S. Kay - Jodrell Bank Centre for Astrophysics, University of Manchester, UK

S. Kay
Are you S. Kay?

Claim your profile, edit publications, add additional information:

Contact Details

S. Kay
Jodrell Bank Centre for Astrophysics, University of Manchester, UK
United Kingdom

Pubs By Year

External Links

Pub Categories

Cosmology and Nongalactic Astrophysics (30)
Astrophysics of Galaxies (13)
Nuclear Experiment (8)
High Energy Physics - Experiment (4)
Statistics - Machine Learning (3)
Computer Science - Learning (3)
Statistics - Applications (1)
Mathematics - Information Theory (1)
Computer Science - Computation and Language (1)
Computer Science - Information Retrieval (1)
Computer Science - Information Theory (1)
Computer Science - Distributed; Parallel; and Cluster Computing (1)
Quantitative Biology - Cell Behavior (1)
High Energy Physics - Phenomenology (1)
Quantitative Biology - Subcellular Processes (1)
Quantitative Biology - Molecular Networks (1)
Quantitative Biology - Quantitative Methods (1)
Physics - Data Analysis; Statistics and Probability (1)

Publications Authored By S. Kay

The double-polarization observable $E$ and the helicity-dependent cross sections $\sigma_{1/2}$ and $\sigma_{3/2}$ have been measured for the first time for single $\pi^{0}$ photoproduction from protons and neutrons bound in the deuteron at the electron accelerator facility MAMI in Mainz, Germany. The experiment used a circularly polarized photon beam and a longitudinally polarized deuterated butanol target. The reaction products, recoil nucleons and decay photons from the $\pi^0$ meson were detected with the Crystal Ball and TAPS electromagnetic calorimeters. Read More

Precise helicity-dependent cross sections and the double-polarization observable $E$ were measured for $\eta$ photoproduction from quasi-free protons and neutrons bound in the deuteron. The $\eta\rightarrow 2\gamma$ and $\eta\rightarrow 3\pi^0\rightarrow 6\gamma$ decay modes were used to optimize the statistical quality of the data and to estimate systematic uncertainties. The measurement used the A2 detector setup at the tagged photon beam of the electron accelerator MAMI in Mainz. Read More

In this paper, we derive a Bayesian model order selection rule by using the exponentially embedded family method, termed Bayesian EEF. Unlike many other Bayesian model selection methods, the Bayesian EEF can use vague proper priors and improper noninformative priors to be objective in the elicitation of parameter priors. Moreover, the penalty term of the rule is shown to be the sum of half of the parameter dimension and the estimated mutual information between parameter and observed data. Read More

We introduce the Cluster-EAGLE (C-EAGLE) simulation project, a set of cosmological hydrodynamical zoom simulations of the formation of $30$ galaxy clusters in the mass range $10^{14}Read More

We introduce the Hydrangea simulations, a suite of 24 cosmological hydrodynamic zoom-in simulations of massive galaxy clusters (M_200c = 10^14-10^15 M_Sun) with baryon particle masses of ~10^6 M_Sun. Designed to study the impact of the cluster environment on galaxy formation, they are a key part of the `Cluster-EAGLE' project (Barnes et al. 2017). Read More

The double polarization observable $E$ and the helicity dependent cross sections $\sigma_{1/2}$ and $\sigma_{3/2}$ were measured for $\eta$ photoproduction from quasi-free protons and neutrons. The circularly polarized tagged photon beam of the A2 experiment at the Mainz MAMI accelerator was used in combination with a longitudinally polarized deuterated butanol target. The almost $4\pi$ detector setup of the Crystal Ball and TAPS is ideally suited to detect the recoil nucleons and the decay photons from $\eta\rightarrow 2\gamma$ and $\eta\rightarrow 3\pi^0$. Read More

The reactions $\gamma p\to \eta p$ and $\gamma p\to \eta' p$ have been measured from their thresholds up to the center-of-mass energy $W=1.96$GeV with the tagged-photon facilities at the Mainz Microtron, MAMI. Differential cross sections were obtained with unprecedented accuracy, providing fine energy binning and full production-angle coverage. Read More

We use a combination of full hydrodynamic and dark matter only simulations to investigate the effect that super-cluster environments and baryonic physics have on the matter power spectrum. This is done by re-simulating a sample of super-cluster sub-volumes, identified in a large cosmologically representative dark matter only simulation, along with a random control sample. On large scales we find that the matter power spectrum measured from our super-cluster sample has at least twice as much power as that measured from our random sample, while on small scales the super-cluster sample has less power than the random sample. Read More

The Dalitz decay pi^0 -> e^+e^-gamma has been measured in the gamma p -> pi^0 p reaction with the A2 tagged-photon facility at the Mainz Microtron, MAMI. The value obtained for the slope parameter of the pi^0 electromagnetic transition form factor, a_pi = 0.030+/-0. Read More


The XXL survey currently covers two 25 sq. deg. patches with XMM observations of ~10ks. Read More

The Dalitz decays eta -> e^+e^-g and omega -> pi^0 e^+e^- have been measured in the g p -> eta p and g p -> omega p reactions, respectively, with the A2 tagged-photon facility at the Mainz Microtron, MAMI. The value obtained for the slope parameter of the electromagnetic transition form factor of eta, Lambda^{-2}_eta=(1.97+/-0. Read More

The Notch pathway plays a vital role in determining whether cells in the intestinal epithelium adopt a secretory or an absorptive phenotype. Cell fate specification is coordinated via Notch's interaction with the canonical Wnt pathway. Here, we propose a new mathematical model of the Notch and Wnt pathways, in which the Hes1 promoter acts as a hub for pathway crosstalk. Read More

We use the BAHAMAS and MACSIS hydrodynamic simulations to quantify the impact of baryons on the mass distribution and dynamics of massive galaxy clusters, as well as the bias in X-ray and weak lensing mass estimates. These simulations use the sub-grid physics models calibrated in the BAHAMAS project, which include feedback from both supernovae and active galactic nuclei. They form a cluster population covering almost two orders of magnitude in mass, with more than 3,500 clusters with masses greater than $10^{14}\,\mathrm{M}_\odot$ at $z=0$. Read More

This paper considers the general signal detection and parameter estimation problem in the presence of colored Gaussian noise disturbance. By modeling the disturbance with an autoregressive process, we present three signal detectors with different unknown parameters under the general framework of binary hypothesis testing. The closed form of parameter estimates and the asymptotic distributions of these three tests are also given. Read More

In this paper, we consider the problems of state estimation and false data injection detection in smart grid when the measurements are corrupted by colored Gaussian noise. By modeling the noise with the autoregressive process, we estimate the state of the power transmission networks and develop a generalized likelihood ratio test (GLRT) detector for the detection of false data injection attacks. We show that the conventional approach with the assumption of Gaussian noise is a special case of the proposed method, and thus the new approach has more applicability. Read More

We present the MAssive ClusterS and Intercluster Structures (MACSIS) project, a suite of 390 clusters simulated with baryonic physics that yields realistic massive galaxy clusters capable of matching a wide range of observed properties. MACSIS extends the recent BAHAMAS simulation to higher masses, enabling robust predictions for the redshift evolution of cluster properties and an assessment of the effect of selecting only the hottest systems. We study the observable-mass scaling relations and the X-ray luminosity-temperature relation over the complete observed cluster mass range. Read More

High statistics measurements of the photon asymmetry $\mathrm{\Sigma}$ for the $\overrightarrow{\gamma}$p$\rightarrow\pi^{0}$p reaction have been made in the center of mass energy range W=1214-1450 MeV. The data were measured with the MAMI A2 real photon beam and Crystal Ball/TAPS detector systems in Mainz, Germany. The results significantly improve the existing world data and are shown to be in good agreement with previous measurements, and with the MAID, SAID, and Bonn-Gatchina predictions. Read More

Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many of the statistical methods used to account for autocorrelation can be viewed as regression models that include basis functions. Understanding the concept of basis functions enables ecologists to modify commonly used ecological models to account for autocorrelation, which can improve inference and predictive accuracy. Read More

In this letter, we present a novel exponentially embedded families (EEF) based classification method, in which the probability density function (PDF) on raw data is estimated from the PDF on features. With the PDF construction, we show that class-specific features can be used in the proposed classification method, instead of a common feature subset for all classes as used in conventional approaches. We apply the proposed EEF classifier for text categorization as a case study and derive an optimal Bayesian classification rule with class-specific feature selection based on the Information Gain (IG) score. Read More

Building on the initial results of the nIFTy simulated galaxy cluster comparison, we compare and contrast the impact of baryonic physics with a single massive galaxy cluster, run with 11 state-of-the-art codes, spanning adaptive mesh, moving mesh, classic and modern SPH approaches. For each code represented we have a dark matter only (DM) and non-radiative (NR) version of the cluster, as well as a full physics (FP) version for a subset of the codes. We compare both radial mass and kinematic profiles, as well as global measures of the cluster (e. Read More

Automated feature selection is important for text categorization to reduce the feature size and to speed up the learning process of classifiers. In this paper, we present a novel and efficient feature selection framework based on the Information Theory, which aims to rank the features with their discriminative capacity for classification. We first revisit two information measures: Kullback-Leibler divergence and Jeffreys divergence for binary hypothesis testing, and analyze their asymptotic properties relating to type I and type II errors of a Bayesian classifier. Read More

We describe updates to the \redmapper{} algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to $150\,\mathrm{deg}^2$ of Science Verification (SV) data from the Dark Energy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited, and contains 786 clusters with richness $\lambda>20$ (roughly equivalent to $M_{\rm{500c}}\gtrsim10^{14}\,h_{70}^{-1}\,M_{\odot}$) and $0. Read More

We measure the evolution of the velocity dispersion--temperature ($\sigma_{\rm v}$--$T_{\rm X}$) relation up to $z = 1$ using a sample of 38 galaxy clusters drawn from the \textit{XMM} Cluster Survey. This work improves upon previous studies by the use of a homogeneous cluster sample and in terms of the number of high redshift clusters included. We present here new redshift and velocity dispersion measurements for 12 $z > 0. Read More

We examine subhaloes and galaxies residing in a simulated LCDM galaxy cluster ($M^{\rm crit}_{200}=1.1\times10^{15}M_\odot/h$) produced by hydrodynamical codes ranging from classic Smooth Particle Hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. Read More

We have simulated the formation of a massive galaxy cluster (M$_{200}^{\rm crit}$ = 1.1$\times$10$^{15}h^{-1}M_{\odot}$) in a $\Lambda$CDM universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modeling hydrodynamics with full radiative subgrid physics. These codes include Smoothed-Particle Hydrodynamics (SPH), spanning traditional and advanced SPH schemes, adaptive mesh and moving mesh codes. Read More

Differential cross sections for the gamma p -> pi^0 p reaction have been measured with the A2 tagged-photon facilities at the Mainz Microtron, MAMI C, up to the center-of-mass energy W=1.9 GeV. The new results, obtained with a fine energy and angular binning, increase the existing quantity of pi^0 photoproduction data by ~47%. Read More

Using the science verification data of the Dark Energy Survey (DES) for a new sample of 106 X-Ray selected clusters and groups, we study the stellar mass growth of Bright Central Galaxies (BCGs) since redshift 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. Read More

We have simulated the formation of a galaxy cluster in a $\Lambda$CDM universe using twelve different codes modeling only gravity and non-radiative hydrodynamics (\art, \arepo, \hydra\ and 9 incarnations of GADGET). This range of codes includes particle based, moving and fixed mesh codes as well as both Eulerian and Lagrangian fluid schemes. The various GADGET implementations span traditional and advanced smoothed-particle hydrodynamics (SPH) schemes. Read More

This is the final report on reproducibility@xsede, a one-day workshop held in conjunction with XSEDE14, the annual conference of the Extreme Science and Engineering Discovery Environment (XSEDE). The workshop's discussion-oriented agenda focused on reproducibility in large-scale computational research. Two important themes capture the spirit of the workshop submissions and discussions: (1) organizational stakeholders, especially supercomputer centers, are in a unique position to promote, enable, and support reproducible research; and (2) individual researchers should conduct each experiment as though someone will replicate that experiment. Read More

We present results from a new set of 30 cosmological simulations of galaxy clusters, including the effects of radiative cooling, star formation, supernova feedback, black hole growth and AGN feedback. We first demonstrate that our AGN model is capable of reproducing the observed cluster pressure profile at redshift, z~0, once the AGN heating temperature of the targeted particles is made to scale with the final virial temperature of the halo. This allows the ejected gas to reach larger radii in higher-mass clusters than would be possible had a fixed heating temperature been used. Read More

We outline the prospects for performing pioneering radio weak gravitational lensing analyses using observations from a potential forthcoming JVLA Sky Survey program. A large-scale survey with the JVLA can offer interesting and unique opportunities for performing weak lensing studies in the radio band, a field which has until now been the preserve of optical telescopes. In particular, the JVLA has the capacity for large, deep radio surveys with relatively high angular resolution, which are the key characteristics required for a successful weak lensing study. Read More

We develop a statistical method to measure the interaction cross-section of Dark Matter, exploiting the continuous minor merger events in which small substructures fall into galaxy clusters. We find that by taking the ratio of the distances between the galaxies and Dark Matter, and galaxies and gas in accreting sub-halos, we form a quantity that can be statistically averaged over a large sample of systems whilst removing any inherent line-of-sight projections. In order to interpret this ratio as a cross-section of Dark Matter we derive an analytical description of sub-halo infall which encompasses; the force of the main cluster potential, the drag on a gas sub-halo, a model for Dark Matter self-interactions and the resulting sub-halo drag, the force on the gas and galaxies due to the Dark Matter sub-halo potential, and finally the buoyancy on the gas and Dark Matter. Read More

Affiliations: 1Jodrell Bank Centre for Astrophysics, University of Manchester, UK, 2Jodrell Bank Centre for Astrophysics, University of Manchester, UK, 3Jodrell Bank Centre for Astrophysics, University of Manchester, UK, 4Astronomy Centre, University of Sussex, UK

Recent results by the Planck collaboration have shown that cosmological parameters derived from the cosmic microwave background anisotropies and cluster number counts are in tension, with the latter preferring lower values of the matter density parameter, $\Omega_\mathrm{m}$, and power spectrum amplitude, $\sigma_8$. Motivated by this, we investigate the extent to which the tension may be ameliorated once the effect of baryonic depletion on the cluster mass function is taken into account. We use the large-volume Millennium Gas simulations in our study, including one where the gas is pre-heated at high redshift and one where the gas is heated by stars and active galactic nuclei (in the latter, the self-gravity of the baryons and radiative cooling are omitted). Read More


We perform high resolution N-body+SPH simulations of isolated Milky-Way-like galaxies and major mergers between them, to investigate the effect of feedback from both an active galactic nucleus (AGN) and supernovae on the galaxy's evolution. Several AGN methods from the literature are used independently and in conjunction with supernova feedback to isolate the most important factors of these feedback processes. We find that in isolated galaxies, supernovae dominate the suppression of star formation but the star formation rate is unaffected by the presence of an AGN. Read More

We use numerical simulations to investigate how the statistical properties of dark matter (DM) haloes are affected by the baryonic processes associated with galaxy formation. We focus on how these processes influence the spin and shape of a large number of DM haloes covering a wide range of mass scales, from galaxies to clusters at redshifts zero and one, extending to dwarf galaxies at redshift two. The haloes are extracted from the OverWhelmingly Large Simulations, a suite of state-of-the-art high-resolution cosmological simulations run with a range of feedback prescriptions. Read More

We measure the evolution of the X-ray luminosity-temperature (L_X-T) relation since z~1.5 using a sample of 211 serendipitously detected galaxy clusters with spectroscopic redshifts drawn from the XMM Cluster Survey first data release (XCS-DR1). This is the first study spanning this redshift range using a single, large, homogeneous cluster sample. Read More

Affiliations: 1Durham, 2Durham, Dartmouth, 3Durham, 4LJMU, 5Nottingham, 6Michigan, 7Sussex, 8Sussex, 9Manchester, 10Michigan, 11Stockholm, 12Sussex, 13Sussex, 14Barcelona, 15Sussex, 16Porto, 17Birmingham, 18Leiden, 19Leiden

Using a sample of 123 X-ray clusters and groups drawn from the XMM-Cluster Survey first data release, we investigate the interplay between the brightest cluster galaxy (BCG), its black hole, and the intra-cluster/group medium (ICM). It appears that for groups and clusters with a BCG likely to host significant AGN feedback, gas cooling dominates in those with Tx > 2 keV while AGN feedback dominates below. This may be understood through the sub-unity exponent found in the scaling relation we derive between the BCG mass and cluster mass over the halo mass range 10^13 < M500 < 10^15Msol and the lack of correlation between radio luminosity and cluster mass, such that BCG AGN in groups can have relatively more energetic influence on the ICM. Read More

Affiliations: 1Manchester, 2Manchester, 3Sussex, 4Sussex, 5Sussex, 6Manchester, 7Sussex, 8Nottingham

We have exploited the large-volume Millennium Gas cosmological N-body hydrodynamics simulations to study the SZ cluster population at low and high redshift, for three models with varying gas physics. We confirm previous results using smaller samples that the intrinsic (spherical) Y_{500}-M_{500} relation has very little scatter (sigma_{log_{10}Y}~0.04), is insensitive to cluster gas physics and evolves to redshift one in accord with self-similar expectations. Read More

We present novel statistical tools to cross-correlate frequency cleaned thermal Sunyaev-Zel'dovich (tSZ) maps and tomographic weak lensing (wl) convergence maps. Moving beyond the lowest order cross-correlation, we introduce a hierarchy of mixed higher-order statistics, the cumulants and cumulant correlators, to analyze non-Gaussianity in real space, as well as corresponding polyspectra in the harmonic domain. Using these moments, we derive analytical expressions for the joint two-point probability distribution function (2PDF) for smoothed tSZ (y_s) and convergence (\kappa_s) maps. Read More

We explore the dynamical signatures imprinted by baryons on dark matter haloes during the formation process using the OverWhelmingly Large Simulations (OWLS), a set of state-of-the-art high-resolution cosmological hydrodynamical simulations. We present a detailed study of the effects of the implemented feedback prescriptions on the orbits of dark matter particles, stellar particles and subhaloes, analysing runs with no feedback, with stellar feedback and with feedback from supermassive black holes. We focus on the central regions (0. Read More

We present a list of 15 clusters of galaxies, serendipitously detected by the XMM Cluster Survey (XCS), that have a high probability of detection by the Planck satellite. Three of them already appear in the Planck Early Sunyaev-Zel'dovich (ESZ) catalogue. The estimation of the Planck detection probability assumes the flat Lambda cold dark matter (LambdaCDM) cosmology most compatible with 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) data. Read More

Affiliations: 1ICRAR, University of Western Australia, Australia, 2Jodrell Bank Centre for Astrophysics, The University of Manchester, U.K, 3Jodrell Bank Centre for Astrophysics, The University of Manchester, U.K, 4Leiden Observatory, Leiden University, The Netherlands, 5Max Planck Institute for Extraterrestial Physics, Germany, 6Leiden Observatory, Leiden University, The Netherlands

The characterisation of the atomic and molecular hydrogen content of high-redshift galaxies is a major observational challenge that will be addressed over the coming years with a new generation of radio telescopes. We investigate this important issue by considering the states of hydrogen across a range of structures within high-resolution cosmological hydrodynamical simulations. Additionally, our simulations allow us to investigate the sensitivity of our results to numerical resolution and to sub-grid baryonic physics (especially feedback from supernovae and active galactic nuclei). Read More

At high angular frequencies, beyond the damping tail of the primary power spectrum, the dominant contribution to the power spectrum of cosmic microwave background (CMB) temperature fluctuations is the thermal Sunyaev-Zel'dovich (tSZ) effect. We investigate various important statistical properties of the Sunyaev-Zel'dovich maps, using well-motivated models for dark matter clustering to construct statistical descriptions of the tSZ effect to all orders enabling us to determine the entire probability distribution function (PDF). Any generic deterministic biasing scheme can be incorporated in our analysis and the effects of projection, biasing and the underlying density distribution can be analysed separately and transparently in this approach. Read More

The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMM-Newton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. In this paper we describe the data processing methodology applied to the 5,776 XMM observations used to construct the current XCS source catalogue. Read More

Affiliations: 1University of Oxford, 2University of Oxford, 3University of Oxford, 4University of Oxford, 5University of Manchester

We present a parameterized model of the intra-cluster medium that is suitable for jointly analysing pointed observations of the Sunyaev-Zel'dovich (SZ) effect and X-ray emission in galaxy clusters. The model is based on assumptions of hydrostatic equilibrium, the Navarro, Frenk and White (NFW) model for the dark matter, and a softened power law profile for the gas entropy. We test this entropy-based model against high and low signal-to-noise mock observations of a relaxed and recently-merged cluster from N-body/hydrodynamic simulations, using Bayesian hyper-parameters to optimise the relative statistical weighting of the mock SZ and X-ray data. Read More

We use Chandra X-ray and Spitzer infrared observations to explore the AGN and starburst populations of XMMXCS J2215.9-1738 at z=1.46, one of the most distant spectroscopically confirmed galaxy clusters known. Read More