S. Nanda - The Jefferson Lab Hall A Collaboration

S. Nanda
Are you S. Nanda?

Claim your profile, edit publications, add additional information:

Contact Details

Name
S. Nanda
Affiliation
The Jefferson Lab Hall A Collaboration
Location

Pubs By Year

External Links

Pub Categories

 
Nuclear Experiment (34)
 
High Energy Physics - Experiment (11)
 
Physics - Instrumentation and Detectors (4)
 
High Energy Physics - Phenomenology (3)
 
Nuclear Theory (3)
 
Mathematics - Probability (1)
 
Solar and Stellar Astrophysics (1)
 
Astrophysics of Galaxies (1)
 
Cosmology and Nongalactic Astrophysics (1)

Publications Authored By S. Nanda

$[Background]$ Measurements of the neutron charge distribution are made difficult by the fact that, with no net charge, the neutron electric form factor, $G^n_E$, is generally much smaller than the magnetic form factor, $G^n_M$. In addition, measurements of these form factors must use nuclear targets which requires accurately accounting for nuclear effects. $[Method]$ The inclusive quasi-elastic reaction $^3\overrightarrow{\rm{He}}(\overrightarrow{e},e')$ was measured at Jefferson Lab. Read More

2016Oct

The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in $^3$He($e,e^{\prime}\pi^{\pm}$)$X$ have been measured for the first time in Jefferson Lab experiment E06-010 performed with a $5.9\,$GeV $e^-$ beam on a $^3$He target. The experiment focuses on the valence quark region, covering a kinematic range $0. Read More

We report on the results of the E06-014 experiment performed at Jefferson Lab in Hall A, where a precision measurement of the twist-3 matrix element $d_2$ of the neutron ($d_{2}^{n}$) was conducted. This quantity represents the average color Lorentz force a struck quark experiences in a deep inelastic electron scattering event off a neutron due to its interaction with the hadronizing remnants. This color force was determined from a linear combination of the third moments of the spin structure functions $g_1$ and $g_2$ on $^{3}$He after nuclear corrections had been applied to these moments. Read More

A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532~nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064~nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO$_{3}$ crystal. The maximum achieved green power at 5 W IR pump power is 1. Read More

We present final results on the photon electroproduction ($\vec{e}p\rightarrow ep\gamma$) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed resulting in photon electroproduction cross sections at new kinematic settings, for a total of 588 experimental bins. Read More

We report the first measurement of the target single-spin asymmetry, $A_y$, in quasi-elastic scattering from the inclusive reaction $^3$He$^{\uparrow}(e,e^\prime)$ on a $^3$He gas target polarized normal to the lepton scattering plane. Assuming time-reversal invariance, this asymmetry is strictly zero for one-photon exchange. A non-zero $A_y$ can arise from the interference between the one- and two-photon exchange processes which is sensitive to the details of the sub-structure of the nucleon. Read More

2015Feb

We report the measurement of beam-target double-spin asymmetries ($A_\text{LT}$) in the inclusive production of identified hadrons, $\vec{e}~$+$~^3\text{He}^{\uparrow}\rightarrow h+X$, using a longitudinally polarized 5.9 GeV electron beam and a transversely polarized $^3\rm{He}$ target. Hadrons ($\pi^{\pm}$, $K^{\pm}$ and proton) were detected at 16$^{\circ}$ with an average momentum $<$$P_h$$>$=2. Read More

New results are reported from a measurement of $\pi^0$ electroproduction near threshold using the $p(e,e^{\prime} p)\pi^0$ reaction. The experiment was designed to determine precisely the energy dependence of $s-$ and $p-$wave electromagnetic multipoles as a stringent test of the predictions of Chiral Perturbation Theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. Read More

The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. Read More

We present a precise measurement of double-polarization asymmetries in the $^3\vec{\mathrm{He}}(\vec{\mathrm{e}},\mathrm{e}'\mathrm{d})$ reaction. This particular process is a uniquely sensitive probe of hadron dynamics in $^3\mathrm{He}$ and the structure of the underlying electromagnetic currents. The measurements have been performed in and around quasi-elastic kinematics at $Q^2 = 0. Read More

2014Jun
Affiliations: 1The Jefferson Lab Hall A Collaboration, 2The Jefferson Lab Hall A Collaboration, 3The Jefferson Lab Hall A Collaboration, 4The Jefferson Lab Hall A Collaboration, 5The Jefferson Lab Hall A Collaboration, 6The Jefferson Lab Hall A Collaboration, 7The Jefferson Lab Hall A Collaboration, 8The Jefferson Lab Hall A Collaboration, 9The Jefferson Lab Hall A Collaboration, 10The Jefferson Lab Hall A Collaboration, 11The Jefferson Lab Hall A Collaboration, 12The Jefferson Lab Hall A Collaboration, 13The Jefferson Lab Hall A Collaboration, 14The Jefferson Lab Hall A Collaboration, 15The Jefferson Lab Hall A Collaboration, 16The Jefferson Lab Hall A Collaboration, 17The Jefferson Lab Hall A Collaboration, 18The Jefferson Lab Hall A Collaboration, 19The Jefferson Lab Hall A Collaboration, 20The Jefferson Lab Hall A Collaboration, 21The Jefferson Lab Hall A Collaboration, 22The Jefferson Lab Hall A Collaboration, 23The Jefferson Lab Hall A Collaboration, 24The Jefferson Lab Hall A Collaboration, 25The Jefferson Lab Hall A Collaboration, 26The Jefferson Lab Hall A Collaboration, 27The Jefferson Lab Hall A Collaboration, 28The Jefferson Lab Hall A Collaboration, 29The Jefferson Lab Hall A Collaboration, 30The Jefferson Lab Hall A Collaboration, 31The Jefferson Lab Hall A Collaboration, 32The Jefferson Lab Hall A Collaboration, 33The Jefferson Lab Hall A Collaboration, 34The Jefferson Lab Hall A Collaboration, 35The Jefferson Lab Hall A Collaboration, 36The Jefferson Lab Hall A Collaboration, 37The Jefferson Lab Hall A Collaboration, 38The Jefferson Lab Hall A Collaboration, 39The Jefferson Lab Hall A Collaboration, 40The Jefferson Lab Hall A Collaboration, 41The Jefferson Lab Hall A Collaboration, 42The Jefferson Lab Hall A Collaboration, 43The Jefferson Lab Hall A Collaboration, 44The Jefferson Lab Hall A Collaboration, 45The Jefferson Lab Hall A Collaboration, 46The Jefferson Lab Hall A Collaboration, 47The Jefferson Lab Hall A Collaboration, 48The Jefferson Lab Hall A Collaboration, 49The Jefferson Lab Hall A Collaboration, 50The Jefferson Lab Hall A Collaboration, 51The Jefferson Lab Hall A Collaboration, 52The Jefferson Lab Hall A Collaboration, 53The Jefferson Lab Hall A Collaboration, 54The Jefferson Lab Hall A Collaboration, 55The Jefferson Lab Hall A Collaboration, 56The Jefferson Lab Hall A Collaboration, 57The Jefferson Lab Hall A Collaboration, 58The Jefferson Lab Hall A Collaboration, 59The Jefferson Lab Hall A Collaboration, 60The Jefferson Lab Hall A Collaboration, 61The Jefferson Lab Hall A Collaboration, 62The Jefferson Lab Hall A Collaboration, 63The Jefferson Lab Hall A Collaboration, 64The Jefferson Lab Hall A Collaboration, 65The Jefferson Lab Hall A Collaboration, 66The Jefferson Lab Hall A Collaboration, 67The Jefferson Lab Hall A Collaboration, 68The Jefferson Lab Hall A Collaboration, 69The Jefferson Lab Hall A Collaboration, 70The Jefferson Lab Hall A Collaboration, 71The Jefferson Lab Hall A Collaboration, 72The Jefferson Lab Hall A Collaboration, 73The Jefferson Lab Hall A Collaboration, 74The Jefferson Lab Hall A Collaboration, 75The Jefferson Lab Hall A Collaboration, 76The Jefferson Lab Hall A Collaboration, 77The Jefferson Lab Hall A Collaboration, 78The Jefferson Lab Hall A Collaboration, 79The Jefferson Lab Hall A Collaboration, 80The Jefferson Lab Hall A Collaboration, 81The Jefferson Lab Hall A Collaboration, 82The Jefferson Lab Hall A Collaboration, 83The Jefferson Lab Hall A Collaboration, 84The Jefferson Lab Hall A Collaboration, 85The Jefferson Lab Hall A Collaboration, 86The Jefferson Lab Hall A Collaboration, 87The Jefferson Lab Hall A Collaboration, 88The Jefferson Lab Hall A Collaboration, 89The Jefferson Lab Hall A Collaboration, 90The Jefferson Lab Hall A Collaboration, 91The Jefferson Lab Hall A Collaboration, 92The Jefferson Lab Hall A Collaboration

We have performed precision measurements of the double-spin virtual-photon asymmetry $A_1$ on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer. Our data cover a wide kinematic range $0.277 \leq x \leq 0. Read More

2014May
Affiliations: 1Jefferson Lab Hall A Collaboration, 2Jefferson Lab Hall A Collaboration, 3Jefferson Lab Hall A Collaboration, 4Jefferson Lab Hall A Collaboration, 5Jefferson Lab Hall A Collaboration, 6Jefferson Lab Hall A Collaboration, 7Jefferson Lab Hall A Collaboration, 8Jefferson Lab Hall A Collaboration, 9Jefferson Lab Hall A Collaboration, 10Jefferson Lab Hall A Collaboration, 11Jefferson Lab Hall A Collaboration, 12Jefferson Lab Hall A Collaboration, 13Jefferson Lab Hall A Collaboration, 14Jefferson Lab Hall A Collaboration, 15Jefferson Lab Hall A Collaboration, 16Jefferson Lab Hall A Collaboration, 17Jefferson Lab Hall A Collaboration, 18Jefferson Lab Hall A Collaboration, 19Jefferson Lab Hall A Collaboration, 20Jefferson Lab Hall A Collaboration, 21Jefferson Lab Hall A Collaboration, 22Jefferson Lab Hall A Collaboration, 23Jefferson Lab Hall A Collaboration, 24Jefferson Lab Hall A Collaboration, 25Jefferson Lab Hall A Collaboration, 26Jefferson Lab Hall A Collaboration, 27Jefferson Lab Hall A Collaboration, 28Jefferson Lab Hall A Collaboration, 29Jefferson Lab Hall A Collaboration, 30Jefferson Lab Hall A Collaboration, 31Jefferson Lab Hall A Collaboration, 32Jefferson Lab Hall A Collaboration, 33Jefferson Lab Hall A Collaboration, 34Jefferson Lab Hall A Collaboration, 35Jefferson Lab Hall A Collaboration, 36Jefferson Lab Hall A Collaboration, 37Jefferson Lab Hall A Collaboration, 38Jefferson Lab Hall A Collaboration, 39Jefferson Lab Hall A Collaboration, 40Jefferson Lab Hall A Collaboration, 41Jefferson Lab Hall A Collaboration, 42Jefferson Lab Hall A Collaboration, 43Jefferson Lab Hall A Collaboration, 44Jefferson Lab Hall A Collaboration, 45Jefferson Lab Hall A Collaboration, 46Jefferson Lab Hall A Collaboration, 47Jefferson Lab Hall A Collaboration, 48Jefferson Lab Hall A Collaboration, 49Jefferson Lab Hall A Collaboration, 50Jefferson Lab Hall A Collaboration, 51Jefferson Lab Hall A Collaboration, 52Jefferson Lab Hall A Collaboration, 53Jefferson Lab Hall A Collaboration, 54Jefferson Lab Hall A Collaboration, 55Jefferson Lab Hall A Collaboration, 56Jefferson Lab Hall A Collaboration, 57Jefferson Lab Hall A Collaboration, 58Jefferson Lab Hall A Collaboration, 59Jefferson Lab Hall A Collaboration, 60Jefferson Lab Hall A Collaboration, 61Jefferson Lab Hall A Collaboration, 62Jefferson Lab Hall A Collaboration, 63Jefferson Lab Hall A Collaboration, 64Jefferson Lab Hall A Collaboration, 65Jefferson Lab Hall A Collaboration, 66Jefferson Lab Hall A Collaboration, 67Jefferson Lab Hall A Collaboration, 68Jefferson Lab Hall A Collaboration, 69Jefferson Lab Hall A Collaboration, 70Jefferson Lab Hall A Collaboration, 71Jefferson Lab Hall A Collaboration, 72Jefferson Lab Hall A Collaboration, 73Jefferson Lab Hall A Collaboration, 74Jefferson Lab Hall A Collaboration, 75Jefferson Lab Hall A Collaboration, 76Jefferson Lab Hall A Collaboration, 77Jefferson Lab Hall A Collaboration, 78Jefferson Lab Hall A Collaboration, 79Jefferson Lab Hall A Collaboration, 80Jefferson Lab Hall A Collaboration, 81Jefferson Lab Hall A Collaboration, 82Jefferson Lab Hall A Collaboration, 83Jefferson Lab Hall A Collaboration, 84Jefferson Lab Hall A Collaboration, 85Jefferson Lab Hall A Collaboration, 86Jefferson Lab Hall A Collaboration, 87Jefferson Lab Hall A Collaboration, 88Jefferson Lab Hall A Collaboration, 89Jefferson Lab Hall A Collaboration, 90Jefferson Lab Hall A Collaboration, 91Jefferson Lab Hall A Collaboration, 92Jefferson Lab Hall A Collaboration, 93Jefferson Lab Hall A Collaboration, 94Jefferson Lab Hall A Collaboration, 95Jefferson Lab Hall A Collaboration, 96Jefferson Lab Hall A Collaboration, 97Jefferson Lab Hall A Collaboration, 98Jefferson Lab Hall A Collaboration

In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei can provide information on the details of the effective hyperon-nucleon interaction. Electroproduction of the hypernucleus Lambda-9Li has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a 9Be target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. Read More

2014Apr
Authors: Y. X. Zhao1, Y. Wang2, K. Allada3, K. Aniol4, J. R. M. Annand5, T. Averett6, F. Benmokhtar7, W. Bertozzi8, P. C. Bradshaw9, P. Bosted10, A. Camsonne11, M. Canan12, G. D. Cates13, C. Chen14, J. -P. Chen15, W. Chen16, K. Chirapatpimol17, E. Chudakov18, E. Cisbani19, J. C. Cornejo20, F. Cusanno21, M. M. Dalton22, W. Deconinck23, C. W. de Jager24, R. De Leo25, X. Deng26, A. Deur27, H. Ding28, P. A. M. Dolph29, C. Dutta30, D. Dutta31, L. El Fassi32, S. Frullani33, H. Gao34, F. Garibaldi35, D. Gaskell36, S. Gilad37, R. Gilman38, O. Glamazdin39, S. Golge40, L. Guo41, D. Hamilton42, O. Hansen43, D. W. Higinbotham44, T. Holmstrom45, J. Huang46, M. Huang47, H. F Ibrahim48, M. Iodice49, X. Jiang50, G. Jin51, M. K. Jones52, J. Katich53, A. Kelleher54, W. Kim55, A. Kolarkar56, W. Korsch57, J. J. LeRose58, X. Li59, Y. Li60, R. Lindgren61, N. Liyanage62, E. Long63, H. -J. Lu64, D. J. Margaziotis65, P. Markowitz66, S. Marrone67, D. McNulty68, Z. -E. Meziani69, R. Michaels70, B. Moffit71, C. Muñoz Camacho72, S. Nanda73, A. Narayan74, V. Nelyubin75, B. Norum76, Y. Oh77, M. Osipenko78, D. Parno79, J. -C. Peng80, S. K. Phillips81, M. Posik82, A. J. R. Puckett83, X. Qian84, Y. Qiang85, A. Rakhman86, R. Ransome87, S. Riordan88, A. Saha89, B. Sawatzky90, E. Schulte91, A. Shahinyan92, M. H. Shabestari93, S. Širca94, S. Stepanyan95, R. Subedi96, V. Sulkosky97, L. -G. Tang98, A. Tobias99, G. M. Urciuoli100, I. Vilardi101, K. Wang102, B. Wojtsekhowski103, X. Yan104, H. Yao105, Y. Ye106, Z. Ye107, L. Yuan108, X. Zhan109, Y. Zhang110, Y. -W. Zhang111, B. Zhao112, X. Zheng113, L. Zhu114, X. Zhu115, X. Zong116
Affiliations: 1Jefferson Lab Hall A Collaboration, 2Jefferson Lab Hall A Collaboration, 3Jefferson Lab Hall A Collaboration, 4Jefferson Lab Hall A Collaboration, 5Jefferson Lab Hall A Collaboration, 6Jefferson Lab Hall A Collaboration, 7Jefferson Lab Hall A Collaboration, 8Jefferson Lab Hall A Collaboration, 9Jefferson Lab Hall A Collaboration, 10Jefferson Lab Hall A Collaboration, 11Jefferson Lab Hall A Collaboration, 12Jefferson Lab Hall A Collaboration, 13Jefferson Lab Hall A Collaboration, 14Jefferson Lab Hall A Collaboration, 15Jefferson Lab Hall A Collaboration, 16Jefferson Lab Hall A Collaboration, 17Jefferson Lab Hall A Collaboration, 18Jefferson Lab Hall A Collaboration, 19Jefferson Lab Hall A Collaboration, 20Jefferson Lab Hall A Collaboration, 21Jefferson Lab Hall A Collaboration, 22Jefferson Lab Hall A Collaboration, 23Jefferson Lab Hall A Collaboration, 24Jefferson Lab Hall A Collaboration, 25Jefferson Lab Hall A Collaboration, 26Jefferson Lab Hall A Collaboration, 27Jefferson Lab Hall A Collaboration, 28Jefferson Lab Hall A Collaboration, 29Jefferson Lab Hall A Collaboration, 30Jefferson Lab Hall A Collaboration, 31Jefferson Lab Hall A Collaboration, 32Jefferson Lab Hall A Collaboration, 33Jefferson Lab Hall A Collaboration, 34Jefferson Lab Hall A Collaboration, 35Jefferson Lab Hall A Collaboration, 36Jefferson Lab Hall A Collaboration, 37Jefferson Lab Hall A Collaboration, 38Jefferson Lab Hall A Collaboration, 39Jefferson Lab Hall A Collaboration, 40Jefferson Lab Hall A Collaboration, 41Jefferson Lab Hall A Collaboration, 42Jefferson Lab Hall A Collaboration, 43Jefferson Lab Hall A Collaboration, 44Jefferson Lab Hall A Collaboration, 45Jefferson Lab Hall A Collaboration, 46Jefferson Lab Hall A Collaboration, 47Jefferson Lab Hall A Collaboration, 48Jefferson Lab Hall A Collaboration, 49Jefferson Lab Hall A Collaboration, 50Jefferson Lab Hall A Collaboration, 51Jefferson Lab Hall A Collaboration, 52Jefferson Lab Hall A Collaboration, 53Jefferson Lab Hall A Collaboration, 54Jefferson Lab Hall A Collaboration, 55Jefferson Lab Hall A Collaboration, 56Jefferson Lab Hall A Collaboration, 57Jefferson Lab Hall A Collaboration, 58Jefferson Lab Hall A Collaboration, 59Jefferson Lab Hall A Collaboration, 60Jefferson Lab Hall A Collaboration, 61Jefferson Lab Hall A Collaboration, 62Jefferson Lab Hall A Collaboration, 63Jefferson Lab Hall A Collaboration, 64Jefferson Lab Hall A Collaboration, 65Jefferson Lab Hall A Collaboration, 66Jefferson Lab Hall A Collaboration, 67Jefferson Lab Hall A Collaboration, 68Jefferson Lab Hall A Collaboration, 69Jefferson Lab Hall A Collaboration, 70Jefferson Lab Hall A Collaboration, 71Jefferson Lab Hall A Collaboration, 72Jefferson Lab Hall A Collaboration, 73Jefferson Lab Hall A Collaboration, 74Jefferson Lab Hall A Collaboration, 75Jefferson Lab Hall A Collaboration, 76Jefferson Lab Hall A Collaboration, 77Jefferson Lab Hall A Collaboration, 78Jefferson Lab Hall A Collaboration, 79Jefferson Lab Hall A Collaboration, 80Jefferson Lab Hall A Collaboration, 81Jefferson Lab Hall A Collaboration, 82Jefferson Lab Hall A Collaboration, 83Jefferson Lab Hall A Collaboration, 84Jefferson Lab Hall A Collaboration, 85Jefferson Lab Hall A Collaboration, 86Jefferson Lab Hall A Collaboration, 87Jefferson Lab Hall A Collaboration, 88Jefferson Lab Hall A Collaboration, 89Jefferson Lab Hall A Collaboration, 90Jefferson Lab Hall A Collaboration, 91Jefferson Lab Hall A Collaboration, 92Jefferson Lab Hall A Collaboration, 93Jefferson Lab Hall A Collaboration, 94Jefferson Lab Hall A Collaboration, 95Jefferson Lab Hall A Collaboration, 96Jefferson Lab Hall A Collaboration, 97Jefferson Lab Hall A Collaboration, 98Jefferson Lab Hall A Collaboration, 99Jefferson Lab Hall A Collaboration, 100Jefferson Lab Hall A Collaboration, 101Jefferson Lab Hall A Collaboration, 102Jefferson Lab Hall A Collaboration, 103Jefferson Lab Hall A Collaboration, 104Jefferson Lab Hall A Collaboration, 105Jefferson Lab Hall A Collaboration, 106Jefferson Lab Hall A Collaboration, 107Jefferson Lab Hall A Collaboration, 108Jefferson Lab Hall A Collaboration, 109Jefferson Lab Hall A Collaboration, 110Jefferson Lab Hall A Collaboration, 111Jefferson Lab Hall A Collaboration, 112Jefferson Lab Hall A Collaboration, 113Jefferson Lab Hall A Collaboration, 114Jefferson Lab Hall A Collaboration, 115Jefferson Lab Hall A Collaboration, 116Jefferson Lab Hall A Collaboration

We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized $^3{\rm{He}}$ target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1$<$$x_{bj}$$<$0. Read More

2013Dec

An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized $^3$He target was performed at Jefferson Lab in the kinematic region of $0.16Read More

2013Nov
Authors: K. Allada1, Y. X. Zhao2, K. Aniol3, J. R. M. Annand4, T. Averett5, F. Benmokhtar6, W. Bertozzi7, P. C. Bradshaw8, P. Bosted9, A. Camsonne10, M. Canan11, G. D. Cates12, C. Chen13, J. -P. Chen14, W. Chen15, K. Chirapatpimol16, E. Chudakov17, E. Cisbani18, J. C. Cornejo19, F. Cusanno20, M. Dalton21, W. Deconinck22, C. W. de Jager23, R. De Leo24, X. Deng25, A. Deur26, H. Ding27, P. A. M. Dolph28, C. Dutta29, D. Dutta30, L. El Fassi31, S. Frullani32, H. Gao33, F. Garibaldi34, D. Gaskell35, S. Gilad36, R. Gilman37, O. Glamazdin38, S. Golge39, L. Guo40, D. Hamilton41, O. Hansen42, D. W. Higinbotham43, T. Holmstrom44, J. Huang45, M. Huang46, H. F Ibrahim47, M. Iodice48, X. Jiang49, G. Jin50, M. K. Jones51, J. Katich52, A. Kelleher53, W. Kim54, A. Kolarkar55, W. Korsch56, J. J. LeRose57, X. Li58, Y. Li59, R. Lindgren60, N. Liyanage61, E. Long62, H. -J. Lu63, D. J. Margaziotis64, P. Markowitz65, S. Marrone66, D. McNulty67, Z. -E. Meziani68, R. Michaels69, B. Moffit70, C. Munoz Camacho71, S. Nanda72, A. Narayan73, V. Nelyubin74, B. Norum75, Y. Oh76, M. Osipenko77, D. Parno78, J. -C. Peng79, S. K. Phillips80, M. Posik81, A. J. R. Puckett82, X. Qian83, Y. Qiang84, A. Rakhman85, R. Ransome86, S. Riordan87, A. Saha88, B. Sawatzky89, E. Schulte90, A. Shahinyan91, M. H. Shabestari92, S. Sirca93, S. Stepanyan94, R. Subedi95, V. Sulkosky96, L. -G. Tang97, A. Tobias98, G. M. Urciuoli99, I. Vilardi100, K. Wang101, Y. Wang102, B. Wojtsekhowski103, X. Yan104, H. Yao105, Y. Ye106, Z. Ye107, L. Yuan108, X. Zhan109, Y. Zhang110, Y. -W. Zhang111, B. Zhao112, X. Zheng113, L. Zhu114, X. Zhu115, X. Zong116
Affiliations: 1Jefferson Lab Hall A Collaboration, 2Jefferson Lab Hall A Collaboration, 3Jefferson Lab Hall A Collaboration, 4Jefferson Lab Hall A Collaboration, 5Jefferson Lab Hall A Collaboration, 6Jefferson Lab Hall A Collaboration, 7Jefferson Lab Hall A Collaboration, 8Jefferson Lab Hall A Collaboration, 9Jefferson Lab Hall A Collaboration, 10Jefferson Lab Hall A Collaboration, 11Jefferson Lab Hall A Collaboration, 12Jefferson Lab Hall A Collaboration, 13Jefferson Lab Hall A Collaboration, 14Jefferson Lab Hall A Collaboration, 15Jefferson Lab Hall A Collaboration, 16Jefferson Lab Hall A Collaboration, 17Jefferson Lab Hall A Collaboration, 18Jefferson Lab Hall A Collaboration, 19Jefferson Lab Hall A Collaboration, 20Jefferson Lab Hall A Collaboration, 21Jefferson Lab Hall A Collaboration, 22Jefferson Lab Hall A Collaboration, 23Jefferson Lab Hall A Collaboration, 24Jefferson Lab Hall A Collaboration, 25Jefferson Lab Hall A Collaboration, 26Jefferson Lab Hall A Collaboration, 27Jefferson Lab Hall A Collaboration, 28Jefferson Lab Hall A Collaboration, 29Jefferson Lab Hall A Collaboration, 30Jefferson Lab Hall A Collaboration, 31Jefferson Lab Hall A Collaboration, 32Jefferson Lab Hall A Collaboration, 33Jefferson Lab Hall A Collaboration, 34Jefferson Lab Hall A Collaboration, 35Jefferson Lab Hall A Collaboration, 36Jefferson Lab Hall A Collaboration, 37Jefferson Lab Hall A Collaboration, 38Jefferson Lab Hall A Collaboration, 39Jefferson Lab Hall A Collaboration, 40Jefferson Lab Hall A Collaboration, 41Jefferson Lab Hall A Collaboration, 42Jefferson Lab Hall A Collaboration, 43Jefferson Lab Hall A Collaboration, 44Jefferson Lab Hall A Collaboration, 45Jefferson Lab Hall A Collaboration, 46Jefferson Lab Hall A Collaboration, 47Jefferson Lab Hall A Collaboration, 48Jefferson Lab Hall A Collaboration, 49Jefferson Lab Hall A Collaboration, 50Jefferson Lab Hall A Collaboration, 51Jefferson Lab Hall A Collaboration, 52Jefferson Lab Hall A Collaboration, 53Jefferson Lab Hall A Collaboration, 54Jefferson Lab Hall A Collaboration, 55Jefferson Lab Hall A Collaboration, 56Jefferson Lab Hall A Collaboration, 57Jefferson Lab Hall A Collaboration, 58Jefferson Lab Hall A Collaboration, 59Jefferson Lab Hall A Collaboration, 60Jefferson Lab Hall A Collaboration, 61Jefferson Lab Hall A Collaboration, 62Jefferson Lab Hall A Collaboration, 63Jefferson Lab Hall A Collaboration, 64Jefferson Lab Hall A Collaboration, 65Jefferson Lab Hall A Collaboration, 66Jefferson Lab Hall A Collaboration, 67Jefferson Lab Hall A Collaboration, 68Jefferson Lab Hall A Collaboration, 69Jefferson Lab Hall A Collaboration, 70Jefferson Lab Hall A Collaboration, 71Jefferson Lab Hall A Collaboration, 72Jefferson Lab Hall A Collaboration, 73Jefferson Lab Hall A Collaboration, 74Jefferson Lab Hall A Collaboration, 75Jefferson Lab Hall A Collaboration, 76Jefferson Lab Hall A Collaboration, 77Jefferson Lab Hall A Collaboration, 78Jefferson Lab Hall A Collaboration, 79Jefferson Lab Hall A Collaboration, 80Jefferson Lab Hall A Collaboration, 81Jefferson Lab Hall A Collaboration, 82Jefferson Lab Hall A Collaboration, 83Jefferson Lab Hall A Collaboration, 84Jefferson Lab Hall A Collaboration, 85Jefferson Lab Hall A Collaboration, 86Jefferson Lab Hall A Collaboration, 87Jefferson Lab Hall A Collaboration, 88Jefferson Lab Hall A Collaboration, 89Jefferson Lab Hall A Collaboration, 90Jefferson Lab Hall A Collaboration, 91Jefferson Lab Hall A Collaboration, 92Jefferson Lab Hall A Collaboration, 93Jefferson Lab Hall A Collaboration, 94Jefferson Lab Hall A Collaboration, 95Jefferson Lab Hall A Collaboration, 96Jefferson Lab Hall A Collaboration, 97Jefferson Lab Hall A Collaboration, 98Jefferson Lab Hall A Collaboration, 99Jefferson Lab Hall A Collaboration, 100Jefferson Lab Hall A Collaboration, 101Jefferson Lab Hall A Collaboration, 102Jefferson Lab Hall A Collaboration, 103Jefferson Lab Hall A Collaboration, 104Jefferson Lab Hall A Collaboration, 105Jefferson Lab Hall A Collaboration, 106Jefferson Lab Hall A Collaboration, 107Jefferson Lab Hall A Collaboration, 108Jefferson Lab Hall A Collaboration, 109Jefferson Lab Hall A Collaboration, 110Jefferson Lab Hall A Collaboration, 111Jefferson Lab Hall A Collaboration, 112Jefferson Lab Hall A Collaboration, 113Jefferson Lab Hall A Collaboration, 114Jefferson Lab Hall A Collaboration, 115Jefferson Lab Hall A Collaboration, 116Jefferson Lab Hall A Collaboration

We report the first measurement of target single-spin asymmetries (A$_N$) in the inclusive hadron production reaction, $e~$+$~^3\text{He}^{\uparrow}\rightarrow h+X$, using a transversely polarized $^3$He target. The experiment was conducted at Jefferson Lab in Hall A using a 5.9-GeV electron beam. Read More

2013Nov

We report the first measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the inclusive reaction $^3$He$^{\uparrow}\left(e,e' \right)X$ on a polarized $^3$He gas target. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation but can be non-zero if two-photon-exchange contributions are included. The experiment, conducted at Jefferson Lab using a 5. Read More

We report on parity-violating asymmetries in the nucleon resonance region measured using $5 - 6$ GeV longitudinally polarized electrons scattering off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the $\Delta(1232)$, and provide a verification of quark-hadron duality in the nucleon electroweak $\gamma Z$ interference structure functions at the (10-15)% level. The results are of particular interest to models relevant for calculating the $\gamma Z$ box-diagram corrections to elastic parity-violating electron scattering measurements. Read More

The five-fold differential cross section for the 12C(e,e'p)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models and previous lower missing momentum data is shown. Read More

2012Aug
Authors: The HAPPEX, PREX Collaborations, :, S. Abrahamyan, A. Acha, A. Afanasev, Z. Ahmed, H. Albataineh, K. Aniol, D. S. Armstrong, W. Armstrong, J. Arrington, T. Averett, B. Babineau, S. L. Bailey, J. Barber, A. Barbieri, A. Beck, V. Bellini, R. Beminiwattha, H. Benaoum, J. Benesch, F. Benmokhtar, P. Bertin, T. Bielarski, W. Boeglin, P. Bosted, F. Butaru, E. Burtin, J. Cahoon, A. Camsonne, M. Canan, P. Carter, C. C. Chang, G. D. Cates, Y. C. Chao, C. Chen, J. P. Chen, Seonho Choi, E. Chudakov, E. Cisbani, B. Craver, F. Cusanno, M. M. Dalton, R. De Leo, K. de Jager, W. Deconinck, P. Decowski, D. Deepa, X. Deng, A. Deur, D. Dutta, A. Etile, C. Ferdi, R. J. Feuerbach, J. M. Finn, D. Flay, G. B. Franklin, M. Friend, S. Frullani, E. Fuchey, S. A. Fuchs, K. Fuoti, F. Garibaldi, E. Gasser, R. Gilman, A. Giusa, A. Glamazdin, L. E. Glesener, J. Gomez, M. Gorchtein, J. Grames, K. Grimm, C. Gu, O. Hansen, J. Hansknecht, O. Hen, D. W. Higinbotham, R. S. Holmes, T. Holmstrom, C. J. Horowitz, J. Hoskins, J. Huang, T. B. Humensky, C. E. Hyde, H. Ibrahim, F. Itard, C. M. Jen, E. Jensen, X. Jiang, G. Jin, S. Johnston, J. Katich, L. J. Kaufman, A. Kelleher, K. Kliakhandler, P. M. King, A. Kolarkar, S. Kowalski, E. Kuchina, K. S. Kumar, L. Lagamba, D. Lambert, P. LaViolette, J. Leacock, J. Leckey IV, J. H. Lee, J. J. LeRose, D. Lhuillier, R. Lindgren, N. Liyanage, N. Lubinsky, J. Mammei, F. Mammoliti, D. J. Margaziotis, P. Markowitz, M. Mazouz, K. McCormick, A. McCreary, D. McNulty, D. G. Meekins, L. Mercado, Z. E. Meziani, R. W. Michaels, M. Mihovilovic, B. Moffit, P. Monaghan, N. Muangma, C. Munoz-Camacho, S. Nanda, V. Nelyubin, D. Neyret, Nuruzzaman, Y. Oh, K. Otis, A. Palmer, D. Parno, K. D. Paschke, S. K. Phillips, M. Poelker, R. Pomatsalyuk, M. Posik, M. Potokar, K. Prok, A. J. R. Puckett, X. Qian, Y. Qiang, B. Quinn, A. Rakhman, P. E. Reimer, B. Reitz, S. Riordan, J. Roche, P. Rogan, G. Ron, G. Russo, K. Saenboonruang, A. Saha, B. Sawatzky, A. Shahinyan, R. Silwal, J. Singh, S. Sirca, K. Slifer, R. Snyder, P. Solvignon, P. A. Souder, M. L. Sperduto, R. Subedi, M. L. Stutzman, R. Suleiman, V. Sulkosky, C. M. Sutera, W. A. Tobias, W. Troth, G. M. Urciuoli, P. Ulmer, A. Vacheret, E. Voutier, B. Waidyawansa, D. Wang, K. Wang, J. Wexler, A. Whitbeck, R. Wilson, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, V. Yim, L. Zana, X. Zhan, J. Zhang, Y. Zhang, X. Zheng, V. Ziskin, P. Zhu

We have measured the beam-normal single-spin asymmetry $A_n$ in the elastic scattering of 1-3 GeV transversely polarized electrons from $^1$H and for the first time from $^4$He, $^{12}$C, and $^{208}$Pb. For $^1$H, $^4$He and $^{12}$C, the measurements are in agreement with calculations that relate $A_n$ to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the $^{208}$Pb result is significantly smaller than the corresponding prediction using the same formalism. Read More

2012May
Authors: H. Fonvieille1, G. Laveissiere2, N. Degrande3, S. Jaminion4, C. Jutier5, L. Todor6, R. Di Salvo7, L. Van Hoorebeke8, L. C. Alexa9, B. D. Anderson10, K. A. Aniol11, K. Arundell12, G. Audit13, L. Auerbach14, F. T. Baker15, M. Baylac16, J. Berthot17, P. Y. Bertin18, W. Bertozzi19, L. Bimbot20, W. U. Boeglin21, E. J. Brash22, V. Breton23, H. Breuer24, E. Burtin25, J. R. Calarco26, L. S. Cardman27, C. Cavata28, C. -C. Chang29, J. -P. Chen30, E. Chudakov31, E. Cisbani32, D. S. Dale33, C. W. deJager34, R. De Leo35, A. Deur36, N. d'Hose37, G. E. Dodge38, J. J. Domingo39, L. Elouadrhiri40, M. B. Epstein41, L. A. Ewell42, J. M. Finn43, K. G. Fissum44, G. Fournier45, B. Frois46, S. Frullani47, C. Furget48, H. Gao49, J. Gao50, F. Garibaldi51, A. Gasparian52, S. Gilad53, R. Gilman54, A. Glamazdin55, C. Glashausser56, J. Gomez57, V. Gorbenko58, P. Grenier59, P. A. M. Guichon60, J. O. Hansen61, R. Holmes62, M. Holtrop63, C. Howell64, G. M. Huber65, C. E. Hyde66, S. Incerti67, M. Iodice68, J. Jardillier69, M. K. Jones70, W. Kahl71, S. Kato72, A. T. Katramatou73, J. J. Kelly74, S. Kerhoas75, A. Ketikyan76, M. Khayat77, K. Kino78, S. Kox79, L. H. Kramer80, K. S. Kumar81, G. Kumbartzki82, M. Kuss83, A. Leone84, J. J. LeRose85, M. Liang86, R. A. Lindgren87, N. Liyanage88, G. J. Lolos89, R. W. Lourie90, R. Madey91, K. Maeda92, S. Malov93, D. M. Manley94, C. Marchand95, D. Marchand96, D. J. Margaziotis97, P. Markowitz98, J. Marroncle99, J. Martino100, K. McCormick101, J. McIntyre102, S. Mehrabyan103, F. Merchez104, Z. E. Meziani105, R. Michaels106, G. W. Miller107, J. Y. Mougey108, S. K. Nanda109, D. Neyret110, E. A. J. M. Offermann111, Z. Papandreou112, B. Pasquini113, C. F. Perdrisat114, R. Perrino115, G. G. Petratos116, S. Platchkov117, R. Pomatsalyuk118, D. L. Prout119, V. A. Punjabi120, T. Pussieux121, G. Quemener122, R. D. Ransome123, O. Ravel124, J. S. Real125, F. Renard126, Y. Roblin127, D. Rowntree128, G. Rutledge129, P. M. Rutt130, A. Saha131, T. Saito132, A. J. Sarty133, A. Serdarevic134, T. Smith135, G. Smirnov136, K. Soldi137, P. Sorokin138, P. A. Souder139, R. Suleiman140, J. A. Templon141, T. Terasawa142, R. Tieulent143, E. Tomasi-Gustaffson144, H. Tsubota145, H. Ueno146, P. E. Ulmer147, G. M. Urciuoli148, M. Vanderhaeghen149, R. L. J. Van der Meer150, R. Van De Vyver151, P. Vernin152, B. Vlahovic153, H. Voskanyan154, E. Voutier155, J. W. Watson156, L. B. Weinstein157, K. Wijesooriya158, R. Wilson159, B. B. Wojtsekhowski160, D. G. Zainea161, W. -M. Zhang162, J. Zhao163, Z. -L. Zhou164
Affiliations: 1The Jefferson Lab Hall A Collaboration, 2The Jefferson Lab Hall A Collaboration, 3The Jefferson Lab Hall A Collaboration, 4The Jefferson Lab Hall A Collaboration, 5The Jefferson Lab Hall A Collaboration, 6The Jefferson Lab Hall A Collaboration, 7The Jefferson Lab Hall A Collaboration, 8The Jefferson Lab Hall A Collaboration, 9The Jefferson Lab Hall A Collaboration, 10The Jefferson Lab Hall A Collaboration, 11The Jefferson Lab Hall A Collaboration, 12The Jefferson Lab Hall A Collaboration, 13The Jefferson Lab Hall A Collaboration, 14The Jefferson Lab Hall A Collaboration, 15The Jefferson Lab Hall A Collaboration, 16The Jefferson Lab Hall A Collaboration, 17The Jefferson Lab Hall A Collaboration, 18The Jefferson Lab Hall A Collaboration, 19The Jefferson Lab Hall A Collaboration, 20The Jefferson Lab Hall A Collaboration, 21The Jefferson Lab Hall A Collaboration, 22The Jefferson Lab Hall A Collaboration, 23The Jefferson Lab Hall A Collaboration, 24The Jefferson Lab Hall A Collaboration, 25The Jefferson Lab Hall A Collaboration, 26The Jefferson Lab Hall A Collaboration, 27The Jefferson Lab Hall A Collaboration, 28The Jefferson Lab Hall A Collaboration, 29The Jefferson Lab Hall A Collaboration, 30The Jefferson Lab Hall A Collaboration, 31The Jefferson Lab Hall A Collaboration, 32The Jefferson Lab Hall A Collaboration, 33The Jefferson Lab Hall A Collaboration, 34The Jefferson Lab Hall A Collaboration, 35The Jefferson Lab Hall A Collaboration, 36The Jefferson Lab Hall A Collaboration, 37The Jefferson Lab Hall A Collaboration, 38The Jefferson Lab Hall A Collaboration, 39The Jefferson Lab Hall A Collaboration, 40The Jefferson Lab Hall A Collaboration, 41The Jefferson Lab Hall A Collaboration, 42The Jefferson Lab Hall A Collaboration, 43The Jefferson Lab Hall A Collaboration, 44The Jefferson Lab Hall A Collaboration, 45The Jefferson Lab Hall A Collaboration, 46The Jefferson Lab Hall A Collaboration, 47The Jefferson Lab Hall A Collaboration, 48The Jefferson Lab Hall A Collaboration, 49The Jefferson Lab Hall A Collaboration, 50The Jefferson Lab Hall A Collaboration, 51The Jefferson Lab Hall A Collaboration, 52The Jefferson Lab Hall A Collaboration, 53The Jefferson Lab Hall A Collaboration, 54The Jefferson Lab Hall A Collaboration, 55The Jefferson Lab Hall A Collaboration, 56The Jefferson Lab Hall A Collaboration, 57The Jefferson Lab Hall A Collaboration, 58The Jefferson Lab Hall A Collaboration, 59The Jefferson Lab Hall A Collaboration, 60The Jefferson Lab Hall A Collaboration, 61The Jefferson Lab Hall A Collaboration, 62The Jefferson Lab Hall A Collaboration, 63The Jefferson Lab Hall A Collaboration, 64The Jefferson Lab Hall A Collaboration, 65The Jefferson Lab Hall A Collaboration, 66The Jefferson Lab Hall A Collaboration, 67The Jefferson Lab Hall A Collaboration, 68The Jefferson Lab Hall A Collaboration, 69The Jefferson Lab Hall A Collaboration, 70The Jefferson Lab Hall A Collaboration, 71The Jefferson Lab Hall A Collaboration, 72The Jefferson Lab Hall A Collaboration, 73The Jefferson Lab Hall A Collaboration, 74The Jefferson Lab Hall A Collaboration, 75The Jefferson Lab Hall A Collaboration, 76The Jefferson Lab Hall A Collaboration, 77The Jefferson Lab Hall A Collaboration, 78The Jefferson Lab Hall A Collaboration, 79The Jefferson Lab Hall A Collaboration, 80The Jefferson Lab Hall A Collaboration, 81The Jefferson Lab Hall A Collaboration, 82The Jefferson Lab Hall A Collaboration, 83The Jefferson Lab Hall A Collaboration, 84The Jefferson Lab Hall A Collaboration, 85The Jefferson Lab Hall A Collaboration, 86The Jefferson Lab Hall A Collaboration, 87The Jefferson Lab Hall A Collaboration, 88The Jefferson Lab Hall A Collaboration, 89The Jefferson Lab Hall A Collaboration, 90The Jefferson Lab Hall A Collaboration, 91The Jefferson Lab Hall A Collaboration, 92The Jefferson Lab Hall A Collaboration, 93The Jefferson Lab Hall A Collaboration, 94The Jefferson Lab Hall A Collaboration, 95The Jefferson Lab Hall A Collaboration, 96The Jefferson Lab Hall A Collaboration, 97The Jefferson Lab Hall A Collaboration, 98The Jefferson Lab Hall A Collaboration, 99The Jefferson Lab Hall A Collaboration, 100The Jefferson Lab Hall A Collaboration, 101The Jefferson Lab Hall A Collaboration, 102The Jefferson Lab Hall A Collaboration, 103The Jefferson Lab Hall A Collaboration, 104The Jefferson Lab Hall A Collaboration, 105The Jefferson Lab Hall A Collaboration, 106The Jefferson Lab Hall A Collaboration, 107The Jefferson Lab Hall A Collaboration, 108The Jefferson Lab Hall A Collaboration, 109The Jefferson Lab Hall A Collaboration, 110The Jefferson Lab Hall A Collaboration, 111The Jefferson Lab Hall A Collaboration, 112The Jefferson Lab Hall A Collaboration, 113The Jefferson Lab Hall A Collaboration, 114The Jefferson Lab Hall A Collaboration, 115The Jefferson Lab Hall A Collaboration, 116The Jefferson Lab Hall A Collaboration, 117The Jefferson Lab Hall A Collaboration, 118The Jefferson Lab Hall A Collaboration, 119The Jefferson Lab Hall A Collaboration, 120The Jefferson Lab Hall A Collaboration, 121The Jefferson Lab Hall A Collaboration, 122The Jefferson Lab Hall A Collaboration, 123The Jefferson Lab Hall A Collaboration, 124The Jefferson Lab Hall A Collaboration, 125The Jefferson Lab Hall A Collaboration, 126The Jefferson Lab Hall A Collaboration, 127The Jefferson Lab Hall A Collaboration, 128The Jefferson Lab Hall A Collaboration, 129The Jefferson Lab Hall A Collaboration, 130The Jefferson Lab Hall A Collaboration, 131The Jefferson Lab Hall A Collaboration, 132The Jefferson Lab Hall A Collaboration, 133The Jefferson Lab Hall A Collaboration, 134The Jefferson Lab Hall A Collaboration, 135The Jefferson Lab Hall A Collaboration, 136The Jefferson Lab Hall A Collaboration, 137The Jefferson Lab Hall A Collaboration, 138The Jefferson Lab Hall A Collaboration, 139The Jefferson Lab Hall A Collaboration, 140The Jefferson Lab Hall A Collaboration, 141The Jefferson Lab Hall A Collaboration, 142The Jefferson Lab Hall A Collaboration, 143The Jefferson Lab Hall A Collaboration, 144The Jefferson Lab Hall A Collaboration, 145The Jefferson Lab Hall A Collaboration, 146The Jefferson Lab Hall A Collaboration, 147The Jefferson Lab Hall A Collaboration, 148The Jefferson Lab Hall A Collaboration, 149The Jefferson Lab Hall A Collaboration, 150The Jefferson Lab Hall A Collaboration, 151The Jefferson Lab Hall A Collaboration, 152The Jefferson Lab Hall A Collaboration, 153The Jefferson Lab Hall A Collaboration, 154The Jefferson Lab Hall A Collaboration, 155The Jefferson Lab Hall A Collaboration, 156The Jefferson Lab Hall A Collaboration, 157The Jefferson Lab Hall A Collaboration, 158The Jefferson Lab Hall A Collaboration, 159The Jefferson Lab Hall A Collaboration, 160The Jefferson Lab Hall A Collaboration, 161The Jefferson Lab Hall A Collaboration, 162The Jefferson Lab Hall A Collaboration, 163The Jefferson Lab Hall A Collaboration, 164The Jefferson Lab Hall A Collaboration

Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1. Read More

The Panchromatic Hubble Andromeda Treasury (PHAT) survey is an on-going Hubble Space Telescope (HST) multi-cycle program to obtain high spatial resolution imaging of one-third of the M31 disk at ultraviolet through near-infrared wavelengths. In this paper, we present the first installment of the PHAT stellar cluster catalog. When completed, the PHAT cluster catalog will be among the largest and most comprehensive surveys of resolved star clusters in any galaxy. Read More

2012Jan
Authors: S. Abrahamyan, Z. Ahmed, H. Albataineh, K. Aniol, D. S. Armstrong, W. Armstrong, T. Averett, B. Babineau, A. Barbieri, V. Bellini, R. Beminiwattha, J. Benesch, F. Benmokhtar, T. Bielarski, W. Boeglin, A. Camsonne, M. Canan, P. Carter, G. D. Cates, C. Chen, J. -P. Chen, O. Hen, F. Cusanno, M. M. Dalton, R. De Leo, K. de Jager, W. Deconinck, P. Decowski, X. Deng, A. Deur, D. Dutta, A. Etile, D. Flay, G. B. Franklin, M. Friend, S. Frullani, E. Fuchey, F. Garibaldi, E. Gasser, R. Gilman, A. Giusa, A. Glamazdin, J. Gomez, J. Grames, C. Gu, O. Hansen, J. Hansknecht, D. W. Higinbotham, R. S. Holmes, T. Holmstrom, C. J. Horowitz, J. Hoskins, J. Huang, C. E. Hyde, F. Itard, C. -M. Jen, E. Jensen, G. Jin, S. Johnston, A. Kelleher, K. Kliakhandler, P. M. King, S. Kowalski, K. S. Kumar, J. Leacock, J. Leckey IV, J. H. Lee, J. J. LeRose, R. Lindgren, N. Liyanage, N. Lubinsky, J. Mammei, F. Mammoliti, D. J. Margaziotis, P. Markowitz, A. McCreary, D. McNulty, L. Mercado, Z. -E. Meziani, R. W. Michaels, M. Mihovilovic, N. Muangma, C. Muñoz-Camacho, S. Nanda, V. Nelyubin, N. Nuruzzaman, Y. Oh, A. Palmer, D. Parno, K. D. Paschke, S. K. Phillips, B. Poelker, R. Pomatsalyuk, M. Posik, A. J. R. Puckett, B. Quinn, A. Rakhman, P. E. Reimer, S. Riordan, P. Rogan, G. Ron, G. Russo, K. Saenboonruang, A. Saha, B. Sawatzky, A. Shahinyan, R. Silwal, S. Sirca, K. Slifer, P. Solvignon, P. A. Souder, M. L. Sperduto, R. Subedi, R. Suleiman, V. Sulkosky, C. M. Sutera, W. A. Tobias, W. Troth, G. M. Urciuoli, B. Waidyawansa, D. Wang, J. Wexler, R. Wilson, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, V. Yim, L. Zana, X. Zhan, J. Zhang, Y. Zhang, X. Zheng, P. Zhu

We report the first measurement of the parity-violating asymmetry A_PV in the elastic scattering of polarized electrons from 208Pb. A_PV is sensitive to the radius of the neutron distribution (Rn). The result A_PV = 0. Read More

The photon arm of the Compton polarimeter in Hall A of Jefferson Lab has been upgraded to allow for electron beam polarization measurements with better than 1% accuracy. The data acquisition system (DAQ) now includes an integrating mode, which eliminates several systematic uncertainties inherent in the original counting-DAQ setup. The photon calorimeter has been replaced with a Ce-doped GSO crystal, which has a bright output and fast response, and works well for measurements using the new integrating method at electron beam energies from 1 to 6 GeV. Read More

2011Aug

We report the first measurement of the double-spin asymmetry $A_{LT}$ for charged pion electroproduction in semi\nobreakdash-inclusive deep\nobreakdash-inelastic electron scattering on a transversely polarized $^{3}$He target. The kinematics focused on the valence quark region, $0.16Read More

The parity-violating cross-section asymmetry in the elastic scattering of polarized electrons from unpolarized protons has been measured at a four-momentum transfer squared Q2 = 0.624 GeV and beam energy E =3.48 GeV to be A_PV = -23. Read More

A wide range of nucleon and nuclear structure experiments in Jefferson Lab's Hall A require precise, continuous measurements of the polarization of the electron beam. In our Compton polarimeter, electrons are scattered off photons in a Fabry-Perot cavity; by measuring an asymmetry in the integrated signal of the scattered photons detected in a GSO crystal, we can make non-invasive, continuous measurements of the beam polarization. Our goal is to achieve 1% statistical error within two hours of running. Read More

2011Jun

We report the first measurement of target single spin asymmetries in the semi-inclusive $^3{He}(e,e'\pi^\pm)X$ reaction on a transversely polarized target. The experiment, conducted at Jefferson Lab using a 5.9 GeV electron beam, covers a range of 0. Read More

2011Feb
Affiliations: 1The Jefferson Lab Hall A Collaboration, 2The Jefferson Lab Hall A Collaboration, 3The Jefferson Lab Hall A Collaboration, 4The Jefferson Lab Hall A Collaboration, 5The Jefferson Lab Hall A Collaboration, 6The Jefferson Lab Hall A Collaboration, 7The Jefferson Lab Hall A Collaboration, 8The Jefferson Lab Hall A Collaboration, 9The Jefferson Lab Hall A Collaboration, 10The Jefferson Lab Hall A Collaboration, 11The Jefferson Lab Hall A Collaboration, 12The Jefferson Lab Hall A Collaboration, 13The Jefferson Lab Hall A Collaboration, 14The Jefferson Lab Hall A Collaboration, 15The Jefferson Lab Hall A Collaboration, 16The Jefferson Lab Hall A Collaboration, 17The Jefferson Lab Hall A Collaboration, 18The Jefferson Lab Hall A Collaboration, 19The Jefferson Lab Hall A Collaboration, 20The Jefferson Lab Hall A Collaboration, 21The Jefferson Lab Hall A Collaboration, 22The Jefferson Lab Hall A Collaboration, 23The Jefferson Lab Hall A Collaboration, 24The Jefferson Lab Hall A Collaboration, 25The Jefferson Lab Hall A Collaboration, 26The Jefferson Lab Hall A Collaboration, 27The Jefferson Lab Hall A Collaboration, 28The Jefferson Lab Hall A Collaboration, 29The Jefferson Lab Hall A Collaboration, 30The Jefferson Lab Hall A Collaboration, 31The Jefferson Lab Hall A Collaboration, 32The Jefferson Lab Hall A Collaboration, 33The Jefferson Lab Hall A Collaboration, 34The Jefferson Lab Hall A Collaboration, 35The Jefferson Lab Hall A Collaboration, 36The Jefferson Lab Hall A Collaboration, 37The Jefferson Lab Hall A Collaboration, 38The Jefferson Lab Hall A Collaboration, 39The Jefferson Lab Hall A Collaboration, 40The Jefferson Lab Hall A Collaboration, 41The Jefferson Lab Hall A Collaboration, 42The Jefferson Lab Hall A Collaboration, 43The Jefferson Lab Hall A Collaboration, 44The Jefferson Lab Hall A Collaboration, 45The Jefferson Lab Hall A Collaboration, 46The Jefferson Lab Hall A Collaboration, 47The Jefferson Lab Hall A Collaboration, 48The Jefferson Lab Hall A Collaboration, 49The Jefferson Lab Hall A Collaboration, 50The Jefferson Lab Hall A Collaboration, 51The Jefferson Lab Hall A Collaboration, 52The Jefferson Lab Hall A Collaboration, 53The Jefferson Lab Hall A Collaboration, 54The Jefferson Lab Hall A Collaboration, 55The Jefferson Lab Hall A Collaboration, 56The Jefferson Lab Hall A Collaboration, 57The Jefferson Lab Hall A Collaboration, 58The Jefferson Lab Hall A Collaboration, 59The Jefferson Lab Hall A Collaboration, 60The Jefferson Lab Hall A Collaboration, 61The Jefferson Lab Hall A Collaboration, 62The Jefferson Lab Hall A Collaboration, 63The Jefferson Lab Hall A Collaboration, 64The Jefferson Lab Hall A Collaboration, 65The Jefferson Lab Hall A Collaboration, 66The Jefferson Lab Hall A Collaboration, 67The Jefferson Lab Hall A Collaboration, 68The Jefferson Lab Hall A Collaboration, 69The Jefferson Lab Hall A Collaboration, 70The Jefferson Lab Hall A Collaboration, 71The Jefferson Lab Hall A Collaboration, 72The Jefferson Lab Hall A Collaboration, 73The Jefferson Lab Hall A Collaboration, 74The Jefferson Lab Hall A Collaboration

Precise measurements of the proton electromagnetic form factor ratio $R = \mu_p G_E^p/G_M^p$ using the polarization transfer method at Jefferson Lab have revolutionized the understanding of nucleon structure by revealing the strong decrease of $R$ with momentum transfer $Q^2$ for $Q^2 \gtrsim 1$ GeV$^2$, in strong disagreement with previous extractions of $R$ from cross section measurements. In particular, the polarization transfer results have exposed the limits of applicability of the one-photon-exchange approximation and highlighted the role of quark orbital angular momentum in the nucleon structure. The GEp-II experiment in Jefferson Lab's Hall A measured $R$ at four $Q^2$ values in the range 3. Read More

2010Aug
Authors: S. Riordan, S. Abrahamyan, B. Craver, A. Kelleher, A. Kolarkar, J. Miller, G. D. Cates, N. Liyanage, B. Wojtsekhowski, A. Acha, K. Allada, B. Anderson, K. A. Aniol, J. R. M. Annand, J. Arrington, T. Averett, A. Beck, M. Bellis, W. Boeglin, H. Breuer, J. R. Calarco, A. Camsonne, J. P. Chen, E. Chudakov, L. Coman, B. Crowe, F. Cusanno, D. Day, P. Degtyarenko, P. A. M. Dolph, C. Dutta, C. Ferdi, C. Fernandez-Ramirez, R. Feuerbach, L. M. Fraile, G. Franklin, S. Frullani, S. Fuchs, F. Garibaldi, N. Gevorgyan, R. Gilman, A. Glamazdin, J. Gomez, K. Grimm, J. O. Hansen, J. L. Herraiz, D. W. Higinbotham, R. Holmes, T. Holmstrom, D. Howell, C. W. deJager, X. Jiang, M. K. Jones, J. Katich, L. J. Kaufman, M. Khandaker, J. J. Kelly, D. Kiselev, W. Korsch, J. LeRose, R. Lindgren, P. Markowitz, D. J. Margaziotis, S. May-Tal Beck, S. Mayilyan, K. McCormick, Z. E. Meziani, R. Michaels, B. Moffit, S. Nanda, V. Nelyubin, T. Ngo, D. M. Nikolenko, B. Norum, L. Pentchev, C. F. Perdrisat, E. Piasetzky, R. Pomatsalyuk, D. Protopopescu, A. J. R. Puckett, V. A. Punjabi, X. Qian, Y. Qiang, B. Quinn, I. Rachek, R. D. Ransome, P. E. Reimer, B. Reitz, J. Roche, G. Ron, O. Rondon, G. Rosner, A. Saha, M. Sargsian, B. Sawatzky, J. Segal, M. Shabestari, A. Shahinyan, Yu. Shestakov, J. Singh, S. Sirca, P. Souder, S. Stepanyan, V. Stibunov, V. Sulkosky, S. Tajima, W. A. Tobias, J. M. Udias, G. M. Urciuoli, B. Vlahovic, H. Voskanyan, K. Wang, F. R. Wesselmann, J. R. Vignote, S. A. Wood, J. Wright, H. Yao, X. Zhu

The electric form factor of the neutron was determined from studies of the reaction He3(e,e'n)pp in quasi-elastic kinematics in Hall A at Jefferson Lab. Longitudinally polarized electrons were scattered off a polarized target in which the nuclear polarization was oriented perpendicular to the momentum transfer. The scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons that were registered in a large-solid-angle detector. Read More

An experimental study of the 16O(e,e'K^+)16N_Lambda reaction has been performed at Jefferson Lab. A thin film of falling water was used as a target. This permitted a simultaneous measurement of the p(e,e'K^+)Lambda,Sigma_0 exclusive reactions and a precise calibration of the energy scale. Read More

An experiment measuring electroproduction of hypernuclei has been performed in Hall A at Jefferson Lab on a $^{12}$C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Read More

We study the size of connected components of random nearest-neighbor graphs with vertex set the points of a homogeneous Poisson point process in ${\mathbb{R}}^d$. The connectivity function is shown to decay superexponentially, and we identify the exact exponent. From this we also obtain the decay rate of the maximal number of points of a path through the origin. Read More

1999Dec
Affiliations: 1Kharkov, FTI, 2Kharkov, FTI, 3Kharkov, FTI, 4Kharkov, FTI, 5Kharkov, FTI, 6Kharkov, FTI, 7Kentucky U., 8Kentucky U., 9Kentucky U., 10Kentucky U., 11Kentucky U., 12Jefferson Lab, 13Jefferson Lab, 14Jefferson Lab, 15Jefferson Lab, 16Hampton U.

As part of the spin physics program at Jefferson Laboratory (JLab), a M\o ller polarimeter was developed to measure the polarization of electron beam of energies 0.8 to 5.0 GeV. Read More