S. Kowalski - The NA61/SHINE Collaboration

S. Kowalski
Are you S. Kowalski?

Claim your profile, edit publications, add additional information:

Contact Details

Name
S. Kowalski
Affiliation
The NA61/SHINE Collaboration
Location

Pubs By Year

Pub Categories

 
Nuclear Experiment (39)
 
High Energy Physics - Experiment (9)
 
Physics - Physics Education (6)
 
Physics - Instrumentation and Detectors (6)
 
Nuclear Theory (5)
 
High Energy Physics - Phenomenology (3)
 
Physics - Accelerator Physics (3)

Publications Authored By S. Kowalski

2017May
Authors: NA61/SHINE Collaboration, :, A. Aduszkiewicz, Y. Ali, E. Andronov, T. Antićić, B. Baatar, M. Baszczyk, S. Bhosale, A. Blondel, M. Bogomilov, A. Brandin, A. Bravar, J. Brzychczyk, S. A. Bunyatov, O. Busygina, H. Cherif, M. Ćirković, T. Czopowicz, A. Damyanova, N. Davis, H. Dembinski, M. Deveaux, W. Dominik, P. Dorosz, J. Dumarchez, R. Engel, A. Ereditato, G. A. Feofilov, Z. Fodor, C. Francois, A. Garibov, M. Gaździcki, M. Golubeva, K. Grebieszkow, F. Guber, A. Haesler, A. E. Hervé, J. Hylen, S. Igolkin, A. Ivashkin, S. R. Johnson, K. Kadija, E. Kaptur, M. Kiełbowicz, V. A. Kireyeu, V. Klochkov, N. Knezević, V. I. Kolesnikov, D. Kolev, V. P. Kondratiev, A. Korzenev, V. Kovalenko, K. Kowalik, S. Kowalski, M. Koziel, A. Krasnoperov, W. Kucewicz, M. Kuich, A. Kurepin, D. Larsen, A. László, M. Lewicki, B. Lundberg, V. V. Lyubushkin, B. Łysakowski, M. Maćkowiak-Pawłowska, B. Maksiak, A. I. Malakhov, D. Manić, A. Marchionni, A. Marcinek, A. D. Marino, K. Marton, H. -J. Mathes, T. Matulewicz, V. Matveev, G. L. Melkumov, A. Merzlaya, B. Messerly, Ł. Mik, G. B. Mills, S. Morozov, S. Mrówczyński, Y. Nagai, M. Naskręt, V. Ozvenchuk, V. Paolone, M. Pavin, O. Petukhov, C. Pistillo, R. Płaneta, P. Podlaski, B. A. Popov, M. Posiadała, S. Puławski, J. Puzović, R. Rameika, W. Rauch, M. Ravonel, R. Renfordt, E. Richter-Wąs, D. Röhrich, E. Rondio, M. Roth, B. T. Rumberger, A. Rustamov, M. Rybczynski, A. Rybicki, A. Sadovsky, K. Schmidt, I. Selyuzhenkov, A. Seryakov, P. Seyboth, M. Słodkowski, A. Snoch, P. Staszel, G. Stefanek, J. Stepaniak, M. Strikhanov, H. Ströbele, T. Šuša, M. Szuba, A. Taranenko, A. Tefelska, D. Tefelski, V. Tereshchenko, A. Toia, R. Tsenov, L. Turko, R. Ulrich, M. Unger, D. Veberič, V. V. Vechernin, G. Vesztergombi, L. Vinogradov, M. Walewski, A. Wickremasinghe, C. Wilkinson, Z. Włodarczyk, A. Wojtaszek-Szwarc, O. Wyszyński, L. Zambelli, E. D. Zimmerman, R. Zwaska

Measurements of inclusive spectra and mean multiplicities of $\pi^\pm$, K$^\pm$, p and $\bar{\textrm{p}}$ produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ($\sqrt{s} = $ 6.3, 7.7, 8. Read More

We have performed a novel comparison between electron-beam polarimeters based on M{\o}ller and Compton scattering. A sequence of electron-beam polarization measurements were performed at low beam currents ($<$ 5 $\mu$A) during the $Q_{\rm weak}$ experiment in Hall C at Jefferson Lab. These low current measurements were bracketed by the regular high current (180 $\mu$A) operation of the Compton polarimeter. Read More

2016Oct
Authors: NA61/SHINE Collaboration, :, A. Aduszkiewicz, Y. Ali, E. Andronov, T. Anticic, N. Antoniou, B. Baatar, F. Bay, A. Blondel, M. Bogomilov, A. Brandin, A. Bravar, J. Brzychczyk, S. A. Bunyatov, O. Busygina, P. Christakoglou, M. Cirkovic, T. Czopowicz, A. Damyanova, N. Davis, H. Dembinski, M. Deveaux, F. Diakonos, S. Di Luise, W. Dominik, J. Dumarchez, R. Engel, A. Ereditato, G. A. Feofilov, Z. Fodor, A. Garibov, M. Gazdzicki, M. Golubeva, K. Grebieszkow, A. Grzeszczuk, F. Guber, A. Haesler, T. Hasegawa, A. E. Herve, M. Hierholzer, J. Hylen, S. Igolkin, A. Ivashkin, S. R. Johnson, K. Kadija, A. Kapoyannis, E. Kaptur, M. Kielbowicz, J. Kisiel, N. Knezevic, T. Kobayashi, V. I. Kolesnikov, D. Kolev, V. P. Kondratiev, A. Korzenev, V. Kovalenko, K. Kowalik, S. Kowalski, M. Koziel, A. Krasnoperov, M. Kuich, A. Kurepin, D. Larsen, A. Laszlo, M. Lewicki, B. Lundberg, V. V. Lyubushkin, M. Mackowiak-Pawlowska, B. Maksiak, A. I. Malakhov, D. Manic, A. Marchionni, A. Marcinek, A. D. Marino, K. Marton, H. -J. Mathes, T. Matulewicz, V. Matveev, G. L. Melkumov, A. Merzlaya, B. Messerly, G. B. Mills, S. Morozov, S. Mrowczynski, Y. Nagai, T. Nakadaira, M. Naskret, M. Nirkko, K. Nishikawa, V. Ozvenchuk, A. D. Panagiotou, V. Paolone, M. Pavin, O. Petukhov, C. Pistillo, R. Planeta, B. A. Popov, M. Posiadala, S. Pulawski, J. Puzovic, R. Rameika, W. Rauch, M. Ravonel, A. Redij, R. Renfordt, E. Richter-Was, A. Robert, D. Rohrich, E. Rondio, M. Roth, A. Rubbia, B. T. Rumberger, A. Rustamov, M. Rybczynski, A. Rybicki, A. Sadovsky, K. Sakashita, R. Sarnecki, K. Schmidt, T. Sekiguchi, I. Selyuzhenkov, A. Seryakov, P. Seyboth, D. Sgalaberna, M. Shibata, M. Slodkowski, P. Staszel, G. Stefanek, J. Stepaniak, H. Strobele, T. Susa, M. Szuba, M. Tada, A. Taranenko, A. Tefelska, D. Tefelski, V. Tereshchenko, R. Tsenov, L. Turko, R. Ulrich, M. Unger, M. Vassiliou, D. Veberic, V. V. Vechernin, G. Vesztergombi, L. Vinogradov, M. Walewski, A. Wickremasinghe, A. Wilczek, Z. Wlodarczyk, A. Wojtaszek-Szwarc, O. Wyszynski, L. Zambelli, E. D. Zimmerman, R. Zwaska

Results on two-particle $\Delta\eta\Delta\phi$ correlations in inelastic p+p interactions at 20, 31, 40, 80, and 158~GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. Read More

2016Jul
Authors: CBM Collaboration, T. Ablyazimov, A. Abuhoza, R. P. Adak, M. Adamczyk, K. Agarwal, M. M. Aggarwal, Z. Ahammed, F. Ahmad, N. Ahmad, S. Ahmad, A. Akindinov, P. Akishin, E. Akishina, T. Akishina, V. Akishina, A. Akram, M. Al-Turany, I. Alekseev, E. Alexandrov, I. Alexandrov, S. Amar-Youcef, M. Anđelić, O. Andreeva, C. Andrei, A. Andronic, Yu. Anisimov, H. Appelshäuser, D. Argintaru, E. Atkin, S. Avdeev, R. Averbeck, M. D. Azmi, V. Baban, M. Bach, E. Badura, S. Bähr, T. Balog, M. Balzer, E. Bao, N. Baranova, T. Barczyk, D. Bartoş, S. Bashir, M. Baszczyk, O. Batenkov, V. Baublis, M. Baznat, J. Becker, K. -H. Becker, S. Belogurov, D. Belyakov, J. Bendarouach, I. Berceanu, A. Bercuci, A. Berdnikov, Y. Berdnikov, R. Berendes, G. Berezin, C. Bergmann, D. Bertini, O. Bertini, C. Beşliu, O. Bezshyyko, P. P. Bhaduri, A. Bhasin, A. K. Bhati, B. Bhattacharjee, A. Bhattacharyya, T. K. Bhattacharyya, S. Biswas, T. Blank, D. Blau, V. Blinov, C. Blume, Yu. Bocharov, J. Book, T. Breitner, U. Brüning, J. Brzychczyk, A. Bubak, H. Büsching, T. Bus, V. Butuzov, A. Bychkov, A. Byszuk, Xu Cai, M. Cálin, Ping Cao, G. Caragheorgheopol, I. Carević, V. Cătănescu, A. Chakrabarti, S. Chattopadhyay, A. Chaus, Hongfang Chen, LuYao Chen, Jianping Cheng, V. Chepurnov, H. Cherif, A. Chernogorov, M. I. Ciobanu, G. Claus, F. Constantin, M. Csanád, N. D'Ascenzo, Supriya Das, Susovan Das, J. de Cuveland, B. Debnath, D. Dementiev, Wendi Deng, Zhi Deng, H. Deppe, I. Deppner, O. Derenovskaya, C. A. Deveaux, M. Deveaux, K. Dey, M. Dey, P. Dillenseger, V. Dobyrn, D. Doering, Sheng Dong, A. Dorokhov, M. Dreschmann, A. Drozd, A. K. Dubey, S. Dubnichka, Z. Dubnichkova, M. Dürr, L. Dutka, M. Dželalija, V. V. Elsha, D. Emschermann, H. Engel, V. Eremin, T. Eşanu, J. Eschke, D. Eschweiler, Huanhuan Fan, Xingming Fan, M. Farooq, O. Fateev, Shengqin Feng, S. P. D. Figuli, I. Filozova, D. Finogeev, P. Fischer, H. Flemming, J. Förtsch, U. Frankenfeld, V. Friese, E. Friske, I. Fröhlich, J. Frühauf, J. Gajda, T. Galatyuk, G. Gangopadhyay, C. García Chávez, J. Gebelein, P. Ghosh, S. K. Ghosh, S. Gläßel, M. Goffe, L. Golinka-Bezshyyko, V. Golovatyuk, S. Golovnya, V. Golovtsov, M. Golubeva, D. Golubkov, A. Gómez Ramírez, S. Gorbunov, S. Gorokhov, D. Gottschalk, P. Gryboś, A. Grzeszczuk, F. Guber, K. Gudima, M. Gumiński, A. Gupta, Yu. Gusakov, Dong Han, H. Hartmann, Shue He, J. Hehner, N. Heine, A. Herghelegiu, N. Herrmann, B. Heß, J. M. Heuser, A. Himmi, C. Höhne, R. Holzmann, Dongdong Hu, Guangming Huang, Xinjie Huang, D. Hutter, A. Ierusalimov, E. -M. Ilgenfritz, M. Irfan, D. Ivanischev, M. Ivanov, P. Ivanov, Valery Ivanov, Victor Ivanov, Vladimir Ivanov, A. Ivashkin, K. Jaaskelainen, H. Jahan, V. Jain, V. Jakovlev, T. Janson, Di Jiang, A. Jipa, I. Kadenko, P. Kähler, B. Kämpfer, V. Kalinin, J. Kallunkathariyil, K. -H. Kampert, E. Kaptur, R. Karabowicz, O. Karavichev, T. Karavicheva, D. Karmanov, V. Karnaukhov, E. Karpechev, K. Kasiński, G. Kasprowicz, M. Kaur, A. Kazantsev, U. Kebschull, G. Kekelidze, M. M. Khan, S. A. Khan, A. Khanzadeev, F. Khasanov, A. Khvorostukhin, V. Kirakosyan, M. Kirejczyk, A. Kiryakov, M. Kiš, I. Kisel, P. Kisel, S. Kiselev, T. Kiss, P. Klaus, R. Kłeczek, Ch. Klein-Bösing, V. Kleipa, V. Klochkov, P. Kmon, K. Koch, L. Kochenda, P. Koczoń, W. Koenig, M. Kohn, B. W. Kolb, A. Kolosova, B. Komkov, M. Korolev, I. Korolko, R. Kotte, A. Kovalchuk, S. Kowalski, M. Koziel, G. Kozlov, V. Kozlov, V. Kramarenko, P. Kravtsov, E. Krebs, C. Kreidl, I. Kres, D. Kresan, G. Kretschmar, M. Krieger, A. V. Kryanev, E. Kryshen, M. Kuc, W. Kucewicz, V. Kucher, L. Kudin, A. Kugler, Ajit Kumar, Ashwini Kumar, L. Kumar, J. Kunkel, A. Kurepin, N. Kurepin, A. Kurilkin, P. Kurilkin, V. Kushpil, S. Kuznetsov, V. Kyva, V. Ladygin, C. Lara, P. Larionov, A. Laso García, E. Lavrik, I. Lazanu, A. Lebedev, S. Lebedev, E. Lebedeva, J. Lehnert, J. Lehrbach, Y. Leifels, F. Lemke, Cheng Li, Qiyan Li, Xin Li, Yuanjing Li, V. Lindenstruth, B. Linnik, Feng Liu, I. Lobanov, E. Lobanova, S. Löchner, P. -A. Loizeau, S. A. Lone, J. A. Lucio Martínez, Xiaofeng Luo, A. Lymanets, Pengfei Lyu, A. Maevskaya, S. Mahajan, D. P. Mahapatra, T. Mahmoud, P. Maj, Z. Majka, A. Malakhov, E. Malankin, D. Malkevich, O. Malyatina, H. Malygina, M. M. Mandal, S. Mandal, V. Manko, S. Manz, A. M. Marin Garcia, J. Markert, S. Masciocchi, T. Matulewicz, L. Meder, M. Merkin, V. Mialkovski, J. Michel, N. Miftakhov, L. Mik, K. Mikhailov, V. Mikhaylov, B. Milanović, V. Militsija, D. Miskowiec, I. Momot, T. Morhardt, S. Morozov, W. F. J. Müller, C. Müntz, S. Mukherjee, C. E. Muńoz Castillo, Yu. Murin, R. Najman, C. Nandi, E. Nandy, L. Naumann, T. Nayak, A. Nedosekin, V. S. Negi, W. Niebur, V. Nikulin, D. Normanov, A. Oancea, Kunsu Oh, Yu. Onishchuk, G. Ososkov, P. Otfinowski, E. Ovcharenko, S. Pal, I. Panasenko, N. R. Panda, S. Parzhitskiy, V. Patel, C. Pauly, M. Penschuck, D. Peshekhonov, V. Peshekhonov, V. Petráček, M. Petri, M. Petriş, A. Petrovici, M. Petrovici, A. Petrovskiy, O. Petukhov, D. Pfeifer, K. Piasecki, J. Pieper, J. Pietraszko, R. Płaneta, V. Plotnikov, V. Plujko, J. Pluta, A. Pop, V. Pospisil, K. Poźniak, A. Prakash, S. K. Prasad, M. Prokudin, I. Pshenichnov, M. Pugach, V. Pugatch, S. Querchfeld, S. Rabtsun, L. Radulescu, S. Raha, F. Rami, R. Raniwala, S. Raniwala, A. Raportirenko, J. Rautenberg, J. Rauza, R. Ray, S. Razin, P. Reichelt, S. Reinecke, A. Reinefeld, A. Reshetin, C. Ristea, O. Ristea, A. Rodriguez Rodriguez, F. Roether, R. Romaniuk, A. Rost, E. Rostchin, I. Rostovtseva, Amitava Roy, Ankhi Roy, J. Rożynek, Yu. Ryabov, A. Sadovsky, R. Sahoo, P. K. Sahu, S. K. Sahu, J. Saini, S. Samanta, S. S. Sambyal, V. Samsonov, J. Sánchez Rosado, O. Sander, S. Sarangi, T. Satława, S. Sau, V. Saveliev, S. Schatral, C. Schiaua, F. Schintke, C. J. Schmidt, H. R. Schmidt, K. Schmidt, J. Scholten, K. Schweda, F. Seck, S. Seddiki, I. Selyuzhenkov, A. Semennikov, A. Senger, P. Senger, A. Shabanov, A. Shabunov, Ming Shao, A. D. Sheremetiev, Shusu Shi, N. Shumeiko, V. Shumikhin, I. Sibiryak, B. Sikora, A. Simakov, C. Simon, C. Simons, R. N. Singaraju, A. K. Singh, B. K. Singh, C. P. Singh, V. Singhal, M. Singla, P. Sitzmann, K. Siwek-Wilczyńska, L. Škoda, I. Skwira-Chalot, I. Som, Guofeng Song, Jihye Song, Z. Sosin, D. Soyk, P. Staszel, M. Strikhanov, S. Strohauer, J. Stroth, C. Sturm, R. Sultanov, Yongjie Sun, D. Svirida, O. Svoboda, A. Szabó, R. Szczygieł, R. Talukdar, Zebo Tang, M. Tanha, J. Tarasiuk, O. Tarassenkova, M. -G. Târzilă, M. Teklishyn, T. Tischler, P. Tlustý, T. Tölyhi, A. Toia, N. Topil'skaya, M. Träger, S. Tripathy, I. Tsakov, Yu. Tsyupa, A. Turowiecki, N. G. Tuturas, F. Uhlig, E. Usenko, I. Valin, D. Varga, I. Vassiliev, O. Vasylyev, E. Verbitskaya, W. Verhoeven, A. Veshikov, R. Visinka, Y. P. Viyogi, S. Volkov, A. Volochniuk, A. Vorobiev, Aleksey Voronin, Alexander Voronin, V. Vovchenko, M. Vznuzdaev, Dong Wang, Xi-Wei Wang, Yaping Wang, Yi Wang, M. Weber, C. Wendisch, J. P. Wessels, M. Wiebusch, J. Wiechula, D. Wielanek, A. Wieloch, A. Wilms, N. Winckler, M. Winter, K. Wiśniewski, Gy. Wolf, Sanguk Won, Ke-Jun Wu, J. Wüstenfeld, Changzhou Xiang, Nu Xu, Junfeng Yang, Rongxing Yang, Zhongbao Yin, In-Kwon Yoo, B. Yuldashev, I. Yushmanov, W. Zabołotny, Yu. Zaitsev, N. I. Zamiatin, Yu. Zanevsky, M. Zhalov, Yifei Zhang, Yu Zhang, Lei Zhao, Jiajun Zheng, Sheng Zheng, Daicui Zhou, Jing Zhou, Xianglei Zhu, A. Zinchenko, W. Zipper, M. Żoładź, P. Zrelov, V. Zryuev, P. Zumbruch, M. Zyzak

Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. Read More

2016Mar
Authors: NA61/SHINE Collaboration, :, N. Abgrall, A. Aduszkiewicz, M. Ajaz, Y. Ali, E. Andronov, T. Antićić, N. Antoniou, B. Baatar, F. Bay, A. Blondel, J. Blümer, M. Bogomilov, A. Brandin, A. Bravar, J. Brzychczyk, S. A. Bunyatov, O. Busygina, P. Christakoglou, M. Ćirković, T. Czopowicz, N. Davis, S. Debieux, H. Dembinski, M. Deveaux, F. Diakonos, S. Di Luise, W. Dominik, J. Dumarchez, K. Dynowski, R. Engel, A. Ereditato, G. A. Feofilov, Z. Fodor, A. Garibov, M. Gaździcki, M. Golubeva, K. Grebieszkow, A. Grzeszczuk, F. Guber, A. Haesler, T. Hasegawa, A. E. Hervé, M. Hierholzer, S. Igolkin, A. Ivashkin, S. R. Johnson, K. Kadija, A. Kapoyannis, E. Kaptur, J. Kisiel, T. Kobayashi, V. I. Kolesnikov, D. Kolev, V. P. Kondratiev, A. Korzenev, K. Kowalik, S. Kowalski, M. Koziel, A. Krasnoperov, M. Kuich, A. Kurepin, D. Larsen, A. László, M. Lewicki, V. V. Lyubushkin, M. Maćkowiak-Pawłowska, B. Maksiak, A. I. Malakhov, D. Manic, A. Marcinek, A. D. Marino, K. Marton, H. -J. Mathes, T. Matulewicz, V. Matveev, G. L. Melkumov, B. Messerly, G. B. Mills, S. Morozov, S. Mrówczyński, Y. Nagai, T. Nakadaira, M. Naskręt, M. Nirkko, K. Nishikawa, A. D. Panagiotou, V. Paolone, M. Pavin, O. Petukhov, C. Pistillo, R. Płaneta, B. A. Popov, M. Posiadała-Zezula, S. Puławski, J. Puzović, W. Rauch, M. Ravonel, A. Redij, R. Renfordt, E. Richter-Wąs, A. Robert, D. Röhrich, E. Rondio, M. Roth, A. Rubbia, B. T. Rumberger, A. Rustamov, M. Rybczynski, A. Sadovsky, K. Sakashita, R. Sarnecki, K. Schmidt, T. Sekiguchi, I. Selyuzhenkov, A. Seryakov, P. Seyboth, D. Sgalaberna, M. Shibata, M. Słodkowski, P. Staszel, G. Stefanek, J. Stepaniak, H. Ströbele, T. Šuša, M. Szuba, M. Tada, A. Taranenko, A. Tefelska, D. Tefelski, V. Tereshchenko, R. Tsenov, L. Turko, R. Ulrich, M. Unger, M. Vassiliou, D. Veberič, V. V. Vechernin, G. Vesztergombi, L. Vinogradov, A. Wilczek, Z. Włodarczyk, A. Wojtaszek-Szwarc, O. Wyszyński, K. Yarritu, L. Zambelli, E. D. Zimmerman, M. Friend, V. Galymov, M. Hartz, T. Hiraki, A. Ichikawa, H. Kubo, K. Matsuoka, A. Murakami, T. Nakaya, K. Suzuki, M. Tzanov, M. Yu

Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of $\pi^\pm$-mesons from the surface of the T2K replica target for incoming 31 GeV/c protons are presented. Read More

2015Oct
Authors: A. Aduszkiewicz1, Y. Ali2, E. Andronov3, T. Antićić4, N. Antoniou5, B. Baatar6, F. Bay7, A. Blondel8, M. Bogomilov9, A. Brandin10, A. Bravar11, J. Brzychczyk12, S. A. Bunyatov13, O. Busygina14, P. Christakoglou15, M. Ćirković16, T. Czopowicz17, A. Damyanova18, N. Davis19, H. Dembinski20, M. Deveaux21, F. Diakonos22, S. Di Luise23, W. Dominik24, J. Dumarchez25, K. Dynowski26, R. Engel27, A. Ereditato28, G. A. Feofilov29, Z. Fodor30, A. Garibov31, M. Gaździcki32, M. Golubeva33, K. Grebieszkow34, A. Grzeszczuk35, F. Guber36, A. Haesler37, T. Hasegawa38, A. E. Hervé39, M. Hierholzer40, S. Igolkin41, A. Ivashkin42, S. R. Johnson43, K. Kadija44, A. Kapoyannis45, E. Kaptur46, J. Kisiel47, T. Kobayashi48, V. I. Kolesnikov49, D. Kolev50, V. P. Kondratiev51, A. Korzenev52, K. Kowalik53, S. Kowalski54, M. Koziel55, A. Krasnoperov56, M. Kuich57, A. Kurepin58, D. Larsen59, A. László60, M. Lewicki61, V. V. Lyubushkin62, M. Maćkowiak-Pawłowska63, B. Maksiak64, A. I. Malakhov65, D. Manić66, A. Marcinek67, A. D. Marino68, K. Marton69, H. -J. Mathes70, T. Matulewicz71, V. Matveev72, G. L. Melkumov73, B. Messerly74, G. B. Mills75, S. Morozov76, S. Mrówczyński77, Y. Nagai78, T. Nakadaira79, M. Naskręt80, M. Nirkko81, K. Nishikawa82, A. D. Panagiotou83, V. Paolone84, M. Pavin85, O. Petukhov86, C. Pistillo87, R. Płaneta88, B. A. Popov89, M. Posiadała90, S. Puławski91, J. Puzović92, W. Rauch93, M. Ravonel94, A. Redij95, R. Renfordt96, E. Richter-Wąs97, A. Robert98, D. Röhrich99, E. Rondio100, M. Roth101, A. Rubbia102, B. T. Rumberger103, A. Rustamov104, M. Rybczynski105, A. Sadovsky106, K. Sakashita107, K. Schmidt108, T. Sekiguchi109, I. Selyuzhenkov110, A. Seryakov111, P. Seyboth112, D. Sgalaberna113, M. Shibata114, M. Słodkowski115, P. Staszel116, G. Stefanek117, J. Stepaniak118, H. Ströbele119, T. Šuša120, M. Szuba121, M. Tada122, A. Taranenko123, D. Tefelski124, V. Tereshchenko125, R. Tsenov126, L. Turko127, R. Ulrich128, M. Unger129, M. Vassiliou130, D. Veberič131, V. V. Vechernin132, G. Vesztergombi133, L. Vinogradov134, A. Wilczek135, Z. Włodarczyk136, A. Wojtaszek-Szwarc137, O. Wyszyński138, L. Zambelli139, E. D. Zimmerman140
Affiliations: 1The NA61/SHINE Collaboration, 2The NA61/SHINE Collaboration, 3The NA61/SHINE Collaboration, 4The NA61/SHINE Collaboration, 5The NA61/SHINE Collaboration, 6The NA61/SHINE Collaboration, 7The NA61/SHINE Collaboration, 8The NA61/SHINE Collaboration, 9The NA61/SHINE Collaboration, 10The NA61/SHINE Collaboration, 11The NA61/SHINE Collaboration, 12The NA61/SHINE Collaboration, 13The NA61/SHINE Collaboration, 14The NA61/SHINE Collaboration, 15The NA61/SHINE Collaboration, 16The NA61/SHINE Collaboration, 17The NA61/SHINE Collaboration, 18The NA61/SHINE Collaboration, 19The NA61/SHINE Collaboration, 20The NA61/SHINE Collaboration, 21The NA61/SHINE Collaboration, 22The NA61/SHINE Collaboration, 23The NA61/SHINE Collaboration, 24The NA61/SHINE Collaboration, 25The NA61/SHINE Collaboration, 26The NA61/SHINE Collaboration, 27The NA61/SHINE Collaboration, 28The NA61/SHINE Collaboration, 29The NA61/SHINE Collaboration, 30The NA61/SHINE Collaboration, 31The NA61/SHINE Collaboration, 32The NA61/SHINE Collaboration, 33The NA61/SHINE Collaboration, 34The NA61/SHINE Collaboration, 35The NA61/SHINE Collaboration, 36The NA61/SHINE Collaboration, 37The NA61/SHINE Collaboration, 38The NA61/SHINE Collaboration, 39The NA61/SHINE Collaboration, 40The NA61/SHINE Collaboration, 41The NA61/SHINE Collaboration, 42The NA61/SHINE Collaboration, 43The NA61/SHINE Collaboration, 44The NA61/SHINE Collaboration, 45The NA61/SHINE Collaboration, 46The NA61/SHINE Collaboration, 47The NA61/SHINE Collaboration, 48The NA61/SHINE Collaboration, 49The NA61/SHINE Collaboration, 50The NA61/SHINE Collaboration, 51The NA61/SHINE Collaboration, 52The NA61/SHINE Collaboration, 53The NA61/SHINE Collaboration, 54The NA61/SHINE Collaboration, 55The NA61/SHINE Collaboration, 56The NA61/SHINE Collaboration, 57The NA61/SHINE Collaboration, 58The NA61/SHINE Collaboration, 59The NA61/SHINE Collaboration, 60The NA61/SHINE Collaboration, 61The NA61/SHINE Collaboration, 62The NA61/SHINE Collaboration, 63The NA61/SHINE Collaboration, 64The NA61/SHINE Collaboration, 65The NA61/SHINE Collaboration, 66The NA61/SHINE Collaboration, 67The NA61/SHINE Collaboration, 68The NA61/SHINE Collaboration, 69The NA61/SHINE Collaboration, 70The NA61/SHINE Collaboration, 71The NA61/SHINE Collaboration, 72The NA61/SHINE Collaboration, 73The NA61/SHINE Collaboration, 74The NA61/SHINE Collaboration, 75The NA61/SHINE Collaboration, 76The NA61/SHINE Collaboration, 77The NA61/SHINE Collaboration, 78The NA61/SHINE Collaboration, 79The NA61/SHINE Collaboration, 80The NA61/SHINE Collaboration, 81The NA61/SHINE Collaboration, 82The NA61/SHINE Collaboration, 83The NA61/SHINE Collaboration, 84The NA61/SHINE Collaboration, 85The NA61/SHINE Collaboration, 86The NA61/SHINE Collaboration, 87The NA61/SHINE Collaboration, 88The NA61/SHINE Collaboration, 89The NA61/SHINE Collaboration, 90The NA61/SHINE Collaboration, 91The NA61/SHINE Collaboration, 92The NA61/SHINE Collaboration, 93The NA61/SHINE Collaboration, 94The NA61/SHINE Collaboration, 95The NA61/SHINE Collaboration, 96The NA61/SHINE Collaboration, 97The NA61/SHINE Collaboration, 98The NA61/SHINE Collaboration, 99The NA61/SHINE Collaboration, 100The NA61/SHINE Collaboration, 101The NA61/SHINE Collaboration, 102The NA61/SHINE Collaboration, 103The NA61/SHINE Collaboration, 104The NA61/SHINE Collaboration, 105The NA61/SHINE Collaboration, 106The NA61/SHINE Collaboration, 107The NA61/SHINE Collaboration, 108The NA61/SHINE Collaboration, 109The NA61/SHINE Collaboration, 110The NA61/SHINE Collaboration, 111The NA61/SHINE Collaboration, 112The NA61/SHINE Collaboration, 113The NA61/SHINE Collaboration, 114The NA61/SHINE Collaboration, 115The NA61/SHINE Collaboration, 116The NA61/SHINE Collaboration, 117The NA61/SHINE Collaboration, 118The NA61/SHINE Collaboration, 119The NA61/SHINE Collaboration, 120The NA61/SHINE Collaboration, 121The NA61/SHINE Collaboration, 122The NA61/SHINE Collaboration, 123The NA61/SHINE Collaboration, 124The NA61/SHINE Collaboration, 125The NA61/SHINE Collaboration, 126The NA61/SHINE Collaboration, 127The NA61/SHINE Collaboration, 128The NA61/SHINE Collaboration, 129The NA61/SHINE Collaboration, 130The NA61/SHINE Collaboration, 131The NA61/SHINE Collaboration, 132The NA61/SHINE Collaboration, 133The NA61/SHINE Collaboration, 134The NA61/SHINE Collaboration, 135The NA61/SHINE Collaboration, 136The NA61/SHINE Collaboration, 137The NA61/SHINE Collaboration, 138The NA61/SHINE Collaboration, 139The NA61/SHINE Collaboration, 140The NA61/SHINE Collaboration

Inclusive production of $\Lambda$-hyperons was measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS in inelastic p+p interactions at beam momentum of 158~\GeVc. Spectra of transverse momentum and transverse mass as well as distributions of rapidity and x$_{_F}$ are presented. The mean multiplicity was estimated to be $0. Read More

2015Oct
Authors: N. Abgrall1, A. Aduszkiewicz2, Y. Ali3, E. Andronov4, T. Antićić5, N. Antoniou6, B. Baatar7, F. Bay8, A. Blondel9, J. Blümer10, M. Bogomilov11, A. Brandin12, A. Bravar13, J. Brzychczyk14, S. A. Bunyatov15, O. Busygina16, P. Christakoglou17, T. Czopowicz18, A. Damyanova19, N. Davis20, S. Debieux21, H. Dembinski22, M. Deveaux23, F. Diakonos24, S. Di Luise25, W. Dominik26, T. Drozhzhova27, J. Dumarchez28, K. Dynowski29, R. Engel30, A. Ereditato31, G. A. Feofilov32, Z. Fodor33, M. Gaździcki34, M. Golubeva35, K. Grebieszkow36, A. Grzeszczuk37, F. Guber38, A. Haesler39, T. Hasegawa40, A. Herve41, M. Hierholzer42, S. Igolkin43, A. Ivashkin44, D. Joković45, S. R. Johnson46, K. Kadija47, A. Kapoyannis48, E. Kaptur49, D. Kiełczewska50, J. Kisiel51, T. Kobayashi52, V. I. Kolesnikov53, D. Kolev54, V. P. Kondratiev55, A. Korzenev56, K. Kowalik57, S. Kowalski58, M. Koziel59, A. Krasnoperov60, M. Kuich61, A. Kurepin62, D. Larsen63, A. László64, M. Lewicki65, V. V. Lyubushkin66, M. Maćkowiak-Pawłowska67, Z. Majka68, B. Maksiak69, A. I. Malakhov70, A. Marchionni71, D. Manić72, A. Marcinek73, A. D. Marino74, K. Marton75, H. -J. Mathes76, T. Matulewicz77, V. Matveev78, G. L. Melkumov79, B. Messerly80, G. B. Mills81, S. Morozov82, S. Mrówczyński83, S. Murphy84, Y. Nagai85, T. Nakadaira86, M. Naskret87, M. Nirkko88, K. Nishikawa89, T. Palczewski90, A. D. Panagiotou91, V. Paolone92, M. Pavin93, O. Petukhov94, C. Pistillo95, R. Płaneta96, J. Pluta97, B. A. Popov98, M. Posiadała-Zezula99, S. Puławski100, J. Puzović101, W. Rauch102, M. Ravonel103, A. Redij104, R. Renfordt105, E. Richter-Was106, A. Robert107, D. Röhrich108, E. Rondio109, M. Roth110, A. Rubbia111, B. T. Rumberger112, A. Rustamov113, M. Rybczynski114, A. Sadovsky115, K. Sakashita116, R. Sarnecki117, K. Schmidt118, T. Sekiguchi119, I. Selyuzhenkov120, A. Seryakov121, P. Seyboth122, D. Sgalaberna123, M. Shibata124, M. Słodkowski125, P. Staszel126, G. Stefanek127, J. Stepaniak128, H. Ströbele129, T. Šuša130, M. Szuba131, M. Tada132, A. Taranenko133, A. Tefelska134, D. Tefelski135, V. Tereshchenko136, R. Tsenov137, L. Turko138, R. Ulrich139, M. Unger140, M. Vassiliou141, D. Veberič142, V. V. Vechernin143, G. Vesztergombi144, L. Vinogradov145, A. Wilczek146, Z. Wlodarczyk147, A. Wojtaszek-Szwarc148, O. Wyszyński149, K. Yarritu150, L. Zambelli151, E. D. Zimmerman152
Affiliations: 1NA61/SHINE Collaboration, 2NA61/SHINE Collaboration, 3NA61/SHINE Collaboration, 4NA61/SHINE Collaboration, 5NA61/SHINE Collaboration, 6NA61/SHINE Collaboration, 7NA61/SHINE Collaboration, 8NA61/SHINE Collaboration, 9NA61/SHINE Collaboration, 10NA61/SHINE Collaboration, 11NA61/SHINE Collaboration, 12NA61/SHINE Collaboration, 13NA61/SHINE Collaboration, 14NA61/SHINE Collaboration, 15NA61/SHINE Collaboration, 16NA61/SHINE Collaboration, 17NA61/SHINE Collaboration, 18NA61/SHINE Collaboration, 19NA61/SHINE Collaboration, 20NA61/SHINE Collaboration, 21NA61/SHINE Collaboration, 22NA61/SHINE Collaboration, 23NA61/SHINE Collaboration, 24NA61/SHINE Collaboration, 25NA61/SHINE Collaboration, 26NA61/SHINE Collaboration, 27NA61/SHINE Collaboration, 28NA61/SHINE Collaboration, 29NA61/SHINE Collaboration, 30NA61/SHINE Collaboration, 31NA61/SHINE Collaboration, 32NA61/SHINE Collaboration, 33NA61/SHINE Collaboration, 34NA61/SHINE Collaboration, 35NA61/SHINE Collaboration, 36NA61/SHINE Collaboration, 37NA61/SHINE Collaboration, 38NA61/SHINE Collaboration, 39NA61/SHINE Collaboration, 40NA61/SHINE Collaboration, 41NA61/SHINE Collaboration, 42NA61/SHINE Collaboration, 43NA61/SHINE Collaboration, 44NA61/SHINE Collaboration, 45NA61/SHINE Collaboration, 46NA61/SHINE Collaboration, 47NA61/SHINE Collaboration, 48NA61/SHINE Collaboration, 49NA61/SHINE Collaboration, 50NA61/SHINE Collaboration, 51NA61/SHINE Collaboration, 52NA61/SHINE Collaboration, 53NA61/SHINE Collaboration, 54NA61/SHINE Collaboration, 55NA61/SHINE Collaboration, 56NA61/SHINE Collaboration, 57NA61/SHINE Collaboration, 58NA61/SHINE Collaboration, 59NA61/SHINE Collaboration, 60NA61/SHINE Collaboration, 61NA61/SHINE Collaboration, 62NA61/SHINE Collaboration, 63NA61/SHINE Collaboration, 64NA61/SHINE Collaboration, 65NA61/SHINE Collaboration, 66NA61/SHINE Collaboration, 67NA61/SHINE Collaboration, 68NA61/SHINE Collaboration, 69NA61/SHINE Collaboration, 70NA61/SHINE Collaboration, 71NA61/SHINE Collaboration, 72NA61/SHINE Collaboration, 73NA61/SHINE Collaboration, 74NA61/SHINE Collaboration, 75NA61/SHINE Collaboration, 76NA61/SHINE Collaboration, 77NA61/SHINE Collaboration, 78NA61/SHINE Collaboration, 79NA61/SHINE Collaboration, 80NA61/SHINE Collaboration, 81NA61/SHINE Collaboration, 82NA61/SHINE Collaboration, 83NA61/SHINE Collaboration, 84NA61/SHINE Collaboration, 85NA61/SHINE Collaboration, 86NA61/SHINE Collaboration, 87NA61/SHINE Collaboration, 88NA61/SHINE Collaboration, 89NA61/SHINE Collaboration, 90NA61/SHINE Collaboration, 91NA61/SHINE Collaboration, 92NA61/SHINE Collaboration, 93NA61/SHINE Collaboration, 94NA61/SHINE Collaboration, 95NA61/SHINE Collaboration, 96NA61/SHINE Collaboration, 97NA61/SHINE Collaboration, 98NA61/SHINE Collaboration, 99NA61/SHINE Collaboration, 100NA61/SHINE Collaboration, 101NA61/SHINE Collaboration, 102NA61/SHINE Collaboration, 103NA61/SHINE Collaboration, 104NA61/SHINE Collaboration, 105NA61/SHINE Collaboration, 106NA61/SHINE Collaboration, 107NA61/SHINE Collaboration, 108NA61/SHINE Collaboration, 109NA61/SHINE Collaboration, 110NA61/SHINE Collaboration, 111NA61/SHINE Collaboration, 112NA61/SHINE Collaboration, 113NA61/SHINE Collaboration, 114NA61/SHINE Collaboration, 115NA61/SHINE Collaboration, 116NA61/SHINE Collaboration, 117NA61/SHINE Collaboration, 118NA61/SHINE Collaboration, 119NA61/SHINE Collaboration, 120NA61/SHINE Collaboration, 121NA61/SHINE Collaboration, 122NA61/SHINE Collaboration, 123NA61/SHINE Collaboration, 124NA61/SHINE Collaboration, 125NA61/SHINE Collaboration, 126NA61/SHINE Collaboration, 127NA61/SHINE Collaboration, 128NA61/SHINE Collaboration, 129NA61/SHINE Collaboration, 130NA61/SHINE Collaboration, 131NA61/SHINE Collaboration, 132NA61/SHINE Collaboration, 133NA61/SHINE Collaboration, 134NA61/SHINE Collaboration, 135NA61/SHINE Collaboration, 136NA61/SHINE Collaboration, 137NA61/SHINE Collaboration, 138NA61/SHINE Collaboration, 139NA61/SHINE Collaboration, 140NA61/SHINE Collaboration, 141NA61/SHINE Collaboration, 142NA61/SHINE Collaboration, 143NA61/SHINE Collaboration, 144NA61/SHINE Collaboration, 145NA61/SHINE Collaboration, 146NA61/SHINE Collaboration, 147NA61/SHINE Collaboration, 148NA61/SHINE Collaboration, 149NA61/SHINE Collaboration, 150NA61/SHINE Collaboration, 151NA61/SHINE Collaboration, 152NA61/SHINE Collaboration

Measurements of hadron production in p+C interactions at 31 GeV/c are performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2009 using a graphite target with a thickness of 4% of a nuclear interaction length. Inelastic and production cross sections as well as spectra of $\pi^\pm$, $K^\pm$, p, $K^0_S$ and $\Lambda$ are measured with high precision. Read More

2015Oct
Authors: NA61/SHINE Collaboration, :, A. Aduszkiewicz, Y. Ali, E. Andronov, T. Anticic, N. Antoniou, B. Baatar, F. Bay, A. Blondel, J. Blumer, M. Bogomilov, A. Bravar, J. Brzychczyk, S. A. Bunyatov, O. Busygina, P. Christakoglou, M. Cirkovic, T. Czopowicz, N. Davis, S. Debieux, H. Dembinski, M. Deveaux, F. Diakonos, S. Di Luise, W. Dominik, J. Dumarchez, K. Dynowski, R. Engel, A. Ereditato, G. A. Feofilov, Z. Fodor, A. Garibov, M. Gazdzicki, M. Golubeva, K. Grebieszkow, A. Grzeszczuk, F. Guber, A. Haesler, T. Hasegawa, A. Herve, M. Hierholzer, S. Igolkin, A. Ivashkin, K. Kadija, A. Kapoyannis, E. Kaptur, J. Kisiel, T. Kobayashi, V. I. Kolesnikov, D. Kolev, V. P. Kondratiev, A. Korzenev, K. Kowalik, S. Kowalski, M. Koziel, A. Krasnoperov, M. Kuich, A. Kurepin, D. Larsen, A. Laszlo, M. Lewicki, V. V. Lyubushkin, M. Mackowiak-Pawlowska, B. Maksiak, A. I. Malakhov, D. Manic, A. Marcinek, K. Marton, H. -J. Mathes, T. Matulewicz, V. Matveev, G. L. Melkumov, S. Morozov, S. Mrowczynski, T. Nakadaira, M. Naskret, M. Nirkko, K. Nishikawa, A. D. Panagiotou, M. Pavin, O. Petukhov, C. Pistillo, R. Planeta, B. A. Popov, M. Posiadala, S. Pulawski, J. Puzovic, W. Rauch, M. Ravonel, A. Redij, R. Renfordt, E. Richter-Was, A. Robert, D. Rohrich, E. Rondio, M. Roth, A. Rubbia, A. Rustamov, M. Rybczynski, A. Sadovsky, K. Sakashita, R. Sarnecki, K. Schmidt, T. Sekiguchi, A. Seryakov, P. Seyboth, D. Sgalaberna, M. Shibata, M. Slodkowski, P. Staszel, G. Stefanek, J. Stepaniak, H. Strobele, T. Susa, M. Szuba, M. Tada, A. Tefelska, D. Tefelski, V. Tereshchenko, R. Tsenov, L. Turko, R. Ulrich, M. Unger, M. Vassiliou, D. Veberic, V. V. Vechernin, G. Vesztergombi, L. Vinogradov, A. Wilczek, Z. Wlodarczyk, A. Wojtaszek-Szwarc, O. Wyszynski, L. Zambelli

Measurements of multiplicity and transverse momentum fluctuations of charged particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c beam momentum. Results for the scaled variance of the multiplicity distribution and for three strongly intensive measures of multiplicity and transverse momentum fluctuations \$\Delta[P_{T},N]\$, \$\Sigma[P_{T},N]\$ and \$\Phi_{p_T}\$ are presented. For the first time the results on fluctuations are fully corrected for experimental biases. Read More

We report on the highest precision yet achieved in the measurement of the polarization of a low energy, $\mathcal{O}$(1 GeV), electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall~C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond micro-strip detector which was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector and its large acceptance. Read More

Data from the experiment on the 197Au + 197Au reaction at 23 AMeV are analyzed with an aim to find signatures of exotic nuclear configurations such as toroid-shaped objects. The experimental data are compared with predictions of the ETNA code dedicated to look for such configurations and with the QMD model. A novel criterion of selecting events possibly resulting from the formation of exotic freeze-out configurations, "the efficiency factor", is tested. Read More

This paper first provides an overview of the pedagogical role of formative assessment in the undergraduate engineering classroom. In the last decade, technology-facilitated implementation of the collection and analysis of student responses has reduced the clerical burden on educators, making the practice more widespread. We discuss some of the reasons why this practice may not have yet reached its full potential in undergraduate engineering classrooms, as well as some available solutions. Read More

2014Nov
Authors: MOLLER Collaboration, J. Benesch, P. Brindza, R. D. Carlini, J-P. Chen, E. Chudakov, S. Covrig, M. M. Dalton, A. Deur, D. Gaskell, A. Gavalya, J. Gomez, D. W. Higinbotham, C. Keppel, D. Meekins, R. Michaels, B. Moffit, Y. Roblin, R. Suleiman, R. Wines, B. Wojtsekhowski, G. Cates, D. Crabb, D. Day, K. Gnanvo, D. Keller, N. Liyanage, V. V. Nelyubin, H. Nguyen, B. Norum, K. Paschke, V. Sulkosky, J. Zhang, X. Zheng, J. Birchall, P. Blunden, M. T. W. Gericke, W. R. Falk, L. Lee, J. Mammei, S. A. Page, W. T. H. van Oers, K. Dehmelt, A. Deshpande, N. Feege, T. K. Hemmick, K. S. Kumar, T. Kutz, R. Miskimen, M. J. Ramsey-Musolf, S. Riordan, N. Hirlinger Saylor, J. Bessuille, E. Ihloff, J. Kelsey, S. Kowalski, R. Silwal, G. De Cataldo, R. De Leo, D. Di Bari, L. Lagamba, E. NappiV. Bellini, F. Mammoliti, F. Noto, M. L. Sperduto, C. M. Sutera, P. Cole, T. A. Forest, M. Khandekar, D. McNulty, K. Aulenbacher, S. Baunack, F. Maas, V. Tioukine, R. Gilman, K. Myers, R. Ransome, A. Tadepalli, R. Beniniwattha, R. Holmes, P. Souder, D. S. Armstrong, T. D. Averett, W. Deconinck, W. Duvall, A. Lee, M. L. Pitt, J. A. Dunne, D. Dutta, L. El Fassi, F. De Persio, F. Meddi, G. M. Urciuoli, E. Cisbani, C. Fanelli, F. Garibaldi, K. Johnston, N. Simicevic, S. Wells, P. M. King, J. Roche, J. Arrington, P. E. Reimer, G. Franklin, B. Quinn, A. Ahmidouch, S. Danagoulian, O. Glamazdin, R. Pomatsalyuk, R. Mammei, J. W. Martin, T. Holmstrom, J. Erler, Yu. G. Kolomensky, J. Napolitano, K. A. Aniol, W. D. Ramsay, E. Korkmaz, D. T. Spayde, F. Benmokhtar, A. Del Dotto, R. Perrino, S. Barkanova, A. Aleksejevs, J. Singh

The physics case and an experimental overview of the MOLLER (Measurement Of a Lepton Lepton Electroweak Reaction) experiment at the 12 GeV upgraded Jefferson Lab are presented. A highlight of the Fundamental Symmetries subfield of the 2007 NSAC Long Range Plan was the SLAC E158 measurement of the parity-violating asymmetry $A_{PV}$ in polarized electron-electron (M{\o}ller) scattering. The proposed MOLLER experiment will improve on this result by a factor of five, yielding the most precise measurement of the weak mixing angle at low or high energy anticipated over the next decade. Read More

The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. Read More

2014Sep
Authors: Qweak Collaboration, T. Allison, M. Anderson, D. Androic, D. S. Armstrong, A. Asaturyan, T. D. Averett, R. Averill, J. Balewski, J. Beaufait, R. S. Beminiwattha, J. Benesch, F. Benmokhtar, J. Bessuille, J. Birchall, E. Bonnell, J. Bowman, P. Brindza, D. B. Brown, R. D. Carlini, G. D. Cates, B. Cavness, G. Clark, J. C. Cornejo, S. Covrig Dusa, M. M. Dalton, C. A. Davis, D. C. Dean, W. Deconinck, J. Diefenbach, K. Dow, J. F. Dowd, J. A. Dunne, D. Dutta, W. S. Duvall, J. R. Echols, M. Elaasar, W. R. Falk, K. D. Finelli, J. M. Finn, D. Gaskell, M. T. W. Gericke, J. Grames, V. M. Gray, K. Grimm, F. Guo, J. Hansknecht, D. J. Harrison, E. Henderson, J. R. Hoskins, E. Ihloff, K. Johnston, D. Jones, M. Jones, R. Jones, M. Kargiantoulakis, J. Kelsey, N. Khan, P. M. King, E. Korkmaz, S. Kowalski, A. Kubera, J. Leacock, J. P. Leckey, A. R. Lee, J. H. Lee, L. Lee, Y. Liang, S. MacEwan, D. Mack, J. A. Magee, R. Mahurin, J. Mammei, J. W. Martin, A. McCreary, M. H. McDonald, M. J. McHugh, P. Medeiros, D. Meekins, J. Mei, R. Michaels, A. Micherdzinska, A. Mkrtchyan, H. Mkrtchyan, N. Morgan, J. Musson, K. E. Mesick, A. Narayan, L. Z. Ndukum, V. Nelyubin, Nuruzzaman, W. T. H. van Oers, A. K. Opper, S. A. Page, J. Pan, K. D. Paschke, S. K. Phillips, M. L. Pitt, M. Poelker, J. F. Rajotte, W. D. Ramsay, W. R. Roberts, J. Roche, P. W. Rose, B. Sawatzky, T. Seva, M. H. Shabestari, R. Silwal, N. Simicevic, G. R. Smith, S. Sobczynski, P. Solvignon, D. T. Spayde, B. Stokes, D. W. Storey, A. Subedi, R. Subedi, R. Suleiman, V. Tadevosyan, W. A. Tobias, V. Tvaskis, E. Urban, B. Waidyawansa, P. Wang, S. P. Wells, S. A. Wood, S. Yang, S. Zhamkochyan, R. B. Zielinski

The Jefferson Lab Q_weak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise ${\vec{e}}$p asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. Read More

Symmetry energy, temperature and density at the time of the intermediate mass fragment formation are determined in a self-consistent manner, using the experimentally reconstructed primary hot isotope yields and anti-symmetrized molecular dynamics (AMD) simulations. The yields of primary hot fragments are experimentally reconstructed for multifragmentation events in the reaction system $^{64}$Zn + $^{112}$Sn at 40 MeV/nucleon. Using the reconstructed hot isotope yields and an improved method, based on the modified Fisher model, symmetry energy values relative to the apparent temperature, $a_{sym}/T$, are extracted. Read More

The characteristic properties of the hot nuclear matter existing at the time of fragment formation in the multifragmentation events produced in the reaction $^{64}$Zn + $^{112}$Sn at 40 MeV/nucleon are studied. A kinematical focusing method is employed to determine the multiplicities of evaporated light particles, associated with isotopically identified detected fragments. From these data the primary isotopic yield distributions are reconstructed using a Monte Carlo method. Read More

2014Jan
Authors: N. Abgrall, O. Andreeva, A. Aduszkiewicz, Y. Ali, T. Anticic, N. Antoniou, B. Baatar, F. Bay, A. Blondel, J. Blumer, M. Bogomilov, M. Bogusz, A. Bravar, J. Brzychczyk, S. A. Bunyatov, P. Christakoglou, T. Czopowicz, N. Davis, S. Debieux, H. Dembinski, F. Diakonos, S. DiLuise, W. Dominik, T. Drozhzhova, J. Dumarchez, K. Dynowski, R. Engel, I. Efthymiopoulos, A. Ereditato, A. Fabich, G. A. Feofilov, Z. Fodor, A. Fulop, M. Gazdzicki, M. Golubeva, K. Grebieszkow, A. Grzeszczuk, F. Guber, A. Haesler, T. Hasegawa, M. Hierholzer, R. Idczak, S. Igolkin, A. Ivashkin, D. Jokovic, K. Kadija, A. Kapoyannis, E. Kaptur, D. Kielczewska, M. Kirejczyk, J. Kisiel, T. Kiss, S. Kleinfelder, T. Kobayashi, V. I. Kolesnikov, D. Kolev, V. P. Kondratiev, A. Korzenev, P. Koversarski, S. Kowalski, A. Krasnoperov, A. Kurepin, D. Larsen, A. Laszlo, V. V. Lyubushkin, M. Mackowiak-Pawlowska, Z. Majka, B. Maksiak, A. I. Malakhov, D. Maletic, D. Manglunki, D. Manic, A. Marchionni, A. Marcinek, V. Marin, K. Marton, H. -J. Mathes, T. Matulewicz, V. Matveev, G. L. Melkumov, M. Messina, St. Mrowczynski, S. Murphy, T. Nakadaira, M. Nirkko, K. Nishikawa, T. Palczewski, G. Palla, A. D. Panagiotou, T. Paul, W. Peryt, O. Petukhov, C. Pistillo, R. Planeta, J. Pluta, B. A. Popov, M. Posiadala, S. Pulawski, J. Puzovic, W. Rauch, M. Ravonel, A. Redij, R. Renfordt, E. Richter-Was, A. Robert, D. Rohrich, E. Rondio, B. Rossi, M. Roth, A. Rubbia, A. Rustamov, M. Rybczynski, A. Sadovsky, K. Sakashita, M. Savic, K. Schmidt, T. Sekiguchi, P. Seyboth, D. Sgalaberna, M. Shibata, R. Sipos, E. Skrzypczak, M. Slodkowski, Z. Sosin, P. Staszel, G. Stefanek, J. Stepaniak, H. Stroebele, T. Susa, M. Szuba, M. Tada, V. Tereshchenko, T. Tolyhi, R. Tsenov, L. Turko, R. Ulrich, M. Unger, M. Vassiliou, D. Veberic, V. V. Vechernin, G. Vesztergombi, L. Vinogradov, A. Wilczek, Z. Wlodarczyk, A. Wojtaszek-Szwarz, O. Wyszynski, L. Zambelli, W. Zipper

NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. Read More

For the first time primary hot isotope distributions are experimentally reconstructed in intermediate heavy ion collisions and used with antisymmetrized molecular dynamics (AMD) calculations to determine density, temperature and symmetry energy coefficient in a self-consistent manner. A kinematical focusing method is employed to reconstruct the primary hot fragment yield distributions for multifragmentation events observed in the reaction system $^{64}$Zn + $^{112}$Sn at 40 MeV/nucleon. The reconstructed yield distributions are in good agreement with the primary isotope distributions of AMD simulations. Read More

A subset of results from the recently completed Jefferson Lab Qweak experiment are reported. This experiment, sensitive to physics beyond the Standard Model, exploits the small parity-violating asymmetry in elastic ep scattering to provide the first determination of the protons weak charge Qweak(p). The experiment employed a 180 uA longitudinally polarized 1. Read More

2013Oct
Authors: NA61/SHINE Collaboration, :, N. Abgrall, A. Aduszkiewicz, Y. Ali, T. Anticic, N. Antoniou, B. Baatar, F. Bay, A. Blondel, J. Blumer, M. Bogomilov, A. Bravar, J. Brzychczyk, S. A. Bunyatov, O. Busygina, P. Christakoglou, T. Czopowicz, N. Davis, S. Debieux, H. Dembinski, F. Diakonos, S. Di Luise, W. Dominik, T. Drozhzhova, J. Dumarchez, K. Dynowski, R. Engel, A. Ereditato, G. A. Feofilov, Z. Fodor, A. Fulop, M. Gaździcki, M. Golubeva, K. Grebieszkow, A. Grzeszczuk, F. Guber, A. Haesler, T. Hasegawa, M. Hierholzer, R. Idczak, S. Igolkin, A. Ivashkin, D. Joković, K. Kadija, A. Kapoyannis, E. Kaptur, D. Kiełczewska, M. Kirejczyk, J. Kisiel, T. Kiss, S. Kleinfelder, T. Kobayashi, V. I. Kolesnikov, D. Kolev, V. P. Kondratiev, A. Korzenev, P. Kovesarki, S. Kowalski, A. Krasnoperov, A. Kurepin, D. Larsen, A. László, V. V. Lyubushkin, M. Maćkowiak-Pawłowska, Z. Majka, B. Maksiak, A. I. Malakhov, D. Manić, A. Marcinek, V. Marin, K. Marton, H. -J. Mathes, T. Matulewicz, V. Matveev, G. L. Melkumov, St. Mrówczyński, S. Murphy, T. Nakadaira, M. Nirkko, K. Nishikawa, T. Palczewski, G. Palla, A. D. Panagiotou, T. Paul, C. Pistillo, W. Peryt, O. Petukhov, R. Płaneta, J. Pluta, B. A. Popov, M. Posiadała, S. Puławski, J. Puzović, W. Rauch, M. Ravonel, A. Redij, R. Renfordt, A. Robert, D. Röhrich, E. Rondio, M. Roth, A. Rubbia, A. Rustamov, M. Rybczynski, A. Sadovsky, K. Sakashita, M. Savić, K. Schmidt, T. Sekiguchi, P. Seyboth, D. Sgalaberna, M. Shibata, R. Sipos, E. Skrzypczak, M. Słodkowski, P. Staszel, G. Stefanek, J. Stepaniak, H. Ströbele, T. Šuša, M. Szuba, M. Tada, V. Tereshchenko, T. Tolyhi, R. Tsenov, L. Turko, R. Ulrich, M. Unger, M. Vassiliou, D. Veberič, V. V. Vechernin, G. Vesztergombi, L. Vinogradov, A. Wilczek, Z. Włodarczyk, A. Wojtaszek-Szwarc, O. Wyszyński, L. Zambelli, W. Zipper

We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ($\sqrt{s} = $ 6.3, 7.7, 8. Read More

2013Sep
Authors: N. Abgrall, A. Aduszkiewicz, Y. Ali, T. Anticic, N. Antoniou, J. Argyriades, B. Baatar, A. Blondel, J. Blumer, M. Bogomilov, A. Bravar, W. Brooks, J. Brzychczyk, S. A. Bunyatov, O. Busygina, P. Christakoglou, T. Czopowicz, N. Davis, S. Debieux, H. Dembinski, F. Diakonos, S. Di Luise, W. Dominik, T. Drozhzhova, J. Dumarchez, K. Dynowski, R. Engel, A. Ereditato, L. Esposito, G. A. Feofilov, Z. Fodor, A. Fulop, M. Gaździcki, M. Golubeva, K. Grebieszkow, A. Grzeszczuk, F. Guber, H. Hakobyan, A. Haesler, T. Hasegawa, M. Hierholzer, R. Idczak, S. Igolkin, Y. Ivanov, A. Ivashkin, D. Jokovic, K. Kadija, A. Kapoyannis, N. Katrynska, E. Kaptur, D. Kielczewska, D. Kikola, M. Kirejczyk, J. Kisiel, T. Kiss, S. Kleinfelder, T. Kobayashi, V. I. Kolesnikov, D. Kolev, V. P. Kondratiev, A. Korzenev, S. Kowalski, A. Krasnoperov, S. Kuleshov, A. Kurepin, D. Larsen, A. Laszlo, V. V. Lyubushkin, M. Mackowiak-Pawlowska, Z. Majka, B. Maksiak, A. I. Malakhov, D. Maletic, D. Manic, A. Marchionni, A. Marcinek, V. Marin, K. Marton, H. -J. Mathes, T. Matulewicz, V. Matveev, G. L. Melkumov, St. Mrówczyński, S. Murphy, T. Nakadaira, M. Nirkko, K. Nishikawa, T. Palczewski, G. Palla, A. D. Panagiotou, T. Paul, W. Peryt, C. Pistillo, A. Redij, O. Petukhov, R. Planeta, J. Pluta, B. A. Popov, M. Posiadała, S. Puławski, J. Puzovic, W. Rauch, M. Ravonel, R. Renfordt, A. Robert, D. Röhrich, E. Rondio, M. Roth, A. Rubbia, A. Rustamov, M. Rybczynski, A. Sadovsky, K. Sakashita, M. Savic, K. Schmidt, T. Sekiguchi, P. Seyboth, M. Shibata, R. Sipos, E. Skrzypczak, M. Slodkowski, P. Staszel, G. Stefanek, J. Stepaniak, T. Susa, M. Szuba, M. Tada, V. Tereshchenko, T. Tolyhi, R. Tsenov, L. Turko, R. Ulrich, M. Unger, M. Vassiliou, D. Veberic, V. V. Vechernin, G. Vesztergombi, L. Vinogradov, A. Wilczek, Z. Wlodarczyk, A. Wojtaszek, O. Wyszyński, L. Zambelli, W. Zipper

Spectra of K0S mesons and Lambda hyperons were measured in p+C interactions at 31 GeV/c with the large acceptance NA61/SHINE spectrometer at the CERN SPS. The data were collected with an isotropic graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections, charged pion spectra, and charged kaon spectra were previously measured using the same data set. Read More

InkSurvey is free, web-based software designed to facilitate the collection of real-time formative assessment. Using this tool, the instructor can embed formative assessment in the instruction process by posing an open-format question. Students equipped with pen-enabled mobile devices (tablet PCs, iPads, Android devices including some smartphones) are then actively engaged in their learning as they use digital ink to draw, sketch, or graph their responses. Read More

InkSurvey is free, web-based software designed to facilitate the collection of real-time formative assessment. Using this tool, the instructor can embed formative assessment in the instruction process by posing an open-format question. Students equipped with pen-enabled mobile devices are then actively engaged in their learning as they use digital ink to draw, sketch, or graph their responses. Read More

There is general agreement that creativity and innovation are desirable traits in the toolbox of 21\textsuperscript{st} century engineers, as well as in the future workforce in general. However, there is a dearth of exemplars, pedagogical models, or best practices to be implemented in undergraduate engineering education to develop and nurture those talents. In this paper, we use a specific example of a classroom activity from a course designed to help bridge the transition from learning the fundamental principles of engineering physics in introductory courses to being able to creatively and innovatively apply them in more advanced settings, such as senior capstone projects and on-the-job challenges in the future workplace. Read More

This paper describes results from a project in an undergraduate engineering physics course that coupled classroom use of interactive computer simulations with the collection of real-time formative assessment using pen-enabled mobile technology. Interactive simulations (free or textbook-based) are widely used across the undergraduate science and engineering curriculia to help actively engaged students increase their understanding of abstract concepts or phenomena which are not directly or easily observable. However, there are indications in the literature that we do not yet know the pedagogical best practices associated with their use to maximize learning. Read More

Students' curiosity often seems nearly nonexistent in a lecture setting; we discuss a variety of possible reasons for this, but it is the instructor who typically poses questions while only a few students, usually the better ones, respond. As we have developed and implemented the use of InkSurvey to collect real-time formative assessment, we have discovered that it can serve in an unanticipated role: to promote curiosity in engineering physics undergraduates. Curiosity often motivates creative, innovative people. Read More

The Qweak experiment has measured the parity-violating asymmetry in polarized e-p elastic scattering at Q^2 = 0.025(GeV/c)^2, employing 145 microamps of 89% longitudinally polarized electrons on a 34.4cm long liquid hydrogen target at Jefferson Lab. Read More

The experimental determination of freeze-out temperatures and densities from the yields of light elements emitted in heavy ion collisions is discussed. Results from different experimental approaches are compared with those of model calculations carried out with and without the inclusion of medium effects. Medium effects become of relevance for baryon densities above $\approx 5 \times 10^{-4}$ fm$^{-3}$. Read More

We report on parity-violating asymmetries in the nucleon resonance region measured using $5 - 6$ GeV longitudinally polarized electrons scattering off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the $\Delta(1232)$, and provide a verification of quark-hadron duality in the nucleon electroweak $\gamma Z$ interference structure functions at the (10-15)% level. The results are of particular interest to models relevant for calculating the $\gamma Z$ box-diagram corrections to elastic parity-violating electron scattering measurements. Read More

2012Aug
Authors: The HAPPEX, PREX Collaborations, :, S. Abrahamyan, A. Acha, A. Afanasev, Z. Ahmed, H. Albataineh, K. Aniol, D. S. Armstrong, W. Armstrong, J. Arrington, T. Averett, B. Babineau, S. L. Bailey, J. Barber, A. Barbieri, A. Beck, V. Bellini, R. Beminiwattha, H. Benaoum, J. Benesch, F. Benmokhtar, P. Bertin, T. Bielarski, W. Boeglin, P. Bosted, F. Butaru, E. Burtin, J. Cahoon, A. Camsonne, M. Canan, P. Carter, C. C. Chang, G. D. Cates, Y. C. Chao, C. Chen, J. P. Chen, Seonho Choi, E. Chudakov, E. Cisbani, B. Craver, F. Cusanno, M. M. Dalton, R. De Leo, K. de Jager, W. Deconinck, P. Decowski, D. Deepa, X. Deng, A. Deur, D. Dutta, A. Etile, C. Ferdi, R. J. Feuerbach, J. M. Finn, D. Flay, G. B. Franklin, M. Friend, S. Frullani, E. Fuchey, S. A. Fuchs, K. Fuoti, F. Garibaldi, E. Gasser, R. Gilman, A. Giusa, A. Glamazdin, L. E. Glesener, J. Gomez, M. Gorchtein, J. Grames, K. Grimm, C. Gu, O. Hansen, J. Hansknecht, O. Hen, D. W. Higinbotham, R. S. Holmes, T. Holmstrom, C. J. Horowitz, J. Hoskins, J. Huang, T. B. Humensky, C. E. Hyde, H. Ibrahim, F. Itard, C. M. Jen, E. Jensen, X. Jiang, G. Jin, S. Johnston, J. Katich, L. J. Kaufman, A. Kelleher, K. Kliakhandler, P. M. King, A. Kolarkar, S. Kowalski, E. Kuchina, K. S. Kumar, L. Lagamba, D. Lambert, P. LaViolette, J. Leacock, J. Leckey IV, J. H. Lee, J. J. LeRose, D. Lhuillier, R. Lindgren, N. Liyanage, N. Lubinsky, J. Mammei, F. Mammoliti, D. J. Margaziotis, P. Markowitz, M. Mazouz, K. McCormick, A. McCreary, D. McNulty, D. G. Meekins, L. Mercado, Z. E. Meziani, R. W. Michaels, M. Mihovilovic, B. Moffit, P. Monaghan, N. Muangma, C. Munoz-Camacho, S. Nanda, V. Nelyubin, D. Neyret, Nuruzzaman, Y. Oh, K. Otis, A. Palmer, D. Parno, K. D. Paschke, S. K. Phillips, M. Poelker, R. Pomatsalyuk, M. Posik, M. Potokar, K. Prok, A. J. R. Puckett, X. Qian, Y. Qiang, B. Quinn, A. Rakhman, P. E. Reimer, B. Reitz, S. Riordan, J. Roche, P. Rogan, G. Ron, G. Russo, K. Saenboonruang, A. Saha, B. Sawatzky, A. Shahinyan, R. Silwal, J. Singh, S. Sirca, K. Slifer, R. Snyder, P. Solvignon, P. A. Souder, M. L. Sperduto, R. Subedi, M. L. Stutzman, R. Suleiman, V. Sulkosky, C. M. Sutera, W. A. Tobias, W. Troth, G. M. Urciuoli, P. Ulmer, A. Vacheret, E. Voutier, B. Waidyawansa, D. Wang, K. Wang, J. Wexler, A. Whitbeck, R. Wilson, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, V. Yim, L. Zana, X. Zhan, J. Zhang, Y. Zhang, X. Zheng, V. Ziskin, P. Zhu

We have measured the beam-normal single-spin asymmetry $A_n$ in the elastic scattering of 1-3 GeV transversely polarized electrons from $^1$H and for the first time from $^4$He, $^{12}$C, and $^{208}$Pb. For $^1$H, $^4$He and $^{12}$C, the measurements are in agreement with calculations that relate $A_n$ to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the $^{208}$Pb result is significantly smaller than the corresponding prediction using the same formalism. Read More

2012Jul
Authors: N. Abgrall1, A. Aduszkiewicz2, T. Anticic3, N. Antoniou4, J. Argyriades5, B. Baatar6, A. Blondel7, J. Blumer8, M. Bogomilov9, A. Bravar10, W. Brooks11, J. Brzychczyk12, A. Bubak13, S. A. Bunyatov14, O. Busygina15, P. Christakoglou16, P. Chung17, T. Czopowicz18, N. Davis19, S. Debieux20, S. Di Luise21, W. Dominik22, J. Dumarchez23, K. Dynowski24, R. Engel25, A. Ereditato26, L. S. Esposito27, G. A. Feofilov28, Z. Fodor29, A. Ferrero30, A. Fulop31, M. Gazdzicki32, M. Golubeva33, B. Grabez34, K. Grebieszkow35, A. Grzeszczuk36, F. Guber37, A. Haesler38, H. Hakobyan39, T. Hasegawa40, R. Idczak41, S. Igolkin42, Y. Ivanov43, A. Ivashkin44, K. Kadija45, A. Kapoyannis46, N. Katrynska47, D. Kielczewska48, D. Kikola49, M. Kirejczyk50, J. Kisiel51, T. Kiss52, S. Kleinfelder53, T. Kobayashi54, O. Kochebina55, V. I. Kolesnikov56, D. Kolev57, V. P. Kondratiev58, A. Korzenev59, S. Kowalski60, A. Krasnoperov61, S. Kuleshov62, A. Kurepin63, R. Lacey64, D. Larsen65, A. Laszlo66, V. V. Lyubushkin67, M. Mackowiak-Pawlowska68, Z. Majka69, B. Maksiak70, A. I. Malakhov71, D. Maletic72, A. Marchionni73, A. Marcinek74, I. Maris75, V. Marin76, K. Marton77, T. Matulewicz78, V. Matveev79, G. L. Melkumov80, M. Messina81, St. Mrowczynski82, S. Murphy83, T. Nakadaira84, K. Nishikawa85, T. Palczewski86, G. Palla87, A. D. Panagiotou88, T. Paul89, W. Peryt90, O. Petukhov91, R. Planeta92, J. Pluta93, B. A. Popov94, M. Posiadala95, S. Pulawski96, J. Puzovic97, W. Rauch98, M. Ravonel99, R. Renfordt100, A. Robert101, D. Rohrich102, E. Rondio103, B. Rossi104, M. Roth105, A. Rubbia106, A. Rustamov107, M. Rybczynski108, A. Sadovsky109, K. Sakashita110, M. Savic111, T. Sekiguchi112, P. Seyboth113, M. Shibata114, R. Sipos115, E. Skrzypczak116, M. Slodkowski117, P. Staszel118, G. Stefanek119, J. Stepaniak120, C. Strabel121, H. Strobele122, T. Susa123, M. Szuba124, M. Tada125, A. Taranenko126, V. Tereshchenko127, T. Tolyhi128, R. Tsenov129, L. Turko130, R. Ulrich131, M. Unger132, M. Vassiliou133, D. Veberic134, V. V. Vechernin135, G. Vesztergombi136, A. Wilczek137, Z. Wlodarczyk138, A. Wojtaszek-Szwarc139, O. Wyszynski140, L. Zambelli141, W. Zipper142, V. Galymov, M. Hartz, A. K. Ichikawa, H. Kubo, A. D. Marino, K. Matsuoka, A. Murakami, T. Nakaya, K. Suzuki, T. Yuan, E. D. Zimmerman
Affiliations: 1The NA61/SHINE Collaboration, 2The NA61/SHINE Collaboration, 3The NA61/SHINE Collaboration, 4The NA61/SHINE Collaboration, 5The NA61/SHINE Collaboration, 6The NA61/SHINE Collaboration, 7The NA61/SHINE Collaboration, 8The NA61/SHINE Collaboration, 9The NA61/SHINE Collaboration, 10The NA61/SHINE Collaboration, 11The NA61/SHINE Collaboration, 12The NA61/SHINE Collaboration, 13The NA61/SHINE Collaboration, 14The NA61/SHINE Collaboration, 15The NA61/SHINE Collaboration, 16The NA61/SHINE Collaboration, 17The NA61/SHINE Collaboration, 18The NA61/SHINE Collaboration, 19The NA61/SHINE Collaboration, 20The NA61/SHINE Collaboration, 21The NA61/SHINE Collaboration, 22The NA61/SHINE Collaboration, 23The NA61/SHINE Collaboration, 24The NA61/SHINE Collaboration, 25The NA61/SHINE Collaboration, 26The NA61/SHINE Collaboration, 27The NA61/SHINE Collaboration, 28The NA61/SHINE Collaboration, 29The NA61/SHINE Collaboration, 30The NA61/SHINE Collaboration, 31The NA61/SHINE Collaboration, 32The NA61/SHINE Collaboration, 33The NA61/SHINE Collaboration, 34The NA61/SHINE Collaboration, 35The NA61/SHINE Collaboration, 36The NA61/SHINE Collaboration, 37The NA61/SHINE Collaboration, 38The NA61/SHINE Collaboration, 39The NA61/SHINE Collaboration, 40The NA61/SHINE Collaboration, 41The NA61/SHINE Collaboration, 42The NA61/SHINE Collaboration, 43The NA61/SHINE Collaboration, 44The NA61/SHINE Collaboration, 45The NA61/SHINE Collaboration, 46The NA61/SHINE Collaboration, 47The NA61/SHINE Collaboration, 48The NA61/SHINE Collaboration, 49The NA61/SHINE Collaboration, 50The NA61/SHINE Collaboration, 51The NA61/SHINE Collaboration, 52The NA61/SHINE Collaboration, 53The NA61/SHINE Collaboration, 54The NA61/SHINE Collaboration, 55The NA61/SHINE Collaboration, 56The NA61/SHINE Collaboration, 57The NA61/SHINE Collaboration, 58The NA61/SHINE Collaboration, 59The NA61/SHINE Collaboration, 60The NA61/SHINE Collaboration, 61The NA61/SHINE Collaboration, 62The NA61/SHINE Collaboration, 63The NA61/SHINE Collaboration, 64The NA61/SHINE Collaboration, 65The NA61/SHINE Collaboration, 66The NA61/SHINE Collaboration, 67The NA61/SHINE Collaboration, 68The NA61/SHINE Collaboration, 69The NA61/SHINE Collaboration, 70The NA61/SHINE Collaboration, 71The NA61/SHINE Collaboration, 72The NA61/SHINE Collaboration, 73The NA61/SHINE Collaboration, 74The NA61/SHINE Collaboration, 75The NA61/SHINE Collaboration, 76The NA61/SHINE Collaboration, 77The NA61/SHINE Collaboration, 78The NA61/SHINE Collaboration, 79The NA61/SHINE Collaboration, 80The NA61/SHINE Collaboration, 81The NA61/SHINE Collaboration, 82The NA61/SHINE Collaboration, 83The NA61/SHINE Collaboration, 84The NA61/SHINE Collaboration, 85The NA61/SHINE Collaboration, 86The NA61/SHINE Collaboration, 87The NA61/SHINE Collaboration, 88The NA61/SHINE Collaboration, 89The NA61/SHINE Collaboration, 90The NA61/SHINE Collaboration, 91The NA61/SHINE Collaboration, 92The NA61/SHINE Collaboration, 93The NA61/SHINE Collaboration, 94The NA61/SHINE Collaboration, 95The NA61/SHINE Collaboration, 96The NA61/SHINE Collaboration, 97The NA61/SHINE Collaboration, 98The NA61/SHINE Collaboration, 99The NA61/SHINE Collaboration, 100The NA61/SHINE Collaboration, 101The NA61/SHINE Collaboration, 102The NA61/SHINE Collaboration, 103The NA61/SHINE Collaboration, 104The NA61/SHINE Collaboration, 105The NA61/SHINE Collaboration, 106The NA61/SHINE Collaboration, 107The NA61/SHINE Collaboration, 108The NA61/SHINE Collaboration, 109The NA61/SHINE Collaboration, 110The NA61/SHINE Collaboration, 111The NA61/SHINE Collaboration, 112The NA61/SHINE Collaboration, 113The NA61/SHINE Collaboration, 114The NA61/SHINE Collaboration, 115The NA61/SHINE Collaboration, 116The NA61/SHINE Collaboration, 117The NA61/SHINE Collaboration, 118The NA61/SHINE Collaboration, 119The NA61/SHINE Collaboration, 120The NA61/SHINE Collaboration, 121The NA61/SHINE Collaboration, 122The NA61/SHINE Collaboration, 123The NA61/SHINE Collaboration, 124The NA61/SHINE Collaboration, 125The NA61/SHINE Collaboration, 126The NA61/SHINE Collaboration, 127The NA61/SHINE Collaboration, 128The NA61/SHINE Collaboration, 129The NA61/SHINE Collaboration, 130The NA61/SHINE Collaboration, 131The NA61/SHINE Collaboration, 132The NA61/SHINE Collaboration, 133The NA61/SHINE Collaboration, 134The NA61/SHINE Collaboration, 135The NA61/SHINE Collaboration, 136The NA61/SHINE Collaboration, 137The NA61/SHINE Collaboration, 138The NA61/SHINE Collaboration, 139The NA61/SHINE Collaboration, 140The NA61/SHINE Collaboration, 141The NA61/SHINE Collaboration, 142The NA61/SHINE Collaboration

The T2K long-baseline neutrino oscillation experiment in Japan needs precise predictions of the initial neutrino flux. The highest precision can be reached based on detailed measurements of hadron emission from the same target as used by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at the CERN SPS using a replica of the T2K graphite target. Read More

We present a new experimental method to correlate the isotopic composition of intermediate mass fragments (IMF) emitted at mid-rapidity in semi-peripheral collisions with the emission timescale: IMFs emitted in the early stage of the reaction show larger values of $<$N/Z$>$ isospin asymmetry, stronger angular anisotropies and reduced odd-even staggering effects in neutron to proton ratio $<$N/Z$>$ distributions than those produced in sequential statistical emission. All these effects support the concept of isospin "migration", that is sensitive to the density gradient between participant and quasi-spectator nuclear matter, in the so called neck fragmentation mechanism. By comparing the data to a Stochastic Mean Field (SMF) simulation we show that this method gives valuable constraints on the symmetry energy term of nuclear equation of state at subsaturation densities. Read More

We propose a new precision measurement of parity-violating electron scattering on the proton at very low Q^2 and forward angles to challenge predictions of the Standard Model and search for new physics. A unique opportunity exists to carry out the first precision measurement of the proton's weak charge, $Q_W =1 - 4\sin^2\theta_W$. A 2200 hour measurement of the parity violating asymmetry in elastic ep scattering at Q^2=0. Read More

2012Jan
Authors: S. Abrahamyan, Z. Ahmed, H. Albataineh, K. Aniol, D. S. Armstrong, W. Armstrong, T. Averett, B. Babineau, A. Barbieri, V. Bellini, R. Beminiwattha, J. Benesch, F. Benmokhtar, T. Bielarski, W. Boeglin, A. Camsonne, M. Canan, P. Carter, G. D. Cates, C. Chen, J. -P. Chen, O. Hen, F. Cusanno, M. M. Dalton, R. De Leo, K. de Jager, W. Deconinck, P. Decowski, X. Deng, A. Deur, D. Dutta, A. Etile, D. Flay, G. B. Franklin, M. Friend, S. Frullani, E. Fuchey, F. Garibaldi, E. Gasser, R. Gilman, A. Giusa, A. Glamazdin, J. Gomez, J. Grames, C. Gu, O. Hansen, J. Hansknecht, D. W. Higinbotham, R. S. Holmes, T. Holmstrom, C. J. Horowitz, J. Hoskins, J. Huang, C. E. Hyde, F. Itard, C. -M. Jen, E. Jensen, G. Jin, S. Johnston, A. Kelleher, K. Kliakhandler, P. M. King, S. Kowalski, K. S. Kumar, J. Leacock, J. Leckey IV, J. H. Lee, J. J. LeRose, R. Lindgren, N. Liyanage, N. Lubinsky, J. Mammei, F. Mammoliti, D. J. Margaziotis, P. Markowitz, A. McCreary, D. McNulty, L. Mercado, Z. -E. Meziani, R. W. Michaels, M. Mihovilovic, N. Muangma, C. Muñoz-Camacho, S. Nanda, V. Nelyubin, N. Nuruzzaman, Y. Oh, A. Palmer, D. Parno, K. D. Paschke, S. K. Phillips, B. Poelker, R. Pomatsalyuk, M. Posik, A. J. R. Puckett, B. Quinn, A. Rakhman, P. E. Reimer, S. Riordan, P. Rogan, G. Ron, G. Russo, K. Saenboonruang, A. Saha, B. Sawatzky, A. Shahinyan, R. Silwal, S. Sirca, K. Slifer, P. Solvignon, P. A. Souder, M. L. Sperduto, R. Subedi, R. Suleiman, V. Sulkosky, C. M. Sutera, W. A. Tobias, W. Troth, G. M. Urciuoli, B. Waidyawansa, D. Wang, J. Wexler, R. Wilson, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, V. Yim, L. Zana, X. Zhan, J. Zhang, Y. Zhang, X. Zheng, P. Zhu

We report the first measurement of the parity-violating asymmetry A_PV in the elastic scattering of polarized electrons from 208Pb. A_PV is sensitive to the radius of the neutron distribution (Rn). The result A_PV = 0. Read More

2011Dec
Authors: The NA61/SHINE Collaboration, :, N. Abgrall, A. Aduszkiewicz, T. Anticic, N. Antoniou, J. Argyriades, B. Baatar, A. Blondel, J. Blumer, M. Bogusz, L. Boldizsar, A. Bravar, W. Brooks, J. Brzychczyk, A. Bubak, S. A. Bunyatov, O. Busygina, T. Cetner, K. -U. Choi, P. Christakoglou, P. Chung, T. Czopowicz, N. Davis, F. Diakonos, S. Di Luise, W. Dominik, J. Dumarchez, R. Engel, A. Ereditato, L. S. Esposito, G. A. Feofilov, Z. Fodor, A. Ferrero, A. Fulop, X. Garrido, M. Gazdzicki, M. Golubeva, K. Grebieszkow, A. Grzeszczuk, F. Guber, A. Haesler, H. Hakobyan, T. Hasegawa, R. Idczak, Y. Ivanov, A. Ivashkin, K. Kadija, A. Kapoyannis, N. Katrynska, D. Kielczewska, D. Kikola, J. -H. Kim, M. Kirejczyk, J. Kisiel, T. Kobayashi, O. Kochebina, V. I. Kolesnikov, D. Kolev, V. P. Kondratiev, A. Korzenev, S. Kowalski, A. Krasnoperov, S. Kuleshov, A. Kurepin, R. Lacey, J. Lagoda, A. Laszlo, V. V. Lyubushkin, M. Mackowiak-Pawlowska, Z. Majka, A. I. Malakhov, A. Marchionni, A. Marcinek, I. Maris, V. Marin, T. Matulewicz, V. Matveev, G. L. Melkumov, A. Meregaglia, M. Messina, St. Mrowczynski, S. Murphy, T. Nakadaira, K. Nishikawa, T. Palczewski, G. Palla, A. D. Panagiotou, T. Paul, W. Peryt, O. Petukhov, R. Planeta, J. Pluta, B. A. Popov, M. Posiadala, S. Pulawski, W. Rauch, M. Ravonel, R. Renfordt, A. Robert, D. Rohrich, E. Rondio, B. Rossi, M. Roth, A. Rubbia, M. Rybczynski, A. Sadovsky, K. Sakashita, T. Sekiguchi, P. Seyboth, M. Shibata, E. Skrzypczak, M. Slodkowski, P. Staszel, G. Stefanek, J. Stepaniak, C. Strabel, H. Strobele, T. Susa, P. Szaflik, M. Szuba, M. Tada, A. Taranenko, V. Tereshchenko, R. Tsenov, L. Turko, R. Ulrich, M. Unger, M. Vassiliou, D. Veberic, V. V. Vechernin, G. Vesztergombi, A. Wilczek, Z. Wlodarczyk, A. Wojtaszek-Szwarc, J. -G. Yi, I. -K. Yoo, L. Zambelli, W. Zipper

Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. Read More

In medium binding energies and Mott points for $d$, $t$, $^3$He and $\alpha$ clusters in low density nuclear matter have been determined at specific combinations of temperature and density in low density nuclear matter produced in collisions of 47$A$ MeV $^{40}$Ar and $^{64}$Zn projectiles with $^{112}$Sn and $^{124}$Sn target nuclei. The experimentally derived values of the in medium modified binding energies are in good agreement with recent theoretical predictions based upon the implementation of Pauli blocking effects in a quantum statistical approach. Read More

Measurements of the density dependence of the free symmetry energy in low density clustered matter have been extended using the NIMROD multi-detector at Texas A&M University. Thermal coalescence models were employed to extract densities, $\rho$, and temperatures, $T$, for evolving systems formed in collisions of 47 $A$ MeV $^{40}$Ar + $^{112}$Sn,$^{124}$Sn and $^{64}$Zn + $^{112}$Sn, $^{124}$Sn. Densities of $0. Read More

Clustering in low density nuclear matter has been investigated using the NIMROD multi-detector at Texas A&M University. Thermal coalescence modes were employed to extract densities, $\rho$, and temperatures, $T$, for evolving systems formed in collisions of 47 $A$ MeV $^{40}$Ar + $^{112}$Sn,$^{124}$Sn and $^{64}$Zn + $^{112}$Sn, $^{124}$Sn. The yields of $d$, $t$, $^{3}$He, and $^{4}$He have been determined at $\rho$ = 0. Read More

The parity-violating cross-section asymmetry in the elastic scattering of polarized electrons from unpolarized protons has been measured at a four-momentum transfer squared Q2 = 0.624 GeV and beam energy E =3.48 GeV to be A_PV = -23. Read More

2011Feb
Authors: N. Abgrall1, A. Aduszkiewicz2, B. Andrieu3, T. Anticic4, N. Antoniou5, J. Argyriades6, A. G. Asryan7, B. Baatar8, A. Blondel9, J. Blumer10, M. Bogusz11, L. Boldizsar12, A. Bravar13, W. Brooks14, J. Brzychczyk15, A. Bubak16, S. A. Bunyatov17, O. Busygina18, T. Cetner19, K. -U. Choi20, P. Christakoglou21, P. Chung22, T. Czopowicz23, N. Davis24, F. Diakonos25, S. Di Luise26, W. Dominik27, J. Dumarchez28, R. Engel29, A. Ereditato30, L. S. Esposito31, G. A. Feofilov32, Z. Fodor33, A. Ferrero34, A. Fulop35, X. Garrido36, M. Gazdzicki37, M. Golubeva38, K. Grebieszkow39, A. Grzeszczuk40, F. Guber41, H. Hakobyan42, T. Hasegawa43, S. Igolkin44, A. S. Ivanov45, Y. Ivanov46, A. Ivashkin47, K. Kadija48, A. Kapoyannis49, N. Katrynska50, D. Kielczewska51, D. Kikola52, J. -H. Kim53, M. Kirejczyk54, J. Kisiel55, T. Kobayashi56, O. Kochebina57, V. I. Kolesnikov58, D. Kolev59, V. P. Kondratiev60, A. Korzenev61, S. Kowalski62, S. Kuleshov63, A. Kurepin64, R. Lacey65, J. Lagoda66, A. Laszlo67, V. V. Lyubushkin68, M. Mackowiak69, Z. Majka70, A. I. Malakhov71, A. Marchionni72, A. Marcinek73, I. Maris74, V. Marin75, T. Matulewicz76, V. Matveev77, G. L. Melkumov78, A. Meregaglia79, M. Messina80, St. Mrowczynski81, S. Murphy82, T. Nakadaira83, P. A. Naumenko84, K. Nishikawa85, T. Palczewski86, G. Palla87, A. D. Panagiotou88, W. Peryt89, O. Petukhov90, R. Planeta91, J. Pluta92, B. A. Popov93, M. Posiadala94, S. Pulawski95, W. Rauch96, M. Ravonel97, R. Renfordt98, A. Robert99, D. Rohrich100, E. Rondio101, B. Rossi102, M. Roth103, A. Rubbia104, M. Rybczynski105, A. Sadovsky106, K. Sakashita107, T. Sekiguchi108, P. Seyboth109, M. Shibata110, A. N. Sissakian111, E. Skrzypczak112, M. Slodkowski113, A. S. Sorin114, P. Staszel115, G. Stefanek116, J. Stepaniak117, C. Strabel118, H. Strobele119, T. Susa120, P. Szaflik121, M. Szuba122, M. Tada123, A. Taranenko124, R. Tsenov125, R. Ulrich126, M. Unger127, M. Vassiliou128, V. V. Vechernin129, G. Vesztergombi130, A. Wilczek131, Z. Wlodarczyk132, A. Wojtaszek133, J. -G. Yi134, I. -K. Yoo135, W. Zipper136
Affiliations: 1NA61/SHINE Collaboration, 2NA61/SHINE Collaboration, 3NA61/SHINE Collaboration, 4NA61/SHINE Collaboration, 5NA61/SHINE Collaboration, 6NA61/SHINE Collaboration, 7NA61/SHINE Collaboration, 8NA61/SHINE Collaboration, 9NA61/SHINE Collaboration, 10NA61/SHINE Collaboration, 11NA61/SHINE Collaboration, 12NA61/SHINE Collaboration, 13NA61/SHINE Collaboration, 14NA61/SHINE Collaboration, 15NA61/SHINE Collaboration, 16NA61/SHINE Collaboration, 17NA61/SHINE Collaboration, 18NA61/SHINE Collaboration, 19NA61/SHINE Collaboration, 20NA61/SHINE Collaboration, 21NA61/SHINE Collaboration, 22NA61/SHINE Collaboration, 23NA61/SHINE Collaboration, 24NA61/SHINE Collaboration, 25NA61/SHINE Collaboration, 26NA61/SHINE Collaboration, 27NA61/SHINE Collaboration, 28NA61/SHINE Collaboration, 29NA61/SHINE Collaboration, 30NA61/SHINE Collaboration, 31NA61/SHINE Collaboration, 32NA61/SHINE Collaboration, 33NA61/SHINE Collaboration, 34NA61/SHINE Collaboration, 35NA61/SHINE Collaboration, 36NA61/SHINE Collaboration, 37NA61/SHINE Collaboration, 38NA61/SHINE Collaboration, 39NA61/SHINE Collaboration, 40NA61/SHINE Collaboration, 41NA61/SHINE Collaboration, 42NA61/SHINE Collaboration, 43NA61/SHINE Collaboration, 44NA61/SHINE Collaboration, 45NA61/SHINE Collaboration, 46NA61/SHINE Collaboration, 47NA61/SHINE Collaboration, 48NA61/SHINE Collaboration, 49NA61/SHINE Collaboration, 50NA61/SHINE Collaboration, 51NA61/SHINE Collaboration, 52NA61/SHINE Collaboration, 53NA61/SHINE Collaboration, 54NA61/SHINE Collaboration, 55NA61/SHINE Collaboration, 56NA61/SHINE Collaboration, 57NA61/SHINE Collaboration, 58NA61/SHINE Collaboration, 59NA61/SHINE Collaboration, 60NA61/SHINE Collaboration, 61NA61/SHINE Collaboration, 62NA61/SHINE Collaboration, 63NA61/SHINE Collaboration, 64NA61/SHINE Collaboration, 65NA61/SHINE Collaboration, 66NA61/SHINE Collaboration, 67NA61/SHINE Collaboration, 68NA61/SHINE Collaboration, 69NA61/SHINE Collaboration, 70NA61/SHINE Collaboration, 71NA61/SHINE Collaboration, 72NA61/SHINE Collaboration, 73NA61/SHINE Collaboration, 74NA61/SHINE Collaboration, 75NA61/SHINE Collaboration, 76NA61/SHINE Collaboration, 77NA61/SHINE Collaboration, 78NA61/SHINE Collaboration, 79NA61/SHINE Collaboration, 80NA61/SHINE Collaboration, 81NA61/SHINE Collaboration, 82NA61/SHINE Collaboration, 83NA61/SHINE Collaboration, 84NA61/SHINE Collaboration, 85NA61/SHINE Collaboration, 86NA61/SHINE Collaboration, 87NA61/SHINE Collaboration, 88NA61/SHINE Collaboration, 89NA61/SHINE Collaboration, 90NA61/SHINE Collaboration, 91NA61/SHINE Collaboration, 92NA61/SHINE Collaboration, 93NA61/SHINE Collaboration, 94NA61/SHINE Collaboration, 95NA61/SHINE Collaboration, 96NA61/SHINE Collaboration, 97NA61/SHINE Collaboration, 98NA61/SHINE Collaboration, 99NA61/SHINE Collaboration, 100NA61/SHINE Collaboration, 101NA61/SHINE Collaboration, 102NA61/SHINE Collaboration, 103NA61/SHINE Collaboration, 104NA61/SHINE Collaboration, 105NA61/SHINE Collaboration, 106NA61/SHINE Collaboration, 107NA61/SHINE Collaboration, 108NA61/SHINE Collaboration, 109NA61/SHINE Collaboration, 110NA61/SHINE Collaboration, 111NA61/SHINE Collaboration, 112NA61/SHINE Collaboration, 113NA61/SHINE Collaboration, 114NA61/SHINE Collaboration, 115NA61/SHINE Collaboration, 116NA61/SHINE Collaboration, 117NA61/SHINE Collaboration, 118NA61/SHINE Collaboration, 119NA61/SHINE Collaboration, 120NA61/SHINE Collaboration, 121NA61/SHINE Collaboration, 122NA61/SHINE Collaboration, 123NA61/SHINE Collaboration, 124NA61/SHINE Collaboration, 125NA61/SHINE Collaboration, 126NA61/SHINE Collaboration, 127NA61/SHINE Collaboration, 128NA61/SHINE Collaboration, 129NA61/SHINE Collaboration, 130NA61/SHINE Collaboration, 131NA61/SHINE Collaboration, 132NA61/SHINE Collaboration, 133NA61/SHINE Collaboration, 134NA61/SHINE Collaboration, 135NA61/SHINE Collaboration, 136NA61/SHINE Collaboration

Interaction cross sections and charged pion spectra in p+C interactions at 31 GeV/c were measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS. These data are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. A set of data collected during the first NA61/SHINE run in 2007 with an isotropic graphite target with a thickness of 4% of a nuclear interaction length was used for the analysis. Read More

Isotope yields have been analyzed within the framework of a Modified Fisher Model to study the power law yield distribution of isotopes in the multifragmentation regime. Using the ratio of the mass dependent symmetry energy coefficient relative to the temperature, $a_{sym}/T$, extracted in previous work and that of the pairing term, $a_{p}/T$, extracted from this work, and assuming that both reflect secondary decay processes, the experimentally observed isotope yields have been corrected for these effects. For a given I = N - Z value, the corrected yields of isotopes relative to the yield of $^{12}C$ show a power law distribution, $Y(N,Z)/Y(^{12}C) \sim A^{-\tau}$, in the mass range of $1 \le A \le 30$ and the distributions are almost identical for the different reactions studied. Read More

We discuss experimental evidence for a nuclear phase transition driven by the different concentration of neutrons to protons. Different ratios of the neutron to proton concentrations lead to different critical points for the phase transition. This is analogous to the phase transitions occurring in 4He-3He liquid mixtures. Read More

The ratio of the symmetry energy coefficient to temperature, $a_sym/T$, in Fermi energy heavy ion collisions, has been experimentally extracted as a function of the fragment atomic number using isoscaling parameters and the variance of the isotope distributions. The extracted values have been compared to the results of calculations made with an Antisymmetrized Molecular Dynamics (AMD) model employing a statistical decay code to account for deexcitation of excited primary fragments. The experimental values are in good agreement with the values calculated but are significantly different from those characterizing the yields of the primary AMD fragments. Read More

Isoscaling is derived within a recently proposed modified Fisher model where the free energy near the critical point is described by the Landau O(m^6) theory. In this model m = (N-Z)/A is the order parameter, a consequence of (one of) the symmetries of the nuclear Hamiltonian. Within this framework we show that isoscaling depends mainly on this order parameter through the 'external (conjugate) field' H. Read More

The relative isobaric yields of fragments produced in a series of heavy ion induced multifragmentation reactions have been analyzed in the framework of a Modified Fisher Model, primarily to determine the ratio of the symmetry energy coefficient to the temperature, $a_a/T$, as a function of fragment mass A. The extracted values increase from 5 to ~16 as A increases from 9 to 37. These values have been compared to the results of calculations using the Antisymmetrized Molecular Dynamics (AMD) model together with the statistical decay code Gemini. Read More

The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular by the appearance of bound states. Read More

A technique is presented for precision measurements of the area densities, density * T, of approximately 5% radiation length carbon and 208Pb targets used in an experiment at Jefferson Laboratory to measure the neutral pion radiative width. The precision obtained in the area density for the carbon target is +/- 0.050%, and that obtained for the lead target through an x-ray attenuation technique is +/- 0. Read More

In their ground states, atomic nuclei are quantum Fermi liquids. At finite temperatures and low densities, these nuclei may undergo a phase change similar to, but substantially different from, a classical liquid gas phase transition. As in the classical case, temperature is the control parameter while density and pressure are the conjugate variables. Read More