stacking became operational. In order to maintain and increase the beam power levels the localized beam loss due to beam left over in the injection kicker gap during slip stacking needs to be addressed. A set of gap clearing kickers that kick any beam left in the injection gap to the beam abort have been built. Read More