S. M. Hughes - The CLAS Collaboration

S. M. Hughes
Are you S. M. Hughes?

Claim your profile, edit publications, add additional information:

Contact Details

Name
S. M. Hughes
Affiliation
The CLAS Collaboration
Location

Pubs By Year

Pub Categories

 
Physics - Mesoscopic Systems and Quantum Hall Effect (17)
 
Nuclear Experiment (14)
 
Quantum Physics (14)
 
Physics - Optics (10)
 
High Energy Astrophysical Phenomena (5)
 
General Relativity and Quantum Cosmology (5)
 
Physics - Physics Education (4)
 
High Energy Physics - Experiment (3)
 
Instrumentation and Methods for Astrophysics (2)
 
High Energy Physics - Phenomenology (2)
 
Statistics - Machine Learning (1)
 
Computer Science - Learning (1)
 
Earth and Planetary Astrophysics (1)
 
Solar and Stellar Astrophysics (1)
 
High Energy Physics - Theory (1)
 
Physics - Instrumentation and Detectors (1)
 
Astrophysics of Galaxies (1)

Publications Authored By S. M. Hughes

2017May
Authors: D. Ho, P. Peng, C. Bass, P. Collins, A. D'Angelo, A. Deur, J. Fleming, C. Hanretty, T. Kageya, M. Khandaker, F. J. Klein, E. Klempt, V. Laine, M. M. Lowry, H. Lu, C. Nepali, V. A. Nikonov, T. O'Connell, A. M. Sandorfi, A. V. Sarantsev, R. A. Schumacher, I. I. Strakovsky, A. Švarc, N. K. Walford, X. Wei, C. S. Whisnant, R. L. Workman, I. Zonta, K. P. Adhikari, D. Adikaram, Z. Akbar, M. J. Amaryan, S. Anefalos Pereira, H. Avakian, J. Ball, M. Bashkanov, M. Battaglieri, V. Batourine, I. Bedlinskiy, W. J. Briscoe, V. D. Burkert, D. S. Carman, A. Celentano, G. Charles, T. Chetry, G. Ciullo, L. Clark, L. Colaneri, P. L. Cole, M. Contalbrigo, V. Crede, N. Dashyan, E. De Sanctis, R. De Vita, C. Djalali, R. Dupre, A. El Alaoui, L. El Fassi, L. Elouadrhiri, G. Fedotov, S. Fegan, R. Fersch, A. Filippi, A. Fradi, Y. Ghandilyan, G. P. Gilfoyle, F. X. Girod, D. I. Glazier, C. Gleason, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, H. Hakobyan, N. Harrison, K. Hicks, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, S. Joosten, D. Keller, G. Khachatryan, A. Kim, W. Kim, A. Klein, V. Kubarovsky, S. V. Kuleshov, L. Lanza, P. Lenisa, K. Livingston, I . J . D. MacGregor, N. Markov, B. McKinnon, T. Mineeva, V. Mokeev, R. A. Montgomery, A Movsisyan, C. Munoz Camacho, G. Murdoch, S. Niccolai, G. Niculescu, M. Osipenko, M. Paolone, R. Paremuzyan, K. Park, E. Pasyuk, W. Phelps, O. Pogorelko, J. W. Price, S. Procureur, D. Protopopescu, M. Ripani, D. Riser, B. G. Ritchie, A. Rizzo, G. Rosner, F. Sabatié, C. Salgado, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. I. Sober, D. Sokhan, N. Sparveris, S. Strauch, Ye Tian, B. Torayev, M. Ungaro, H. Voskanyan, D. P. Watts, M. H. Wood, N. Zachariou, J. Zhang, Z. W. Zhao

We report the first beam-target double-polarization asymmetries in the $\gamma + n(p) \rightarrow \pi^- + p(p)$ reaction spanning the nucleon resonance region from invariant mass $W$= $1500$ to $2300$ MeV. Circularly polarized photons and longitudinally polarized deuterons in $H\!D$ have been used with the CLAS detector at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the {\it{E}} polarization observable for an effective neutron target. Read More

Vacuum induced coherence in a strongly coupled cavity consisting of a three-level system is studied theoretically. The effects of the strong coupling to electromagnetic field vacuum are examined by solution of an open-system quantum master equation. The numerical results show that the system exhibits population trapping, and the numerical results are interpreted with analytical expressions derived from a new basis in the weak excitation regime. Read More

In previous work, we developed tools for quantifying the tidal distortion of a black hole's event horizon due to an orbiting companion. These tools use techniques which require large mass ratios (companion mass $\mu$ much smaller than black hole mass $M$), but can be used for arbitrary bound orbits, and for any black hole spin. We also showed how to visualize these distorted black holes by embedding their horizons in a global Euclidean 3-space, ${\mathbb{E}}^3$. Read More

2017Mar
Authors: CLAS Collaboration, I. Bedlinskiy, V. Kubarovsky, P. Stoler, K. P. Adhikari, Z. Akbar, S. Anefalos Pereira, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, A. S. Biselli, S. Boiarinov, W. J. Briscoe, V. D. Burkert, T. Cao, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, G. Ciullo, L. Clark, L. Colaneri, P. L. Cole, M. Contalbrigo, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, R. Dupre, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, E. Fanchini, G. Fedotov, R. Fersch, A. Filippi, J. A. Fleming, T. A. Forest, M. Garçon, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, C. Gleason, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, M. Hattawy, K. Hicks, S. M. Hughes, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, S. Joosten, D. Keller, G. Khachatryan, M. Khachatryan, M. Khandaker, A. Kim, W. Kim, F. J. Klein, S. E. Kuhn, S. V. Kuleshov, L. Lanza, P. Lenisa, K. Livingston, I. J. D. MacGregor, N. Markov, B. McKinnon, Z. E. Meziani, M. Mirazita, V. Mokeev, R. A. Montgomery, A. Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, L. A. Net, A. Ni, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, M. Paolone, R. Paremuzyan, K. Park, E. Pasyuk, P. Peng, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, Y. Prok, D. Protopopescu, A. J. R. Puckett, B. A. Raue, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatié, M. S. Saini, C. Salgado, R. A. Schumacher, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. Sokhan, N. Sparveris, S. Stepanyan, I. I. Strakovsky, S. Strauch, M. Taiuti, Ye Tian, B. Torayev, M. Turisini, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, L. B. Weinstein, M. H. Wood, M. Yurov, N. Zachariou, J. Zhang, I. Zonta

The cross section of the exclusive $\eta$ electroproduction reaction $ep\to e^\prime p^\prime \eta$ was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4\sigma/dtdQ^2dx_Bd\phi_\eta$ and structure functions $\sigma_U = \sigma_T+\epsilon\sigma_L, \sigma_{TT}$ and $\sigma_{LT}$, as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. Read More

2017Mar
Authors: P. Collins, B. G. Ritchie, M. Dugger, A. V. Anisovich, M. Döring, E. Klempt, V. A. Nikonov, D. Rönchen, D. Sadasivan, A. Sarantsev, K. P. Adhikaria, Z. Akbar, M. J. Amaryana, S. Anefalos Pereira, H. Avakiana, J. Ball, I. Balossino, M. Bashkanova, M. Battaglieri, I. Bedlinskiy, A. S. Bisellik, W. J. Briscoe, W. K. Brooks, V. D. Burkert, Frank Thanh Cao, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, T. Chetry, G. Ciullo, L. Clark, L. Colaneri, P. L. Cole, N. Compton, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, E. Fanchini, G. Fedotov, A. Filippi, J. A. Fleming, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, D. I. Glazier, C. Gleason, E. Golovatch, R. W. Gothe, K. A. Griffioen, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, D. Heddle, K. Hicks, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. S. Jo, S. Joosten, D. Keller, G. Khachatryan, M. Khachatryan, M. Khandaker, A. Kim, W. Kim, A. Klein, F. J. Klein, V. Kubarovsky, L. Lanza, P. Lenisa, K. Livingston, I. J. D. MacGregor, N. Markov, B. McKinnon, C. A. Meyer, M. Mirazita, V. Mokeev, R. A. Montgomery, A Movsisyan, C. Munoz Camacho, G. Murdoch, P. Nadel-Turonski, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, M. Paolone, R. Paremuzyan, K. Park, E. Pasyuk, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, Y. Prok, D. Protopopescu, B. A. Raue, M. Ripani, A. Rizzo, G. Rosner, P. Roy, F. Sabatié, C. Salgado, R. A. Schumacher, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. Sokhan, N. Sparveris, S. Stepanyan, I. I. Strakovsky, S. Strauch, M. Taiuti, Ye Tian, B. Torayev, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, X. Wei, N. Zachariou, J. Zhang

Measurements of the linearly-polarized photon beam asymmetry $\Sigma$ for photoproduction from the proton of $\eta$ and $\eta^\prime$ mesons are reported. A linearly-polarized tagged photon beam produced by coherent bremsstrahlung was incident on a cryogenic hydrogen target within the CEBAF Large Acceptance Spectrometer. Results are presented for the $\gamma p \to \eta p$ reaction for incident photon energies from 1. Read More

We present a self-consistent quantum optics approach to calculating the surface enhanced Raman spectrum of molecules coupled to arbitrarily shaped plasmonic systems. Our treatment is intuitive to use and provides fresh analytical insight into the physics of the Raman scattering near metallic surfaces and can be applied to a wide range of geometries including resonators, waveguides, as well as hybrid photonic-plasmonic systems. Our general theory demonstrates that the detected Raman spectrum originates from an interplay between nonlinear light generation and propagation. Read More

We present a fully three-dimensional Bloch mode expansion technique and photon Green function formalism to compute the quality factor, mode volume, and Purcell enhancement distributions of a disordered W1 photonic crystal slab waveguide in the slow-light Anderson localization regime. By considering fabrication (intrinsic) and intentional (extrinsic) disorder we find that the quality factor and Purcell enhancement statistics are well described by log-normal distributions without any fitting parameters. We also compare directly the effects of hole size fluctuations as well as fluctuations in the hole position. Read More

The Doppler effect is a shift in the frequency of waves emitted from an object moving relative to the observer. By observing and analysing the Doppler shift in electromagnetic waves from astronomical objects, astronomers gain greater insight into the structure and operation of our universe. In this paper, a simple technique is described for teaching the basics of the Doppler effect to undergraduate astrophysics students using acoustic waves. Read More

This paper describes a novel activity to model the dynamics of a Jupiter-mass, trans-Neptunian planet of a highly eccentric orbit. Despite a history rooted in modern astronomy, "Planet X", a hypothesised hidden planet lurking in our outer Solar System, has often been touted by conspiracy theorists as the cause of past mass extinction events on Earth, as well as other modern-day doomsday scenarios. Frequently dismissed as pseudoscience by astronomers, these stories continue to draw the attention of the public by provoking mass media coverage. Read More

2016Nov
Authors: P. E. Bosted1, A. Kim2, K. P. Adhikari3, D. Adikaram4, Z. Akbar5, M. J. Amaryan6, S. Anefalos Pereira7, H. Avakian8, R. A. Badui9, J. Ball10, I. Balossino11, M. Battaglieri12, I. Bedlinskiy13, A. S. Biselli14, S. Boiarinov15, W. J. Briscoe16, W. K. Brooks17, S. Bültmann18, V. D. Burkert19, T. Cao20, D. S. Carman21, A. Celentano22, S. Chandavar23, G. Charles24, T. Chetry25, G. Ciullo26, L. Clark27, L. Colaneri28, P. L. Cole29, M. Contalbrigo30, O. Cortes31, V. Crede32, A. D'Angelo33, N. Dashyan34, R. De Vita35, E. De Sanctis36, A. Deur37, C. Djalali38, R. Dupre39, H. Egiyan40, A. El Alaoui41, L. El Fassi42, L. Elouadrhiri43, P. Eugenio44, E. Fanchini45, G. Fedotov46, S. Fegan47, R. Fersch48, A. Filippi49, J. A. Fleming50, T. A. Forest51, A. Fradi52, Y. Ghandilyan53, G. P. Gilfoyle54, F. X. Girod55, D. I. Glazier56, W. Gohn57, E. Golovatch58, R. W. Gothe59, K. A. Griffioen60, M. Guidal61, N. Guler62, H. Hakobyan63, L. Guo64, K. Hafidi65, H. Hakobyan66, C. Hanretty67, N. Harrison68, M. Hattawy69, D. Heddle70, K. Hicks71, G. Hollis72, M. Holtrop73, S. M. Hughes74, D. G. Ireland75, E. L. Isupov76, D. Jenkins77, H. Jiang78, H. S. Jo79, K. Joo80, D. Keller81, G. Khachatryan82, M. Khandaker83, W. Kim84, A. Klei85, F. J. Klein86, S. Koirala87, V. Kubarovsky88, S. E. Kuhn89, L. Lanza90, P. Lenisa91, K. Livingston92, H. Y. Lu93, I. J. D. MacGregor94, N. Markov95, M. Mayer96, M. E. McCracken97, B. McKinnon98, T. Mineeva99, M. Mirazita100, V. I. Mokeev101, R. A. Montgomery102, A Movsisyan103, C. Munoz Camacho104, G. Murdoch105, P. Nadel-Turonski106, A. Ni107, S. Niccolai108, G. Niculescu109, M. Osipenko110, A. I. Ostrovidov111, M. Paolone112, R. Paremuzyan113, K. Park114, E. Pasyuk115, W. Phelps116, S. Pisano117, O. Pogorelko118, J. W. Price119, Y. Prok120, D. Protopopescu121, A. J. R. Puckett122, B. A. Raue123, M. Ripani124, A. Rizzo125, G. Rosner126, P. Rossi127, P. Roy128, F. Sabatié129, M. S. Saini130, R. A. Schumacher131, E. Seder132, Y. G. Sharabian133, Iu. Skorodumina134, G. D. Smith135, D. Sokhan136, N. Sparveris137, I. Stankovic138, S. Stepanyan139, P. Stoler140, I. I. Strakovsky141, S. Strauch142, M. Taiuti143, Ye Tian144, B. Torayev145, M. Ungaro146, H. Voskanyan147, E. Voutier148, N. K. Walford149, D. P. Watts150, X. Wei151, L. B. Weinstein152, N. Zachariou153, J. Zhang154, Z. W. Zhao155, I. Zonta156
Affiliations: 1The CLAS Collaboration, 2The CLAS Collaboration, 3The CLAS Collaboration, 4The CLAS Collaboration, 5The CLAS Collaboration, 6The CLAS Collaboration, 7The CLAS Collaboration, 8The CLAS Collaboration, 9The CLAS Collaboration, 10The CLAS Collaboration, 11The CLAS Collaboration, 12The CLAS Collaboration, 13The CLAS Collaboration, 14The CLAS Collaboration, 15The CLAS Collaboration, 16The CLAS Collaboration, 17The CLAS Collaboration, 18The CLAS Collaboration, 19The CLAS Collaboration, 20The CLAS Collaboration, 21The CLAS Collaboration, 22The CLAS Collaboration, 23The CLAS Collaboration, 24The CLAS Collaboration, 25The CLAS Collaboration, 26The CLAS Collaboration, 27The CLAS Collaboration, 28The CLAS Collaboration, 29The CLAS Collaboration, 30The CLAS Collaboration, 31The CLAS Collaboration, 32The CLAS Collaboration, 33The CLAS Collaboration, 34The CLAS Collaboration, 35The CLAS Collaboration, 36The CLAS Collaboration, 37The CLAS Collaboration, 38The CLAS Collaboration, 39The CLAS Collaboration, 40The CLAS Collaboration, 41The CLAS Collaboration, 42The CLAS Collaboration, 43The CLAS Collaboration, 44The CLAS Collaboration, 45The CLAS Collaboration, 46The CLAS Collaboration, 47The CLAS Collaboration, 48The CLAS Collaboration, 49The CLAS Collaboration, 50The CLAS Collaboration, 51The CLAS Collaboration, 52The CLAS Collaboration, 53The CLAS Collaboration, 54The CLAS Collaboration, 55The CLAS Collaboration, 56The CLAS Collaboration, 57The CLAS Collaboration, 58The CLAS Collaboration, 59The CLAS Collaboration, 60The CLAS Collaboration, 61The CLAS Collaboration, 62The CLAS Collaboration, 63The CLAS Collaboration, 64The CLAS Collaboration, 65The CLAS Collaboration, 66The CLAS Collaboration, 67The CLAS Collaboration, 68The CLAS Collaboration, 69The CLAS Collaboration, 70The CLAS Collaboration, 71The CLAS Collaboration, 72The CLAS Collaboration, 73The CLAS Collaboration, 74The CLAS Collaboration, 75The CLAS Collaboration, 76The CLAS Collaboration, 77The CLAS Collaboration, 78The CLAS Collaboration, 79The CLAS Collaboration, 80The CLAS Collaboration, 81The CLAS Collaboration, 82The CLAS Collaboration, 83The CLAS Collaboration, 84The CLAS Collaboration, 85The CLAS Collaboration, 86The CLAS Collaboration, 87The CLAS Collaboration, 88The CLAS Collaboration, 89The CLAS Collaboration, 90The CLAS Collaboration, 91The CLAS Collaboration, 92The CLAS Collaboration, 93The CLAS Collaboration, 94The CLAS Collaboration, 95The CLAS Collaboration, 96The CLAS Collaboration, 97The CLAS Collaboration, 98The CLAS Collaboration, 99The CLAS Collaboration, 100The CLAS Collaboration, 101The CLAS Collaboration, 102The CLAS Collaboration, 103The CLAS Collaboration, 104The CLAS Collaboration, 105The CLAS Collaboration, 106The CLAS Collaboration, 107The CLAS Collaboration, 108The CLAS Collaboration, 109The CLAS Collaboration, 110The CLAS Collaboration, 111The CLAS Collaboration, 112The CLAS Collaboration, 113The CLAS Collaboration, 114The CLAS Collaboration, 115The CLAS Collaboration, 116The CLAS Collaboration, 117The CLAS Collaboration, 118The CLAS Collaboration, 119The CLAS Collaboration, 120The CLAS Collaboration, 121The CLAS Collaboration, 122The CLAS Collaboration, 123The CLAS Collaboration, 124The CLAS Collaboration, 125The CLAS Collaboration, 126The CLAS Collaboration, 127The CLAS Collaboration, 128The CLAS Collaboration, 129The CLAS Collaboration, 130The CLAS Collaboration, 131The CLAS Collaboration, 132The CLAS Collaboration, 133The CLAS Collaboration, 134The CLAS Collaboration, 135The CLAS Collaboration, 136The CLAS Collaboration, 137The CLAS Collaboration, 138The CLAS Collaboration, 139The CLAS Collaboration, 140The CLAS Collaboration, 141The CLAS Collaboration, 142The CLAS Collaboration, 143The CLAS Collaboration, 144The CLAS Collaboration, 145The CLAS Collaboration, 146The CLAS Collaboration, 147The CLAS Collaboration, 148The CLAS Collaboration, 149The CLAS Collaboration, 150The CLAS Collaboration, 151The CLAS Collaboration, 152The CLAS Collaboration, 153The CLAS Collaboration, 154The CLAS Collaboration, 155The CLAS Collaboration, 156The CLAS Collaboration

Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive $\pi^0$ electroproduction reaction $\gamma^* p \to p \pi^0$, expanding an analysis of the $\gamma^* p \to n \pi^+$ reaction from the same experiment. The results were obtained from scattering of 6 GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Lab. The kinematic range covered is $1. Read More

We introduce a new coupled mode theory to model nonlinear Schr\"odinger equations for contra- propagating Bloch modes that include disorder-induced multiple scattering effects on nonlinear soliton propagation in photonic crystal waveguides. We also derive sub unit-cell coupling coefficients and use these to introduce a generalized length scale associated with each coupling effect. In particular, we define a multiple-scattering length scale that quantifies the spatial extent of a disorder- induced cavity mode. Read More

We describe how quantum dot semiconductor cavity systems can be engineered to realize anisotropy-induced dipole-dipole coupling between orthogonal dipole states in a single quantum dot. Quantum dots in single-mode cavity structures as well as photonic crystal waveguides coupled to spin states or linearly polarized excitons are considered. We demonstrate pronounced dipole-dipole coupling to control the radiative decay rate of excitons and form pure entangled states in the long time limit. Read More

2016Jul
Authors: P. E. Bosted1, M. J. Amaryan2, S. Anefalos Pereira3, H. Avakian4, R. A. Badui5, J. Ball6, N. A. Baltzell7, M. Battaglieri8, V. Batourine9, I. Bedlinskiy10, A. S. Biselli11, W. J. Briscoe12, S. Bültmann13, V. D. Burkert14, D. S. Carman15, A. Celentano16, S. Chandavar17, G. Charles18, L. Clark19, L. Colaneri20, P. L. Cole21, M. Contalbrigo22, V. Crede23, A. D'Angelo24, R. De Vita25, A. Deur26, E. De Sanctis27, C. Djalali28, R. Dupre29, H. Egiyan30, A. El Alaoui31, L. El Fassi32, L. Elouadrhiri33, P. Eugenio34, E. Fanchini35, G. Fedotov36, A. Filippi37, J. A. Fleming38, T. Forest39, A. Fradi40, N. Gevorgyan41, G. P. Gilfoyle42, F. X. Girod43, C. Gleason44, W. Gohn45, E. Golovatch46, R. W. Gothe47, K. A. Griffioen48, M. Guidal49, H. Hakobyan50, M. Hattawy51, K. Hicks52, M. Holtrop53, S. M. Hughes54, Y. Ilieva55, D. G. Ireland56, B. S. Ishkhanov57, E. L. Isupov58, H. Jiang59, H. S. Jo60, K. Joo61, S. Joosten62, G. Khachatryan63, M. Khandaker64, A. Kim65, W. Kim66, F. J. Klein67, S. Koirala68, V. Kubarovsky69, S. E. Kuhn70, L. Lanza71, L. A. Net72, P. Lenisa73, K. Livingston74, I. J. D. MacGregor75, M. E. McCracken76, B. McKinnon77, C. A. Meyer78, M. Mirazita79, V. I. Mokeev80, R. A. Montgomery81, E. Munevar82, C. Munoz Camacho83, G. Murdoch84, P. Nadel-Turonski85, S. Niccolai86, M. Osipenko87, A. I. Ostrovidov88, K. Park89, E. Pasyuk90, P. Peng91, W. Phelps92, S. Pisano93, O. Pogorelko94, J. W. Price95, Y. Prok96, D. Protopopescu97, B. A. Raue98, M. Ripani99, G. Rosner100, P. Rossi101, R. A. Schumacher102, Iu. Skorodumina103, G. D. Smith104, D. Sokhan105, N. Sparveris106, I. Stankovic107, I. I. Strakovsky108, S. Strauch109, M. Taiuti110, B. Torayev111, M. Ungaro112, H. Voskanyan113, E. Voutier114, X. Wei115, L. B. Weinstein116, J. Zhang117, I. Zonta118
Affiliations: 1CLAS Collaboration, 2CLAS Collaboration, 3CLAS Collaboration, 4CLAS Collaboration, 5CLAS Collaboration, 6CLAS Collaboration, 7CLAS Collaboration, 8CLAS Collaboration, 9CLAS Collaboration, 10CLAS Collaboration, 11CLAS Collaboration, 12CLAS Collaboration, 13CLAS Collaboration, 14CLAS Collaboration, 15CLAS Collaboration, 16CLAS Collaboration, 17CLAS Collaboration, 18CLAS Collaboration, 19CLAS Collaboration, 20CLAS Collaboration, 21CLAS Collaboration, 22CLAS Collaboration, 23CLAS Collaboration, 24CLAS Collaboration, 25CLAS Collaboration, 26CLAS Collaboration, 27CLAS Collaboration, 28CLAS Collaboration, 29CLAS Collaboration, 30CLAS Collaboration, 31CLAS Collaboration, 32CLAS Collaboration, 33CLAS Collaboration, 34CLAS Collaboration, 35CLAS Collaboration, 36CLAS Collaboration, 37CLAS Collaboration, 38CLAS Collaboration, 39CLAS Collaboration, 40CLAS Collaboration, 41CLAS Collaboration, 42CLAS Collaboration, 43CLAS Collaboration, 44CLAS Collaboration, 45CLAS Collaboration, 46CLAS Collaboration, 47CLAS Collaboration, 48CLAS Collaboration, 49CLAS Collaboration, 50CLAS Collaboration, 51CLAS Collaboration, 52CLAS Collaboration, 53CLAS Collaboration, 54CLAS Collaboration, 55CLAS Collaboration, 56CLAS Collaboration, 57CLAS Collaboration, 58CLAS Collaboration, 59CLAS Collaboration, 60CLAS Collaboration, 61CLAS Collaboration, 62CLAS Collaboration, 63CLAS Collaboration, 64CLAS Collaboration, 65CLAS Collaboration, 66CLAS Collaboration, 67CLAS Collaboration, 68CLAS Collaboration, 69CLAS Collaboration, 70CLAS Collaboration, 71CLAS Collaboration, 72CLAS Collaboration, 73CLAS Collaboration, 74CLAS Collaboration, 75CLAS Collaboration, 76CLAS Collaboration, 77CLAS Collaboration, 78CLAS Collaboration, 79CLAS Collaboration, 80CLAS Collaboration, 81CLAS Collaboration, 82CLAS Collaboration, 83CLAS Collaboration, 84CLAS Collaboration, 85CLAS Collaboration, 86CLAS Collaboration, 87CLAS Collaboration, 88CLAS Collaboration, 89CLAS Collaboration, 90CLAS Collaboration, 91CLAS Collaboration, 92CLAS Collaboration, 93CLAS Collaboration, 94CLAS Collaboration, 95CLAS Collaboration, 96CLAS Collaboration, 97CLAS Collaboration, 98CLAS Collaboration, 99CLAS Collaboration, 100CLAS Collaboration, 101CLAS Collaboration, 102CLAS Collaboration, 103CLAS Collaboration, 104CLAS Collaboration, 105CLAS Collaboration, 106CLAS Collaboration, 107CLAS Collaboration, 108CLAS Collaboration, 109CLAS Collaboration, 110CLAS Collaboration, 111CLAS Collaboration, 112CLAS Collaboration, 113CLAS Collaboration, 114CLAS Collaboration, 115CLAS Collaboration, 116CLAS Collaboration, 117CLAS Collaboration, 118CLAS Collaboration

Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive $\pi^+$ electroproduction reaction $\gamma^* p \to n \pi^+$. The results were obtained from scattering of 6 GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Lab. The kinematic range covered is $1. Read More

2016Jul
Authors: X. Zheng1, K. P. Adhikari2, P. Bosted3, A. Deur4, V. Drozdov5, L. El Fassi6, Hyekoo Kang7, K. Kovacs8, S. Kuhn9, E. Long10, S. K. Phillips11, M. Ripani12, K. Slifer13, L. C. Smith14, D. Adikaram15, Z. Akbar16, M. J. Amaryan17, S. Anefalos Pereira18, G. Asryan19, H. Avakian20, R. A. Badui21, J. Ball22, N. A. Baltzell23, M. Battaglieri24, V. Batourine25, I. Bedlinskiy26, A. S. Biselli27, W. J. Briscoe28, S. Bültmann29, V. D. Burkert30, D. S. Carman31, A. Celentano32, S. Chandavar33, G. Charles34, J. -P. Chen35, T. Chetry36, Seonho Choi37, G. Ciullo38, L. Clark39, L. Colaneri40, P. L. Cole41, N. Compton42, M. Contalbrigo43, V. Crede44, A. D'Angelo45, N. Dashyan46, R. De Vita47, E. De Sanctis48, C. Djalali49, G. E. Dodge50, R. Dupre51, H. Egiyan52, A. El Alaoui53, L. Elouadrhiri54, P. Eugenio55, E. Fanchini56, G. Fedotov57, R. Fersch58, A. Filippi59, J. A. Fleming60, N. Gevorgyan61, Y. Ghandilyan62, G. P. Gilfoyle63, K. L. Giovanetti64, F. X. Girod65, C. Gleason66, E. Golovach67, R. W. Gothe68, K. A. Griffioen69, M. Guidal70, N. Guler71, L. Guo72, C. Hanretty73, N. Harrison74, M. Hattawy75, K. Hicks76, M. Holtrop77, S. M. Hughes78, Y. Ilieva79, D. G. Ireland80, B. S. Ishkhanov81, E. L. Isupov82, D. Jenkins83, H. Jiang84, H. S. Jo85, S. Joosten86, D. Keller87, G. Khachatryan88, M. Khandaker89, A. Kim90, W. Kim91, F. J. Klein92, V. Kubarovsky93, L. Lanza94, P. Lenisa95, K. Livingston96, I . J . D. MacGregor97, N. Markov98, B. McKinnon99, M. Mirazita100, V. Mokeev101, A. Movsisyan102, E. Munevar103, C. Munoz Camacho104, G. Murdoch105, P. Nadel-Turonski106, L. A. Net107, A. Ni108, S. Niccolai109, G. Niculescu110, I. Niculescu111, M. Osipenko112, A. I. Ostrovidov113, M. Paolone114, R. Paremuzyan115, K. Park116, E. Pasyuk117, P. Peng118, S. Pisano119, O. Pogorelko120, J. W. Price121, A. J. R. Puckett122, B. A. Raue123, A. Rizzo124, G. Rosner125, P. Rossi126, P. Roy127, F. Sabatié128, C. Salgado129, R. A. Schumacher130, Y. G. Sharabian131, Iu. Skorodumina132, G. D. Smith133, D. Sokhan134, N. Sparveris135, I. Stankovic136, I. I. Strakovsky137, S. Strauch138, M. Taiuti139, Ye Tian140, M. Ungaro141, H. Voskanyan142, E. Voutier143, N. K. Walford144, D. P. Watts145, X. Wei146, L. B. Weinstein147, M. H. Wood148, N. Zachariou149, J. Zhang150
Affiliations: 1The CLAS Collaboration, 2The CLAS Collaboration, 3The CLAS Collaboration, 4The CLAS Collaboration, 5The CLAS Collaboration, 6The CLAS Collaboration, 7The CLAS Collaboration, 8The CLAS Collaboration, 9The CLAS Collaboration, 10The CLAS Collaboration, 11The CLAS Collaboration, 12The CLAS Collaboration, 13The CLAS Collaboration, 14The CLAS Collaboration, 15The CLAS Collaboration, 16The CLAS Collaboration, 17The CLAS Collaboration, 18The CLAS Collaboration, 19The CLAS Collaboration, 20The CLAS Collaboration, 21The CLAS Collaboration, 22The CLAS Collaboration, 23The CLAS Collaboration, 24The CLAS Collaboration, 25The CLAS Collaboration, 26The CLAS Collaboration, 27The CLAS Collaboration, 28The CLAS Collaboration, 29The CLAS Collaboration, 30The CLAS Collaboration, 31The CLAS Collaboration, 32The CLAS Collaboration, 33The CLAS Collaboration, 34The CLAS Collaboration, 35The CLAS Collaboration, 36The CLAS Collaboration, 37The CLAS Collaboration, 38The CLAS Collaboration, 39The CLAS Collaboration, 40The CLAS Collaboration, 41The CLAS Collaboration, 42The CLAS Collaboration, 43The CLAS Collaboration, 44The CLAS Collaboration, 45The CLAS Collaboration, 46The CLAS Collaboration, 47The CLAS Collaboration, 48The CLAS Collaboration, 49The CLAS Collaboration, 50The CLAS Collaboration, 51The CLAS Collaboration, 52The CLAS Collaboration, 53The CLAS Collaboration, 54The CLAS Collaboration, 55The CLAS Collaboration, 56The CLAS Collaboration, 57The CLAS Collaboration, 58The CLAS Collaboration, 59The CLAS Collaboration, 60The CLAS Collaboration, 61The CLAS Collaboration, 62The CLAS Collaboration, 63The CLAS Collaboration, 64The CLAS Collaboration, 65The CLAS Collaboration, 66The CLAS Collaboration, 67The CLAS Collaboration, 68The CLAS Collaboration, 69The CLAS Collaboration, 70The CLAS Collaboration, 71The CLAS Collaboration, 72The CLAS Collaboration, 73The CLAS Collaboration, 74The CLAS Collaboration, 75The CLAS Collaboration, 76The CLAS Collaboration, 77The CLAS Collaboration, 78The CLAS Collaboration, 79The CLAS Collaboration, 80The CLAS Collaboration, 81The CLAS Collaboration, 82The CLAS Collaboration, 83The CLAS Collaboration, 84The CLAS Collaboration, 85The CLAS Collaboration, 86The CLAS Collaboration, 87The CLAS Collaboration, 88The CLAS Collaboration, 89The CLAS Collaboration, 90The CLAS Collaboration, 91The CLAS Collaboration, 92The CLAS Collaboration, 93The CLAS Collaboration, 94The CLAS Collaboration, 95The CLAS Collaboration, 96The CLAS Collaboration, 97The CLAS Collaboration, 98The CLAS Collaboration, 99The CLAS Collaboration, 100The CLAS Collaboration, 101The CLAS Collaboration, 102The CLAS Collaboration, 103The CLAS Collaboration, 104The CLAS Collaboration, 105The CLAS Collaboration, 106The CLAS Collaboration, 107The CLAS Collaboration, 108The CLAS Collaboration, 109The CLAS Collaboration, 110The CLAS Collaboration, 111The CLAS Collaboration, 112The CLAS Collaboration, 113The CLAS Collaboration, 114The CLAS Collaboration, 115The CLAS Collaboration, 116The CLAS Collaboration, 117The CLAS Collaboration, 118The CLAS Collaboration, 119The CLAS Collaboration, 120The CLAS Collaboration, 121The CLAS Collaboration, 122The CLAS Collaboration, 123The CLAS Collaboration, 124The CLAS Collaboration, 125The CLAS Collaboration, 126The CLAS Collaboration, 127The CLAS Collaboration, 128The CLAS Collaboration, 129The CLAS Collaboration, 130The CLAS Collaboration, 131The CLAS Collaboration, 132The CLAS Collaboration, 133The CLAS Collaboration, 134The CLAS Collaboration, 135The CLAS Collaboration, 136The CLAS Collaboration, 137The CLAS Collaboration, 138The CLAS Collaboration, 139The CLAS Collaboration, 140The CLAS Collaboration, 141The CLAS Collaboration, 142The CLAS Collaboration, 143The CLAS Collaboration, 144The CLAS Collaboration, 145The CLAS Collaboration, 146The CLAS Collaboration, 147The CLAS Collaboration, 148The CLAS Collaboration, 149The CLAS Collaboration, 150The CLAS Collaboration

We report measurements of target- and double-spin asymmetries for the exclusive channel $\vec e\vec p\to e\pi^+ (n)$ in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH$_3$ target and a longitudinally polarized electron beam with energies 1.1, 1. Read More

We study the optical properties of quantum dipole emitters coupled to hyperbolic metamaterial nano-resonators using a semi-analytical quasinormal mode approach. We show that coupling to metamaterial nano-resonators can lead to significant Purcell enhancements that are nearly an order of magnitude larger than those of plasmonic resonators with comparable geometry. However, the associated single photon output $\beta$-factors are extremely low (around 10$\%$), far smaller than those of comparable sized metallic resonators (70$\%$). Read More

We present an analytical modal description of the rich physics involved in hybrid plasmonic-photonic devices that is confirmed by full dipole solutions of Maxwell's equations. Strong frequency-dependence for the spontaneous emission decay rate of a quantum dipole emitter coupled to these hybrid structures is predicted. In particular, it is shown that the Fano-type resonances reported experimentally in hybrid plasmonic systems, arise from a very large interference between dominant quasinormal modes of the systems in the frequency range of interest. Read More

2016Apr
Authors: P. E. Bosted1, A. S. Biselli2, S. Careccia3, G. Dodge4, R. Fersch5, S. E. Kuhn6, J. Pierce7, Y. Prok8, X. Zheng9, K. P. Adhikari10, D. Adikaram11, Z. Akbar12, M. J. Amaryan13, S. Anefalos Pereira14, G. Asryan15, H. Avakian16, R. A. Badui17, J. Ball18, N. A. Baltzell19, M. Battaglieri20, V. Batourine21, I. Bedlinskiy22, S. Boiarinov23, W. J. Briscoe24, S. Bültmann25, V. D. Burkert26, T. Cao27, D. S. Carman28, A. Celentano29, S. Chandavar30, G. Charles31, T. Chetry32, G. Ciullo33, L. Clark34, L. Colaneri35, P. L. Cole36, M. Contalbrigo37, O. Cortes38, V. Crede39, A. D'Angelo40, N. Dashyan41, R. De Vita42, A. Deur43, C. Djalali44, R. Dupre45, H. Egiyan46, A. El Alaoui47, L. El Fassi48, P. Eugenio49, E. Fanchini50, G. Fedotov51, A. Filippi52, J. A. Fleming53, T. A. Forest54, A. Fradi55, M. Garçon56, N. Gevorgyan57, Y. Ghandilyan58, G. P. Gilfoyle59, K. L. Giovanetti60, F. X. Girod61, C. Gleason62, W. Gohn63, E. Golovatch64, R. W. Gothe65, K. A. Griffioen66, N. Guler67, L. Guo68, K. Hafidi69, C. Hanretty70, N. Harrison71, M. Hattawy72, D. Heddle73, K. Hicks74, M. Holtrop75, S. M. Hughes76, Y. Ilieva77, D. G. Ireland78, B. S. Ishkhanov79, E. L. Isupov80, D. Jenkins81, H. Jiang82, H. S. Jo83, K. Joo84, S. Joosten85, D. Keller86, M. Khandaker87, W. Kim88, A. Klein89, F. J. Klein90, V. Kubarovsky91, S. V. Kuleshov92, L. Lanza93, P. Lenisa94, K. Livingston95, H. Y. Lu96, I . J . D. MacGregor97, N. Markov98, M. E. McCracken99, B. McKinnon100, C. A. Meyer101, R. Minehart102, M. Mirazita103, V. Mokeev104, A Movsisyan105, E. Munevar106, C. Munoz Camacho107, P. Nadel-Turonski108, L. A. Net109, A. Ni110, S. Niccolai111, G. Niculescu112, I. Niculescu113, M. Osipenko114, A. I. Ostrovidov115, R. Paremuzyan116, K. Park117, E. Pasyuk118, P. Peng119, W. Phelps120, S. Pisano121, O. Pogorelko122, J. W. Price123, S. Procureur124, D. Protopopescu125, A. J. R. Puckett126, B. A. Raue127, M. Ripani128, A. Rizzo129, G. Rosner130, P. Rossi131, P. Roy132, F. Sabatié133, C. Salgado134, R. A. Schumacher135, E. Seder136, Y. G. Sharabian137, A. Simonyan138, Iu. Skorodumina139, G. D. Smith140, N. Sparveris141, Ivana Stankovic142, S. Stepanyan143, I. I. Strakovsky144, S. Strauch145, V. Sytnik146, M. Taiuti147, Ye Tian148, B. Torayev149, M. Ungaro150, H. Voskanyan151, E. Voutier152, N. K. Walford153, D. P. Watts154, X. Wei155, L. B. Weinstein156, M. H. Wood157, N. Zachariou158, L. Zana159, J. Zhang160, Z. W. Zhao161, I. Zonta162
Affiliations: 1CLAS Collaboration, 2CLAS Collaboration, 3CLAS Collaboration, 4CLAS Collaboration, 5CLAS Collaboration, 6CLAS Collaboration, 7CLAS Collaboration, 8CLAS Collaboration, 9CLAS Collaboration, 10CLAS Collaboration, 11CLAS Collaboration, 12CLAS Collaboration, 13CLAS Collaboration, 14CLAS Collaboration, 15CLAS Collaboration, 16CLAS Collaboration, 17CLAS Collaboration, 18CLAS Collaboration, 19CLAS Collaboration, 20CLAS Collaboration, 21CLAS Collaboration, 22CLAS Collaboration, 23CLAS Collaboration, 24CLAS Collaboration, 25CLAS Collaboration, 26CLAS Collaboration, 27CLAS Collaboration, 28CLAS Collaboration, 29CLAS Collaboration, 30CLAS Collaboration, 31CLAS Collaboration, 32CLAS Collaboration, 33CLAS Collaboration, 34CLAS Collaboration, 35CLAS Collaboration, 36CLAS Collaboration, 37CLAS Collaboration, 38CLAS Collaboration, 39CLAS Collaboration, 40CLAS Collaboration, 41CLAS Collaboration, 42CLAS Collaboration, 43CLAS Collaboration, 44CLAS Collaboration, 45CLAS Collaboration, 46CLAS Collaboration, 47CLAS Collaboration, 48CLAS Collaboration, 49CLAS Collaboration, 50CLAS Collaboration, 51CLAS Collaboration, 52CLAS Collaboration, 53CLAS Collaboration, 54CLAS Collaboration, 55CLAS Collaboration, 56CLAS Collaboration, 57CLAS Collaboration, 58CLAS Collaboration, 59CLAS Collaboration, 60CLAS Collaboration, 61CLAS Collaboration, 62CLAS Collaboration, 63CLAS Collaboration, 64CLAS Collaboration, 65CLAS Collaboration, 66CLAS Collaboration, 67CLAS Collaboration, 68CLAS Collaboration, 69CLAS Collaboration, 70CLAS Collaboration, 71CLAS Collaboration, 72CLAS Collaboration, 73CLAS Collaboration, 74CLAS Collaboration, 75CLAS Collaboration, 76CLAS Collaboration, 77CLAS Collaboration, 78CLAS Collaboration, 79CLAS Collaboration, 80CLAS Collaboration, 81CLAS Collaboration, 82CLAS Collaboration, 83CLAS Collaboration, 84CLAS Collaboration, 85CLAS Collaboration, 86CLAS Collaboration, 87CLAS Collaboration, 88CLAS Collaboration, 89CLAS Collaboration, 90CLAS Collaboration, 91CLAS Collaboration, 92CLAS Collaboration, 93CLAS Collaboration, 94CLAS Collaboration, 95CLAS Collaboration, 96CLAS Collaboration, 97CLAS Collaboration, 98CLAS Collaboration, 99CLAS Collaboration, 100CLAS Collaboration, 101CLAS Collaboration, 102CLAS Collaboration, 103CLAS Collaboration, 104CLAS Collaboration, 105CLAS Collaboration, 106CLAS Collaboration, 107CLAS Collaboration, 108CLAS Collaboration, 109CLAS Collaboration, 110CLAS Collaboration, 111CLAS Collaboration, 112CLAS Collaboration, 113CLAS Collaboration, 114CLAS Collaboration, 115CLAS Collaboration, 116CLAS Collaboration, 117CLAS Collaboration, 118CLAS Collaboration, 119CLAS Collaboration, 120CLAS Collaboration, 121CLAS Collaboration, 122CLAS Collaboration, 123CLAS Collaboration, 124CLAS Collaboration, 125CLAS Collaboration, 126CLAS Collaboration, 127CLAS Collaboration, 128CLAS Collaboration, 129CLAS Collaboration, 130CLAS Collaboration, 131CLAS Collaboration, 132CLAS Collaboration, 133CLAS Collaboration, 134CLAS Collaboration, 135CLAS Collaboration, 136CLAS Collaboration, 137CLAS Collaboration, 138CLAS Collaboration, 139CLAS Collaboration, 140CLAS Collaboration, 141CLAS Collaboration, 142CLAS Collaboration, 143CLAS Collaboration, 144CLAS Collaboration, 145CLAS Collaboration, 146CLAS Collaboration, 147CLAS Collaboration, 148CLAS Collaboration, 149CLAS Collaboration, 150CLAS Collaboration, 151CLAS Collaboration, 152CLAS Collaboration, 153CLAS Collaboration, 154CLAS Collaboration, 155CLAS Collaboration, 156CLAS Collaboration, 157CLAS Collaboration, 158CLAS Collaboration, 159CLAS Collaboration, 160CLAS Collaboration, 161CLAS Collaboration, 162CLAS Collaboration

Beam-target double spin asymmetries and target single-spin asymmetries in exclusive $\pi^+$ and $\pi^-$ electroproduction were obtained from scattering of 1.6 to 5.7 GeV longitudinally polarized electrons from longitudinally polarized protons (for $\pi^+$) and deuterons (for $\pi^-$) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Read More

Quantum coherent feedback control is a measurement-free control method fully preserving quantum coherence. In this paper we show how time-delayed quantum coherent feedback can be used to control the degree of squeezing in the output field of a cavity containing a degenerate parametric oscillator. We focus on the specific situation of Pyragas-type feedback control where time-delayed signals are fed back directly into the quantum system. Read More

Using a polaron master equation approach we investigate the resonance fluorescence spectra from coherently driven quantum dots (QDs) coupled to an acoustic phonon bath and a photonic crystal waveguide with a rich local density of photon states (LDOS). Resonance fluorescence spectra from QDs in semiconductor crystals are known to show strong signatures of electron-phonon interactions, but when coupled to a structured photonic reservoir, the QD emission properties are also determined by the frequency dependence of the LDOS of the photon reservoir. Here, we investigate the simultaneous role of coupled photon and phonon baths on the characteristic Mollow triplet spectra from a strongly driven QD. Read More

We model the inspiral of a compact object into a more massive black hole rotating very near the theoretical maximum. We find that once the body enters the near-horizon regime the gravitational radiation is characterized by a constant frequency, equal to (twice) the horizon frequency, with an exponentially damped profile. This contrasts with the usual "chirping" behavior and, if detected, would constitute a "smoking gun" for a near-extremal black hole in nature. Read More

2016Mar
Authors: D. Rimal, D. Adikaram, B. A. Raue, L. B. Weinstein, J. Arrington, W. K. Brooks, M. Ungaro, K. P. Adhikari, Z. Akbar, S. Anefalos Pereira, R. A. Badui, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, R. P. Bennett, A. S. Biselli, S. Boiarinov, W. J. Briscoe, S. Bültmann, D. S. Carman, A. Celentano, T. Chetry, G. Ciullo, L. Clark, L. Colaneri, P. L. Cole, N. Compton, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, A. Deur, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, P. Eugenio, G. Fedotov, R. Fersch, A. Filippi, J. A. Fleming, T. A. Forest, A. Fradi, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, C. Gleason, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, L. Guo, K. Hafidi, C. Hanretty, N. Harrison, M. Hattawy, D. Heddle, K. Hicks, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. Jiang, S. Joosten, D. Keller, P. Khetarpal, G. Khachatryan, M. Khandaker, W. Kim, A. Klein, F. J. Klein, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, L. Lanza, P. Lenisa, K. Livingston, H. Y. Lu, I . J . D. MacGregor, N. Markov, B. McKinnon, M. D. Mestayer, M. Mirazita, V. Mokeev, A Movsisyan, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, A. Ni, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, M. Paolone, R. Paremuzyan, K. Park, E. Pasyuk, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, Y. Prok, D. Protopopescu, A. J. R. Puckett, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatié, C. Salgado, R. A. Schumacher, E. Seder, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. Sokhan, N. Sparveris, Ivana Stankovic, S. Stepanyan, S. Strauch, V. Sytnik, M. Taiuti, B. Torayev, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

[Background] The electromagnetic form factors of the proton measured by unpolarized and polarized electron scattering experiments show a significant disagreement that grows with the squared four momentum transfer ($Q^{2}$). Calculations have shown that the two measurements can be largely reconciled by accounting for the contributions of two-photon exchange (TPE). TPE effects are not typically included in the standard set of radiative corrections since theoretical calculations of the TPE effects are highly model dependent, and, until recently, no direct evidence of significant TPE effects has been observed. Read More

Extreme mass ratio inspirals (EMRIs) show a strong separation of timescales, with the time characterizing inspiral, $T_{\rm i}$, much longer than any time $T_{\rm o}$ characterizing orbital motions. The ratio of these timescales (which is essentially an EMRI's mass ratio) can be regarded as a parameter that controls a perturbative expansion. Here we describe the value and limitations of an "adiabatic" description of these binaries, which uses only the leading terms arising from such a two-timescale expansion. Read More

We introduce an intuitive and semi-analytical polaron master equation approach to model pulse-driven population inversion and emitted single photons from a quantum dot exciton. The master equation theory allows one to identify important phonon-induced scattering rates analytically, and fully includes the role of the time-dependent pump field. As an application of the theory, we first study a quantum dot driven by a time-varying laser pulse on and off resonance, showing the population inversion caused by acoustic phonon emission in direct agreement with recent experiment of Quilter {\em et al. Read More

A small body orbiting a black hole follows a trajectory that, at leading order, is a geodesic of the black hole spacetime. Much effort has gone into computing "self force" corrections to this motion, arising from the small body's own contributions to the system's spacetime. Another correction to the motion arises from coupling of the small body's spin to the black hole's spacetime curvature. Read More

An experiment is described that enables students to understand the properties of atmospheric extinction due to Rayleigh scattering. The experiment requires the use of red, green and blue lasers attached to a travelling microscope or similar device. The laser beams are passed through an artificial atmosphere, made from milky water, at varying depths, before impinging on either a light meter or a photodiode integral to a Picotech Dr. Read More

We report periods and JHKL observations for 648 oxygen-rich Mira variables found in two outer bulge fields at b=-7 degrees and l=+/-8 degrees and combine these with data on 8057 inner bulge Miras from the OGLE, Macho and 2MASS surveys, which are concentrated closer to the Galactic centre. Distance moduli are estimated for all these stars. Evidence is given showing that the bulge structure is a function of age. Read More

Understanding light-matter interactions using localized surface plasmons (LSPs) is of fundamental interest in classical and quantum plasmonics and has a wide range of applications. In order to understand the spatial properties of LSPs, electron energy loss spectroscopy (EELS) is a common and powerful method of spatially resolving the extreme localized fields that can be obtained with metal resonators. However, modelling EELS for general shaped resonators presents a major challenge in computational electrodynamics, requiring the full photon Green function as a function of two space points and frequency. Read More

This article describes a parallax experiment performed by undergraduate physics students at Queensland University of Technology. The experiment is analogous to the parallax method used in astronomy to measure distances to the local stars. The result of one of these experiments is presented in this paper. Read More

We demonstrate the simultaneous dressing of both vacuum-to-exciton and exciton-to-biexciton transitions of a single semiconductor quantum dot in a high-Q micropillar cavity, using photoluminescence spectroscopy. Resonant two-photon excitation of the biexciton is achieved by spectrally tuning the quantum dot emission with respect to the cavity mode. The cavity couples to both transitions and amplifies the Rabi-frequency of the likewise resonant cw laser, driving the transitions. Read More

We introduce a polariton-waveguide structure, comprised of a nanowire-based photonic crystal waveguide with a quantum dot embedded in each unit cell. Using realistic designs and parameters, we derive and calculate the fundamental electromagnetic properties of these polariton waveguides, with an emphasis on the photon Green function and local optical density of states (LDOS). Both infinite and finite-size waveguides are considered, where the latter's properties are calculated using a Dyson equation approach without any approximations. Read More

This paper describes a simple activity for plotting and characterizing the light curve from an exoplanet transit event by way of differential photometry analysis. Using free digital imaging software, participants analyse a series of telescope images with the goal of calculating various exoplanet parameters, including its size, orbital radius and habitability. The activity has been designed for a high school or undergraduate university level and introduces fundamental concepts in astrophysics and an understanding of the basis for exoplanetary science, the transit method and digital photometry. Read More

2015Jul
Authors: M. E. McCracken, M. Bellis, K. P. Adhikari, D. Adikaram, Z. Akbar, S. Anefalos Pereira, R. A. Badui, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, A. S. Biselli, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, T. Cao, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, G. E. Dodge, R. Dupre, A. El Alaoui, L. El Fassi, E. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, R. Fersch, A. Filippi, J. A. Fleming, B. Garillon, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, M. Hattawy, K. Hicks, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. Jiang, H. S. Jo, D. Keller, G. Khachatryan, M. Khandaker, A. Kim, W. Kim, A. Klein, F. J. Klein, V. Kubarovsky, P. Lenisa, K. Livingston, H. Y. Lu, I. J. D. MacGregor, M. Mayer, B. McKinnon, M. D. Mestayer, C. A. Meyer, M. Mirazita, V. Mokeev, C. I. Moody, K. Moriya, C. Munoz Camacho, P. Nadel-Turonski, L. A. Net, S. Niccolai, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, S. Pisano, O. Pogorelko, J. W. Price, S. Procureur, Y. Prok, B. A. Raue, M. Ripani, A. Rizzo, G. Rosner, P. Roy, F. Sabatié, C. Salgado, R. A. Schumacher, E. Seder, Y. G. Sharabian, Iu. Skorodumina, D. Sokhan, N. Sparveris, P. Stoler, I. I. Strakovsky, S. Strauch, V. Sytnik, Ye Tian, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

We present a search for ten baryon-number violating decay modes of $\Lambda$ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state ($\Lambda \rightarrow m \ell$) and conserve either the sum or the difference of baryon and lepton number ($B \pm L$). The tenth decay mode ($\Lambda \rightarrow \bar{p}\pi^+$) represents a difference in baryon number of two units and no difference in lepton number. Read More

2015Jul
Authors: I. Senderovich, B. T. Morrison, M. Dugger, B. G. Ritchie, E. Pasyuk, R. Tucker, J. Brock, C. Carlin, C. D. Keith, D. G. Meekins, M. L. Seely, D. R, M. D, P. Collins, K. P. Adhikari, D. Adikaram, Z. Akbar, M. D. Anderson, S. Anefalos Pereira, R. A. Badui, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, A. S. Biselli, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, A. Fradi, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, B. Garillon, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. -X. Girod, D. I. Glazier, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, S. Joosten, D. Keller, G. Khachatryan, M. Khandaker, A. Kim, F. J. Klein, V. Kubarovsky, M. C. Kunkel, P. Lenisa, K. Livingston, H. Y. Lu, I. J. D. MacGregor, P. Mattione, B. McKinnon, C. A. Meyer, T. Mineeva, V. Mokeev, R. A. Montgomery, A. Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, L. A. Net, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, K. Park, S. Park, P. Peng, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, Y. Prok, A. J. R. Puckett, M. Ripani, A. Rizzo, G. Rosner, P. Roy, F. Sabatie, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, A. Simonyan, Iu. Skorodumina, G. D. Smith, D. I. Sober, D. Sokhan, N. Sparveris, S. Stepanyan, P. Stoler, I. I. Strakovsky, S. Strauch, V. Sytnik, Ye Tian, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

Results are presented for the first measurement of the double-polarization helicity asymmetry E for the $\eta$ photoproduction reaction $\gamma p \rightarrow \eta p$. Data were obtained using the FROzen Spin Target (FROST) with the CLAS spectrometer in Hall B at Jefferson Lab, covering a range of center-of-mass energy W from threshold to 2.15 GeV and a large range in center-of-mass polar angle. Read More

2015May
Authors: N. Guler, R. G. Fersch, S. E. Kuhn, P. Bosted, K. A. Griffioen, C. Keith, R. Minehart, Y. Prok, K. P. Adhikari, D. Adikaram, M. J. Amaryan, M. D. Anderson, S. Anefalos Pereira, J. Ball, M. Battaglieri, V. Batourine, I. Bedlinskiy, W. J. Briscoe, W. K. Brooks, S. Bultmann, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, D. Crabb, V. Crede, A. D Angelo, N. Dashyan, A. Deur, C. Djalali, G. E. Dodge, R. Dupre, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, T. A. Forest, B. Garillon, M. Garcon, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, E. Golovatch, R. W. Gothe, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, N. Harrison, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, S. M. Hughes, C. E. Hyde, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. S. Jo, K. Joo, S. Joosten, D. Keller, M. Khandaker, A. Kim, W. Kim, A. Klein, F. J. Klein, V. Kubarovsky, S. V. Kuleshov, K. Livingston, H. Y. Lu, I. J. D. MacGregor, B. McKinnon, M. Mirazita, V. Mokeev, R. A. Montgomery, A Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, L. A. Net, I. Niculescu, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, S. Pisano, O. Pogorelko, J. W. Price, S. Procureur, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatie, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, A. Simonyan, Iu. Skorodumina, D. Sokhan, N. Sparveris, I. I. Strakovsky, S. Strauch, V. Sytnik, Ye Tian, S. Tkachenko, M. Ungaro, E. Voutier, N. K. Walford, X. Wei, L. B. Weinstein, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

We present the final results for the deuteron spin structure functions obtained from the full data set collected with Jefferson Lab's CLAS in 2000-2001. Polarized electrons with energies of 1.6, 2. Read More

In a previous paper, we developed tools for studying the horizon geometry of a Kerr black hole that is tidally distorted by a binary companion using techniques that require large mass ratios but can be applied to any bound orbit and allow for arbitrary black hole spin. We now apply these tools to generic Kerr black hole orbits. This allows us to investigate horizon dynamics: the tidal field perturbing the horizon's geometry varies over a generic orbit, with significant variations for eccentric orbits. Read More

We study both theoretically and experimentally the effects of introducing deliberate disorder in a slow-light photonic crystal waveguide on the photon density of states. We first introduce a theoretical model that includes both deliberate disorder through statistically moving the hole centres in the photonic crystal lattice and intrinsic disorder caused by manufacturing imperfections. We demonstrate a disorder-induced mean blueshift and an overall broadening of the photonic density of states for various amounts of deliberate disorder. Read More

We study the quantum dynamics of two quantum dots (QDs) or artificial atoms coupled through the fundamental localized plasmon of a gold nanorod resonator. We derive an intuitive and efficient time-local master equation, in which the effect of the metal nanorod is taken into consideration self-consistently using a quasinormal mode (QNM) expansion technique of the photon Green function. Our efficient QNM technique offers an alternative and more powerful approach over the standard Jaynes-Cummings model, where the radiative decay, nonradiative decay, and spectral reshaping effect of the electromagnetic environment is rigorously included in a clear and transparent way. Read More

Entanglement between two qubits (two level atoms) mediated by surface plasmons in three-dimensional plasmonic waveguides is studied using a quantum master equation formalism. Two types of waveguides, a nanowire and a V-shaped channel cut in a flat metal plane, are considered. The Green functions for the waveguides, which rigorously describes the dissipative qubit environment, are calculated numerically using a direct finite-difference time-domain (FDTD) solution of Maxwell's equations. Read More

Electron-phonon coupling in semiconductor quantum dots plays a significant role in determining the optical properties of excited excitons, especially the spectral nature of emitted photons. This paper presents a comprehensive theory and analysis of emission spectra from artificial atoms or quantum dots coupled to structured photon reservoirs and acoustic phonons, when excited with incoherent pump fields. As specific examples of structured reservoirs, we chose a Lorentzian cavity and a coupled cavity waveguide, which are of current experimental interest. Read More

Performing signal processing tasks on compressive measurements of data has received great attention in recent years. In this paper, we extend previous work on compressive dictionary learning by showing that more general random projections may be used, including sparse ones. More precisely, we examine compressive K-means clustering as a special case of compressive dictionary learning and give theoretical guarantees for its performance for a very general class of random projections. Read More

2015Mar
Authors: Nicholas Zachariou, Yordanka Ilieva, Nikolay Ya. Ivanov, Misak M Sargsian, Robert Avakian, Gerald Feldman, Pawel Nadel-Turonski, K. P. Adhikari, D. Adikaram, M. D. Anderson, S. Anefalos Pereira, H. Avakian, R. A. Badui, N. A. Baltzell, M. Battaglieri, V. Baturin, I. Bedlinskiy, A. S. Biselli, W. J. Briscoe, W. K. Brooks, V. D. Burkert, T. Cao, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, N. Compton, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, T. A. Forest, A. Fradi, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, D. I. Glazier, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, K. Hafidi, C. Hanretty, N. Harrison, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, S. M. Hughes, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. Jiang, H. S. Jo, K. Joo, D. Keller, G. Khachatryan, M. Khandaker, A. Kim, W. Kim, F. J. Klein, V. Kubarovsky, P. Lenisa, K. Livingston, H. Y. Lu, I . J . D. MacGregor, N. Markov, P. T. Mattione, B. McKinnon, T. Mineeva, M. Mirazita, V. I. Mokeeev, R. A. Montgomery, H. Moutarde, C. Munoz Camacho, L. A. Net, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, W. Phelps, J. J. Phillips, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, Y. Prok, D. Protopopescu, A. J. R. Puckett, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatié, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, I. Senderovich, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. I. Sober, D. Sokhan, N. Sparveris, S. Stepanyan, S. Strauch, V. Sytnik, M. Taiuti, Ye Tian, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. Watts, X. Wei, M. H. Wood, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta, for the CLAS collaboration

The beam-spin asymmetry, $\Sigma$, for the reaction $\gamma d\rightarrow pn$ has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, $\theta_{c. Read More

2015Mar
Authors: S. Strauch1, W. J. Briscoe2, M. Döring3, E. Klempt4, V. A. Nikonov5, E. Pasyuk6, D. Rönchen7, A. V. Sarantsev8, I. Strakovsky9, R. Workman10, K. P. Adhikari11, D. Adikaram12, M. D. Anderson13, S. Anefalos Pereira14, A. V. Anisovich15, R. A. Badui16, J. Ball17, V. Batourine18, M. Battaglieri19, I. Bedlinskiy20, N. Benmouna21, A. S. Biselli22, J. Brock23, W. K. Brooks24, V. D. Burkert25, T. Cao26, C. Carlin27, D. S. Carman28, A. Celentano29, S. Chandavar30, G. Charles31, L. Colaneri32, P. L. Cole33, N. Compton34, M. Contalbrigo35, O. Cortes36, V. Crede37, N. Dashyan38, A. D'Angelo39, R. De Vita40, E. De Sanctis41, A. Deur42, C. Djalali43, M. Dugger44, R. Dupre45, H. Egiyan46, A. El Alaoui47, L. El Fassi48, L. Elouadrhiri49, P. Eugenio50, G. Fedotov51, S. Fegan52, A. Filippi53, J. A. Fleming54, T. A. Forest55, A. Fradi56, N. Gevorgyan57, Y. Ghandilyan58, K. L. Giovanetti59, F. X. Girod60, D. I. Glazier61, W. Gohn62, E. Golovatch63, R. W. Gothe64, K. A. Griffioen65, M. Guidal66, L. Guo67, K. Hafidi68, H. Hakobyan69, C. Hanretty70, N. Harrison71, M. Hattawy72, K. Hicks73, D. Ho74, M. Holtrop75, S. M. Hughes76, Y. Ilieva77, D. G. Ireland78, B. S. Ishkhanov79, E. L. Isupov80, D. Jenkins81, H. Jiang82, H. S. Jo83, K. Joo84, S. Joosten85, C. D. Keith86, D. Keller87, G. Khachatryan88, M. Khandaker89, A. Kim90, W. Kim91, A. Klein92, F. J. Klein93, V. Kubarovsky94, S. E. Kuhn95, P. Lenisa96, K. Livingston97, H. Y. Lu98, I . J . D. MacGregor99, N. Markov100, B. McKinnon101, D. G. Meekins102, C. A. Meyer103, V. Mokeev104, R. A. Montgomery105, C. I. Moody106, H. Moutarde107, A Movsisyan108, E. Munevar109, C. Munoz Camacho110, P. Nadel-Turonski111, L. A. Net112, S. Niccolai113, G. Niculescu114, I. Niculescu115, M. Osipenko116, A. I. Ostrovidov117, K. Park118, P. Peng119, W. Phelps120, J. J. Phillips121, S. Pisano122, O. Pogorelko123, S. Pozdniakov124, J. W. Price125, S. Procureur126, Y. Prok127, D. Protopopescu128, A. J. R. Puckett129, B. A. Raue130, M. Ripani131, B. G. Ritchie132, A. Rizzo133, G. Rosner134, P. Roy135, F. Sabatié136, C. Salgado137, D. Schott138, R. A. Schumacher139, E. Seder140, M. L. Seely141, I Senderovich142, Y. G. Sharabian143, A. Simonyan144, Iu. Skorodumina145, G. D. Smith146, D. I. Sober147, D. Sokhan148, N. Sparveris149, P. Stoler150, S. Stepanyan151, V. Sytnik152, M. Taiuti153, Ye Tian154, A. Trivedi155, R. Tucker156, M. Ungaro157, H. Voskanyan158, E. Voutier159, N. K. Walford160, D. P. Watts161, X. Wei162, M. H. Wood163, N. Zachariou164, L. Zana165, J. Zhang166, Z. W. Zhao167, I. Zonta168
Affiliations: 1The CLAS Collaboration, 2The CLAS Collaboration, 3The CLAS Collaboration, 4The CLAS Collaboration, 5The CLAS Collaboration, 6The CLAS Collaboration, 7The CLAS Collaboration, 8The CLAS Collaboration, 9The CLAS Collaboration, 10The CLAS Collaboration, 11The CLAS Collaboration, 12The CLAS Collaboration, 13The CLAS Collaboration, 14The CLAS Collaboration, 15The CLAS Collaboration, 16The CLAS Collaboration, 17The CLAS Collaboration, 18The CLAS Collaboration, 19The CLAS Collaboration, 20The CLAS Collaboration, 21The CLAS Collaboration, 22The CLAS Collaboration, 23The CLAS Collaboration, 24The CLAS Collaboration, 25The CLAS Collaboration, 26The CLAS Collaboration, 27The CLAS Collaboration, 28The CLAS Collaboration, 29The CLAS Collaboration, 30The CLAS Collaboration, 31The CLAS Collaboration, 32The CLAS Collaboration, 33The CLAS Collaboration, 34The CLAS Collaboration, 35The CLAS Collaboration, 36The CLAS Collaboration, 37The CLAS Collaboration, 38The CLAS Collaboration, 39The CLAS Collaboration, 40The CLAS Collaboration, 41The CLAS Collaboration, 42The CLAS Collaboration, 43The CLAS Collaboration, 44The CLAS Collaboration, 45The CLAS Collaboration, 46The CLAS Collaboration, 47The CLAS Collaboration, 48The CLAS Collaboration, 49The CLAS Collaboration, 50The CLAS Collaboration, 51The CLAS Collaboration, 52The CLAS Collaboration, 53The CLAS Collaboration, 54The CLAS Collaboration, 55The CLAS Collaboration, 56The CLAS Collaboration, 57The CLAS Collaboration, 58The CLAS Collaboration, 59The CLAS Collaboration, 60The CLAS Collaboration, 61The CLAS Collaboration, 62The CLAS Collaboration, 63The CLAS Collaboration, 64The CLAS Collaboration, 65The CLAS Collaboration, 66The CLAS Collaboration, 67The CLAS Collaboration, 68The CLAS Collaboration, 69The CLAS Collaboration, 70The CLAS Collaboration, 71The CLAS Collaboration, 72The CLAS Collaboration, 73The CLAS Collaboration, 74The CLAS Collaboration, 75The CLAS Collaboration, 76The CLAS Collaboration, 77The CLAS Collaboration, 78The CLAS Collaboration, 79The CLAS Collaboration, 80The CLAS Collaboration, 81The CLAS Collaboration, 82The CLAS Collaboration, 83The CLAS Collaboration, 84The CLAS Collaboration, 85The CLAS Collaboration, 86The CLAS Collaboration, 87The CLAS Collaboration, 88The CLAS Collaboration, 89The CLAS Collaboration, 90The CLAS Collaboration, 91The CLAS Collaboration, 92The CLAS Collaboration, 93The CLAS Collaboration, 94The CLAS Collaboration, 95The CLAS Collaboration, 96The CLAS Collaboration, 97The CLAS Collaboration, 98The CLAS Collaboration, 99The CLAS Collaboration, 100The CLAS Collaboration, 101The CLAS Collaboration, 102The CLAS Collaboration, 103The CLAS Collaboration, 104The CLAS Collaboration, 105The CLAS Collaboration, 106The CLAS Collaboration, 107The CLAS Collaboration, 108The CLAS Collaboration, 109The CLAS Collaboration, 110The CLAS Collaboration, 111The CLAS Collaboration, 112The CLAS Collaboration, 113The CLAS Collaboration, 114The CLAS Collaboration, 115The CLAS Collaboration, 116The CLAS Collaboration, 117The CLAS Collaboration, 118The CLAS Collaboration, 119The CLAS Collaboration, 120The CLAS Collaboration, 121The CLAS Collaboration, 122The CLAS Collaboration, 123The CLAS Collaboration, 124The CLAS Collaboration, 125The CLAS Collaboration, 126The CLAS Collaboration, 127The CLAS Collaboration, 128The CLAS Collaboration, 129The CLAS Collaboration, 130The CLAS Collaboration, 131The CLAS Collaboration, 132The CLAS Collaboration, 133The CLAS Collaboration, 134The CLAS Collaboration, 135The CLAS Collaboration, 136The CLAS Collaboration, 137The CLAS Collaboration, 138The CLAS Collaboration, 139The CLAS Collaboration, 140The CLAS Collaboration, 141The CLAS Collaboration, 142The CLAS Collaboration, 143The CLAS Collaboration, 144The CLAS Collaboration, 145The CLAS Collaboration, 146The CLAS Collaboration, 147The CLAS Collaboration, 148The CLAS Collaboration, 149The CLAS Collaboration, 150The CLAS Collaboration, 151The CLAS Collaboration, 152The CLAS Collaboration, 153The CLAS Collaboration, 154The CLAS Collaboration, 155The CLAS Collaboration, 156The CLAS Collaboration, 157The CLAS Collaboration, 158The CLAS Collaboration, 159The CLAS Collaboration, 160The CLAS Collaboration, 161The CLAS Collaboration, 162The CLAS Collaboration, 163The CLAS Collaboration, 164The CLAS Collaboration, 165The CLAS Collaboration, 166The CLAS Collaboration, 167The CLAS Collaboration, 168The CLAS Collaboration

First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction $\vec \gamma \vec p \to \pi^+n$, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2. Read More

The local-field (LF) problem of a finite-size dipole emit- ter radiating inside a lossy inhomogeneous structure is a long-standing and challenging quantum optical problem, and it now is becoming more important due to rapid advances in solid-state fabrication technologies. Here we introduce a simple and accurate quasi-normal mode (QNM) technique to solve this problem analyti- cally by separating the scattering problem into contribu- tions from the QNM and an image dipole. Using a real- cavity model to describe an artificial atom inside a lossy and dispersive gold nanorod, we show when the contri- bution of the QNM to LFs will dominate over the homo- geneous contribution. Read More

We describe how the finite-difference time-domain (FDTD) technique can be used to compute the quasinormal mode (QNM) for metallic nano-resonators, which is important for describing and understanding light-matter interactions in nanoplasmonics. We use the QNM to model the enhanced spontaneous emission rate for dipole emitters near a gold nanorod dimer structure using a newly developed QNM expansion technique. Significant enhanced photon emission factors of around 1500 are obtained with large output $\beta$-factors of about $60\%$. Read More

We discuss three formally different formulas for normalization of quasinormal modes currently in use for modeling optical cavities and plasmonic resonators and show that they are complementary and provide the same result. Regardless of the formula used for normalization, one can use the norm to define an effective mode volume for use in Purcell factor calculations. Read More

The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. Read More

2014Nov
Authors: D. Adikaram, D. Rimal, L. B. Weinstein, B. Raue, P. Khetarpal, R. P. Bennett, J. Arrington, W. K. Brooks, K. P. Adhikari, A. V. Afanasev, M. J. Amaryan, M. D. Anderson, J. Ball, M. Battaglieri, I. Bedlinskiy, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, G. E. Dodge, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, P. Eugenio, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, A. Fradi, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, N. Harrison, M. Hattawy, K. Hicks, M. Holtrop, S. M. Hughes, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. Jiang, K. Joo, S. Joosten, M. Khandaker, W. Kim, A. Klein, F. J. Klein, S. Koirala, V. Kubarovsky, S. E. Kuhn, H. Y. Lu, I . J . D. MacGregor, N. Markov, M. Mayer, B. McKinnon, M. D. Mestayer, C. A. Meyer, M. Mirazita, V. Mokeev, R. A. Montgomery, C. I. Moody, H. Moutarde, A Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, S. Pisano, O. Pogorelko, S. Procureur, Y. Prok, D. Protopopescu, A. J. R. Puckett, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, F. Sabatié, D. Schott, R. A. Schumacher, Y. G. Sharabian, A. Simonyan, I. Skorodumina, E. S. Smith, G. D. Smith, D. I. Sober, N. Sparveris, S. Stepanyan, S. Strauch, V. Sytnik, M. Taiuti, Ye Tian, A. Trivedi, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta, The CLAS Collaboration

There is a significant discrepancy between the values of the proton electric form factor, $G_E^p$, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of $G_E^p$ from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. Read More

The spontaneous emission rate of a quantum dot coupled to a structured photonic reservoir is determined by the frequency dependence of its local density of photon states. Through phonon-dressing, a breakdown of Fermi's golden rule can occur for certain photonic structures whose photon decay time become comparable to the longitudinal acoustic phonon decay times. We present a polaron master equation model to calculate the photoluminescence intensity from a coherently excited quantum dot coupled to a structured photonic reservoir. Read More

We introduce a nanowire-based photonic crystal waveguide system capable of controllably mediating the photon coupling between two quantum dots which are macroscopically separated. Using a rigorous Green-function-based master equation approach, our two-dot system is shown to provide a wide range of interesting quantum regimes. In particular, we demonstrate the formation of long-lived entangled states and study the resonance fluorescence spectrum which contains clear signatures of the coupled quantum dot pair. Read More