S. Uccirati - Turin Univ. and INFN Turin

S. Uccirati
Are you S. Uccirati?

Claim your profile, edit publications, add additional information:

Contact Details

S. Uccirati
Turin Univ. and INFN Turin

Pubs By Year

External Links

Pub Categories

High Energy Physics - Phenomenology (31)
High Energy Physics - Experiment (6)
High Energy Physics - Theory (2)

Publications Authored By S. Uccirati

We present the computer code RECOLA2 along with the first NLO electroweak corrections to Higgs production in vector-boson fusion and updated results for Higgs strahlung in the Two-Higgs-Doublet Model and Higgs-Singlet extension of the Standard Model. A fully automated procedure for the generation of tree-level and one-loop matrix elements in general models, including renormalization, is presented. We discuss the application of the Background-Field Method to the extended models. Read More

We present NLO electroweak corrections to Higgs production in association with off-shell top-antitop quark pairs. The full process $\text{p}\text{p}\to\text{e}^+\nu_{\text{e}} \mu^-\bar{\nu}_\mu\text{b}\bar{\text{b}} \text{H}$ is considered, and hence all interference, off-shell, and non-resonant contributions are taken into account. The electroweak corrections turn out to be below one per cent for the integrated cross section but can exceed $10\%$ in certain phase-space regions. Read More

This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators. Read More

We present the Fortran95 program Recola for the perturbative computation of next-to-leading-order transition amplitudes in the Standard Model of particle physics. The code provides numerical results in the 't Hooft-Feynman gauge. It uses the complex-mass scheme and allows for a consistent isolation of resonant contributions. Read More

A consistent framework for studying Standard Model deviations is developed. It assumes that New Physics becomes relevant at some scale beyond the present experimental reach and uses the Effective Field Theory approach by adding higher-dimensional operators to the Standard Model Lagrangian and by computing relevant processes at the next-to-leading order, extending the original kappa-framework. Read More

We compute the next-to-leading order corrections of $O(\alpha_s^2\alpha^3)$ to the hadronic production of two oppositely charged leptons and two hard jets, $p p \to j j l^- l^+$, using Recola and Collier. We include electroweak and QCD corrections at the given order and all off-shell effects. We provide detailed predictions for the LHC operating at 13 TeV and obtain per-cent-level corrections for the total cross section. Read More

An interesting question is how present and future experiments will be able to probe the couplings of the Higgs boson and its intrinsic width at a high level of precision. There is a wide variety of beyond the Standard Model (BSM) theories where the Higgs couplings differ from the Standard Model (SM) ones by less that 10%. We take the SM as the theory of "light" degrees of freedom, i. Read More

We present the computer code RECOLA for the computation of EW and QCD amplitudes in the Standard Model at next-to-leading order. One-loop amplitudes are represented as linear combinations of tensor integrals whose coefficients are calculated by means of recursive relations similar to Dyson-Schwinger equations. A novel treatment of colour enables us to recursively construct the colour structure of the amplitude efficiently. Read More

We present results for the electroweak radiative corrections to the production of a leptonically decaying Z boson in association with two jets at the LHC. Tree-level and one-loop amplitudes have been obtained with the computer code Recola for the recursive generation of tree-level and one-loop amplitudes in the Standard Model. The one-loop integrals have been calculated with the tensor-integral library Collier. Read More

We introduce the computer code Recola for the recursive generation of tree-level and one-loop amplitudes in the Standard Model. Tree-level amplitudes are constructed using off-shell currents instead of Feynman diagrams as basic building blocks. One-loop amplitudes are represented as linear combinations of tensor integrals whose coefficients are calculated similarly to the tree-level amplitudes by recursive construction of loop off-shell currents. Read More

Vector-boson pair production ranks among the most important Standard-Model benchmark processes at the LHC, not only in view of on-going Higgs analyses. These processes may also help to gain a deeper understanding of the electroweak interaction in general, and to test the validity of the Standard Model at highest energies. In this work, the first calculation of the full one-loop electroweak corrections to on-shell W-boson pair production at hadron colliders is presented. Read More

Authors: LHC Higgs Cross Section Working Group, S. Dittmaier1, C. Mariotti2, G. Passarino3, R. Tanaka4, S. Alekhin, J. Alwall, E. A. Bagnaschi, A. Banfi, J. Blumlein, S. Bolognesi, N. Chanon, T. Cheng, L. Cieri, A. M. Cooper-Sarkar, M. Cutajar, S. Dawson, G. Davies, N. De Filippis, G. Degrassi, A. Denner, D. D'Enterria, S. Diglio, B. Di Micco, R. Di Nardo, R. K. Ellis, A. Farilla, S. Farrington, M. Felcini, G. Ferrera, M. Flechl, D. de Florian, S. Forte, S. Ganjour, M. V. Garzelli, S. Gascon-Shotkin, S. Glazov, S. Goria, M. Grazzini, J. -Ph. Guillet, C. Hackstein, K. Hamilton, R. Harlander, M. Hauru, S. Heinemeyer, S. Hoche, J. Huston, C. Jackson, P. Jimenez-Delgado, M. D. Jorgensen, M. Kado, S. Kallweit, A. Kardos, N. Kauer, H. Kim, M. Kovac, M. Kramer, F. Krauss, C. -M. Kuo, S. Lehti, Q. Li, N. Lorenzo, F. Maltoni, B. Mellado, S. O. Moch, A. Muck, M. Muhlleitner, P. Nadolsky, P. Nason, C. Neu, A. Nikitenko, C. Oleari, J. Olsen, S. Palmer, S. Paganis, C. G. Papadopoulos, T . C. Petersen, F. Petriello, F. Petrucci, G. Piacquadio, E. Pilon, C. T. Potter, J. Price, I. Puljak, W. Quayle, V. Radescu, D. Rebuzzi, L. Reina, J. Rojo, D. Rosco, G. P. Salam, A. Sapronov, J. Schaarschmidt, M. Schonherr, M. Schumacher, F. Siegert, P. Slavich, M. Spira, I. W. Stewart, W. J. Stirling, F. Stockli, C. Sturm, F. J. Tackmann, R. S. Thorne, D. Tommasini, P. Torrielli, F. Tramontano, Z. Trocsanyi, M. Ubiali, S. Uccirati, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, M. Warsinsky, M. Weber, M. Wiesemann, G. Weiglein, J. Yu, G. Zanderighi
Affiliations: 1eds., 2eds., 3eds., 4eds.

This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

State-of-the-art predictions for the Higgs-boson production cross section via gluon fusion and for all relevant Higgs-boson decay channels are presented in the presence of a fourth Standard-Model-like fermion generation. The qualitative features of the most important differences to the genuine Standard Model are pointed out, and the use of the available tools for the predictions is described. For a generic mass scale of 400-600 GeV in the fourth generation explicit numerical results for the cross section and decay widths are presented, revealing extremely large electroweak radiative corrections, e. Read More

Complete electroweak two-loop corrections to the process $gg \to H$ are presented and discussed in a Standard Model with a fourth generation of heavy fermions. The latter is studied at the LHC to put exclusion limits on a fourth generation of heavy fermions. Therefore also a precise knowledge of the electroweak(EW) next-to-leading-order(NLO) corrections is important. Read More

We derive the high energy asymptotic of one- and two-loop corrections in the next-to-next-to-leading logarithmic approximation to the differential cross section of $W$-pair production at the LHC. For large invariant mass of the W-pair the (negative) one-loop terms can reach more than 40%, which are partially compensated by the (positive) two-loop terms of up to 10%. Read More

The relation between physical observables measured at LHC and Tevatron and standard model Higgs pseudo-observables (production cross section and partial decay widths) is revised by extensively using the notion of the Higgs complex pole on the second Riemann sheet of the $S $-matrix. The extension of their definition to higher orders is considered, confronting the problems that arise when QED(QCD) corrections are included in computing realistic observables. Numerical results are presented for pseudo-observables related to the standard model Higgs boson decay and production. Read More

A large set of techniques needed to compute decay rates at the two-loop level are derived and systematized. The main emphasis of the paper is on the two Standard Model decays H -> gamma gamma and H -> g g. The techniques, however, have a much wider range of application: they give practical examples of general rules for two-loop renormalization; they introduce simple recipes for handling internal unstable particles in two-loop processes; they illustrate simple procedures for the extraction of collinear logarithms from the amplitude. Read More

Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass scheme. The numerical impact at LHC (Tevatron) energies is explored for Higgs mass values up to 500 GeV (200 GeV). Read More

The effect of threshold singularities induced by unstable particles on two-loop observables is investigated and it is shown how to cure them working in the complex-mass scheme. The impact on radiative corrections around thresholds is thoroughly analyzed and shown to be relevant for two selected LHC and ILC applications: Higgs production via gluon fusion and decay into two photons at two loops in the Standard Model. Concerning Higgs production, it is essential to understand possible sources of large corrections in addition to the well-known QCD effects. Read More

Theoretical predictions for Bhabha scattering at the two-loop level require the inclusion of hadronic vacuum polarization in the photon propagator. We present predictions for the contributions from reducible amplitudes which are proportional to the vacuum polarization $\pi(q^2)$ and from irreducible ones where the vacuum polarization appears in a loop representing vertex or box diagrams. The second case can be treated by using dispersion relations with a weight function proportional to the $R$-ratio as measured in electron-positron annihilation into hadrons and kernels that can be calculated perturbatively. Read More

In this paper the complete two-loop corrections to the Higgs-boson decay, H -> gamma gamma, are presented. The evaluations of both QCD and electroweak corrections are based on a numerical approach. The results cover all kinematical regions, including the WW normal-threshold, by introducing complex masses in the relevant (gauge-invariant) parts of the LO and NLO amplitudes. Read More

We present the results for the full electroweak two-loop bosonic contributions to the effective leptonic mixing angle of the $Z$ boson, $\sin^2\theta_{\rm eff}$, in the Standard Model. A method applied to extract collinear divergences from two-loop vertex-functions is described. Comparisons of our results with those from a recent previous calculation show complete agreement. Read More

Recent developments in the evaluation of two-loop pseudo-observables and observables are briefly reviewed. Read More

A comprehensive study is performed of two-loop Feynman diagrams with three external legs which, due to the exchange of massless gauge-bosons, give raise to infrared and collinear divergencies. Their relevance in assembling realistic computations of next-to-next-to-leading corrections to physical observables is emphasised. A classification of infrared singular configurations, based on solutions of Landau equations, is introduced. Read More

The result for the Higgs-dependent electroweak two-loop bosonic contributions to the effective leptonic mixing angle of the $Z$-boson in the Standard Model is presented. Together with the previously calculated fermionic contributions it yields the complete dependence of $\sin^2\theta_{\rm eff}$ on the Higgs-boson mass $M_H$. Compared to the fermionic contributions, the bosonic contributions are found to be smaller and have the opposite sign, compensating part of the fermionic contributions. Read More

We present the results from a calculation of the full electroweak two-loop fermionic contributions to the effective leptonic mixing angle of the $Z$ boson, $\sin^2\theta_{eff}$, in the Standard Model. On-shell renormalization and analytic calculations are performed for the three-point vertex functions at zero external momenta, whereas irreducible three-point integrals for non-vanishing external momenta are evaluated semi-analytically applying two different methods. Comparisons with a previous calculation show complete agreement. Read More

Some methods for the numerical computation of two-loop non-infrared vertices are reviewed. A new method is also proposed and compared to the old ones. Finally, some preliminary results are presented, concerning the evaluation of the fermionic corrections to $\sin^2\theta_{\rm eff}^{\rm lept}$ through the described techniques. Read More

A comprehensive study is performed of general massive, tensor, two-loop Feynman diagrams with two and three external legs. Reduction to generalized scalar functions is discussed. Integral representations, supporting the same class of smoothness algorithms already employed for the numerical evaluation of ordinary scalar functions, are introduced for each family of diagrams. Read More

A comprehensive study is performed of general massive, scalar, two-loop Feynman diagrams with three external legs. Algorithms for their numerical evaluation are introduced and discussed, numerical results are shown for all different topologies, and comparisons with analytical results, whenever available, are performed. An internal cross-check, based on alternative procedures, is also applied. Read More

A detailed investigation is presented of a set of algorithms which form the basis for a fast and reliable numerical integration of one-loop multi-leg (up to six) Feynman diagrams, with special attention to the behavior around (possibly) singular points in phase space. No particular restriction is imposed on kinematics, and complex masses (poles) are allowed. Read More

Affiliations: 1Turin Univ. and INFN Turin, 2Turin Univ. and INFN Turin

A recently proposed scheme for numerical evaluation of Feynman diagrams is extended to cover all two-loop two-point functions with arbitrary internal and external masses. The adopted algorithm is a modification of the one proposed by F. V. Read More