S. Gori

S. Gori
Are you S. Gori?

Claim your profile, edit publications, add additional information:

Contact Details

Name
S. Gori
Affiliation
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (44)
 
High Energy Physics - Experiment (22)
 
Nuclear Experiment (2)
 
Cosmology and Nongalactic Astrophysics (2)
 
Physics - Accelerator Physics (2)
 
Physics - Data Analysis; Statistics and Probability (1)
 
High Energy Astrophysical Phenomena (1)
 
High Energy Physics - Lattice (1)
 
Nuclear Theory (1)

Publications Authored By S. Gori

Weakly-coupled TeV-scale particles may mediate the interactions between normal matter and dark matter. If so, the LHC would produce dark matter through these mediators, leading to the familiar "mono-X" search signatures, but the mediators would also produce signals without missing momentum via the same vertices involved in their production. This document from the LHC Dark Matter Working Group suggests how to compare searches for these two types of signals in case of vector and axial-vector mediators, based on a workshop that took place on September 19/20, 2016 and subsequent discussions. Read More

The most general two-Higgs doublet model (2HDM) includes potentially large sources of flavor changing neutral currents (FCNCs) that must be suppressed in order to achieve a phenomenologically viable model. The flavor alignment ansatz postulates that all Yukawa coupling matrices are diagonal when expressed in the basis of mass-eigenstate fermion fields, in which case tree-level Higgs mediated FCNCs are eliminated. In this work, we explore models with the flavor alignment condition imposed at a very high energy scale, which results in the generation of Higgs-mediated FCNCs via renormalization group running from the high energy scale to the electroweak scale. Read More

2016Oct
Authors: D. de Florian1, C. Grojean2, F. Maltoni3, C. Mariotti4, A. Nikitenko5, M. Pieri6, P. Savard7, M. Schumacher8, R. Tanaka9, R. Aggleton10, M. Ahmad11, B. Allanach12, C. Anastasiou13, W. Astill14, S. Badger15, M. Badziak16, J. Baglio17, E. Bagnaschi18, A. Ballestrero19, A. Banfi20, D. Barducci21, M. Beckingham22, C. Becot23, G. Bélanger24, J. Bellm25, N. Belyaev26, F. U. Bernlochner27, C. Beskidt28, A. Biekötter29, F. Bishara30, W. Bizon31, N. E. Bomark32, M. Bonvini33, S. Borowka34, V. Bortolotto35, S. Boselli36, F. J. Botella37, R. Boughezal38, G. C. Branco39, J. Brehmer40, L. Brenner41, S. Bressler42, I. Brivio43, A. Broggio44, H. Brun45, G. Buchalla46, C. D. Burgard47, A. Calandri48, L. Caminada49, R. Caminal Armadans50, F. Campanario51, J. Campbell52, F. Caola53, C. M. Carloni Calame54, S. Carrazza55, A. Carvalho56, M. Casolino57, O. Cata58, A. Celis59, F. Cerutti60, N. Chanon61, M. Chen62, X. Chen63, B. Chokoufé Nejad64, N. Christensen65, M. Ciuchini66, R. Contino67, T. Corbett68, D. Curtin69, M. Dall'Osso70, A. David71, S. Dawson72, J. de Blas73, W. de Boer74, P. de Castro Manzano75, C. Degrande76, R. L. Delgado77, F. Demartin78, A. Denner79, B. Di Micco80, R. Di Nardo81, S. Dittmaier82, A. Dobado83, T. Dorigo84, F. A. Dreyer85, M. Dührssen86, C. Duhr87, F. Dulat88, K. Ecker89, K. Ellis90, U. Ellwanger91, C. Englert92, D. Espriu93, A. Falkowski94, L. Fayard95, R. Feger96, G. Ferrera97, A. Ferroglia98, N. Fidanza99, T. Figy100, M. Flechl101, D. Fontes102, S. Forte103, P. Francavilla104, E. Franco105, R. Frederix106, A. Freitas107, F. F. Freitas108, F. Frensch109, S. Frixione110, B. Fuks111, E. Furlan112, S. Gadatsch113, J. Gao114, Y. Gao115, M. V. Garzelli116, T. Gehrmann117, R. Gerosa118, M. Ghezzi119, D. Ghosh120, S. Gieseke121, D. Gillberg122, G. F. Giudice123, E. W. N. Glover124, F. Goertz125, D. Gonçalves126, J. Gonzalez-Fraile127, M. Gorbahn128, S. Gori129, C. A. Gottardo130, M. Gouzevitch131, P. Govoni132, D. Gray133, M. Grazzini134, N. Greiner135, A. Greljo136, J. Grigo137, A. V. Gritsan138, R. Gröber139, S. Guindon140, H. E. Haber141, C. Han142, T. Han143, R. Harlander144, M. A. Harrendorf145, H. B. Hartanto146, C. Hays147, S. Heinemeyer148, G. Heinrich149, M. Herrero150, F. Herzog151, B. Hespel152, V. Hirschi153, S. Hoeche154, S. Honeywell155, S. J. Huber156, C. Hugonie157, J. Huston158, A. Ilnicka159, G. Isidori160, B. Jäger161, M. Jaquier162, S. P. Jones163, A. Juste164, S. Kallweit165, A. Kaluza166, A. Kardos167, A. Karlberg168, Z. Kassabov169, N. Kauer170, D. I. Kazakov171, M. Kerner172, W. Kilian173, F. Kling174, K. Köneke175, R. Kogler176, R. Konoplich177, S. Kortner178, S. Kraml179, C. Krause180, F. Krauss181, M. Krawczyk182, A. Kulesza183, S. Kuttimalai184, R. Lane185, A. Lazopoulos186, G. Lee187, P. Lenzi188, I. M. Lewis189, Y. Li190, S. Liebler191, J. Lindert192, X. Liu193, Z. Liu194, F. J. Llanes-Estrada195, H. E. Logan196, D. Lopez-Val197, I. Low198, G. Luisoni199, P. Maierhöfer200, E. Maina201, B. Mansoulié202, H. Mantler203, M. Mantoani204, A. C. Marini205, V. I. Martinez Outschoorn206, S. Marzani207, D. Marzocca208, A. Massironi209, K. Mawatari210, J. Mazzitelli211, A. McCarn212, B. Mellado213, K. Melnikov214, S. B. Menari215, L. Merlo216, C. Meyer217, P. Milenovic218, K. Mimasu219, S. Mishima220, B. Mistlberger221, S. -O. Moch222, A. Mohammadi223, P. F. Monni224, G. Montagna225, M. Moreno Llácer226, N. Moretti227, S. Moretti228, L. Motyka229, A. Mück230, M. Mühlleitner231, S. Munir232, P. Musella233, P. Nadolsky234, D. Napoletano235, M. Nebot236, C. Neu237, M. Neubert238, R. Nevzorov239, O. Nicrosini240, J. Nielsen241, K. Nikolopoulos242, J. M. No243, C. O'Brien244, T. Ohl245, C. Oleari246, T. Orimoto247, D. Pagani248, C. E. Pandini249, A. Papaefstathiou250, A. S. Papanastasiou251, G. Passarino252, B. D. Pecjak253, M. Pelliccioni254, G. Perez255, L. Perrozzi256, F. Petriello257, G. Petrucciani258, E. Pianori259, F. Piccinini260, M. Pierini261, A. Pilkington262, S. Plätzer263, T. Plehn264, R. Podskubka265, C. T. Potter266, S. Pozzorini267, K. Prokofiev268, A. Pukhov269, I. Puljak270, M. Queitsch-Maitland271, J. Quevillon272, D. Rathlev273, M. Rauch274, E. Re275, M. N. Rebelo276, D. Rebuzzi277, L. Reina278, C. Reuschle279, J. Reuter280, M. Riembau281, F. Riva282, A. Rizzi283, T. Robens284, R. Röntsch285, J. Rojo286, J. C. Romão287, N. Rompotis288, J. Roskes289, R. Roth290, G. P. Salam291, R. Salerno292, R. Santos293, V. Sanz294, J. J. Sanz-Cillero295, H. Sargsyan296, U. Sarica297, P. Schichtel298, J. Schlenk299, T. Schmidt300, C. Schmitt301, M. Schönherr302, U. Schubert303, M. Schulze304, S. Sekula305, M. Sekulla306, E. Shabalina307, H. S. Shao308, J. Shelton309, C. H. Shepherd-Themistocleous310, S. Y. Shim311, F. Siegert312, A. Signer313, J. P. Silva314, L. Silvestrini315, M. Sjodahl316, P. Slavich317, M. Slawinska318, L. Soffi319, M. Spannowsky320, C. Speckner321, D. M. Sperka322, M. Spira323, O. Stål324, F. Staub325, T. Stebel326, T. Stefaniak327, M. Steinhauser328, I. W. Stewart329, M. J. Strassler330, J. Streicher331, D. M. Strom332, S. Su333, X. Sun334, F. J. Tackmann335, K. Tackmann336, A. M. Teixeira337, R. Teixeira de Lima338, V. Theeuwes339, R. Thorne340, D. Tommasini341, P. Torrielli342, M. Tosi343, F. Tramontano344, Z. Trócsányi345, M. Trott346, I. Tsinikos347, M. Ubiali348, P. Vanlaer349, W. Verkerke350, A. Vicini351, L. Viliani352, E. Vryonidou353, D. Wackeroth354, C. E. M. Wagner355, J. Wang356, S. Wayand357, G. Weiglein358, C. Weiss359, M. Wiesemann360, C. Williams361, J. Winter362, D. Winterbottom363, R. Wolf364, M. Xiao365, L. L. Yang366, R. Yohay367, S. P. Y. Yuen368, G. Zanderighi369, M. Zaro370, D. Zeppenfeld371, R. Ziegler372, T. Zirke373, J. Zupan374
Affiliations: 1eds., 2eds., 3eds., 4eds., 5eds., 6eds., 7eds., 8eds., 9eds., 10The LHC Higgs Cross Section Working Group, 11The LHC Higgs Cross Section Working Group, 12The LHC Higgs Cross Section Working Group, 13The LHC Higgs Cross Section Working Group, 14The LHC Higgs Cross Section Working Group, 15The LHC Higgs Cross Section Working Group, 16The LHC Higgs Cross Section Working Group, 17The LHC Higgs Cross Section Working Group, 18The LHC Higgs Cross Section Working Group, 19The LHC Higgs Cross Section Working Group, 20The LHC Higgs Cross Section Working Group, 21The LHC Higgs Cross Section Working Group, 22The LHC Higgs Cross Section Working Group, 23The LHC Higgs Cross Section Working Group, 24The LHC Higgs Cross Section Working Group, 25The LHC Higgs Cross Section Working Group, 26The LHC Higgs Cross Section Working Group, 27The LHC Higgs Cross Section Working Group, 28The LHC Higgs Cross Section Working Group, 29The LHC Higgs Cross Section Working Group, 30The LHC Higgs Cross Section Working Group, 31The LHC Higgs Cross Section Working Group, 32The LHC Higgs Cross Section Working Group, 33The LHC Higgs Cross Section Working Group, 34The LHC Higgs Cross Section Working Group, 35The LHC Higgs Cross Section Working Group, 36The LHC Higgs Cross Section Working Group, 37The LHC Higgs Cross Section Working Group, 38The LHC Higgs Cross Section Working Group, 39The LHC Higgs Cross Section Working Group, 40The LHC Higgs Cross Section Working Group, 41The LHC Higgs Cross Section Working Group, 42The LHC Higgs Cross Section Working Group, 43The LHC Higgs Cross Section Working Group, 44The LHC Higgs Cross Section Working Group, 45The LHC Higgs Cross Section Working Group, 46The LHC Higgs Cross Section Working Group, 47The LHC Higgs Cross Section Working Group, 48The LHC Higgs Cross Section Working Group, 49The LHC Higgs Cross Section Working Group, 50The LHC Higgs Cross Section Working Group, 51The LHC Higgs Cross Section Working Group, 52The LHC Higgs Cross Section Working Group, 53The LHC Higgs Cross Section Working Group, 54The LHC Higgs Cross Section Working Group, 55The LHC Higgs Cross Section Working Group, 56The LHC Higgs Cross Section Working Group, 57The LHC Higgs Cross Section Working Group, 58The LHC Higgs Cross Section Working Group, 59The LHC Higgs Cross Section Working Group, 60The LHC Higgs Cross Section Working Group, 61The LHC Higgs Cross Section Working Group, 62The LHC Higgs Cross Section Working Group, 63The LHC Higgs Cross Section Working Group, 64The LHC Higgs Cross Section Working Group, 65The LHC Higgs Cross Section Working Group, 66The LHC Higgs Cross Section Working Group, 67The LHC Higgs Cross Section Working Group, 68The LHC Higgs Cross Section Working Group, 69The LHC Higgs Cross Section Working Group, 70The LHC Higgs Cross Section Working Group, 71The LHC Higgs Cross Section Working Group, 72The LHC Higgs Cross Section Working Group, 73The LHC Higgs Cross Section Working Group, 74The LHC Higgs Cross Section Working Group, 75The LHC Higgs Cross Section Working Group, 76The LHC Higgs Cross Section Working Group, 77The LHC Higgs Cross Section Working Group, 78The LHC Higgs Cross Section Working Group, 79The LHC Higgs Cross Section Working Group, 80The LHC Higgs Cross Section Working Group, 81The LHC Higgs Cross Section Working Group, 82The LHC Higgs Cross Section Working Group, 83The LHC Higgs Cross Section Working Group, 84The LHC Higgs Cross Section Working Group, 85The LHC Higgs Cross Section Working Group, 86The LHC Higgs Cross Section Working Group, 87The LHC Higgs Cross Section Working Group, 88The LHC Higgs Cross Section Working Group, 89The LHC Higgs Cross Section Working Group, 90The LHC Higgs Cross Section Working Group, 91The LHC Higgs Cross Section Working Group, 92The LHC Higgs Cross Section Working Group, 93The LHC Higgs Cross Section Working Group, 94The LHC Higgs Cross Section Working Group, 95The LHC Higgs Cross Section Working Group, 96The LHC Higgs Cross Section Working Group, 97The LHC Higgs Cross Section Working Group, 98The LHC Higgs Cross Section Working Group, 99The LHC Higgs Cross Section Working Group, 100The LHC Higgs Cross Section Working Group, 101The LHC Higgs Cross Section Working Group, 102The LHC Higgs Cross Section Working Group, 103The LHC Higgs Cross Section Working Group, 104The LHC Higgs Cross Section Working Group, 105The LHC Higgs Cross Section Working Group, 106The LHC Higgs Cross Section Working Group, 107The LHC Higgs Cross Section Working Group, 108The LHC Higgs Cross Section Working Group, 109The LHC Higgs Cross Section Working Group, 110The LHC Higgs Cross Section Working Group, 111The LHC Higgs Cross Section Working Group, 112The LHC Higgs Cross Section Working Group, 113The LHC Higgs Cross Section Working Group, 114The LHC Higgs Cross Section Working Group, 115The LHC Higgs Cross Section Working Group, 116The LHC Higgs Cross Section Working Group, 117The LHC Higgs Cross Section Working Group, 118The LHC Higgs Cross Section Working Group, 119The LHC Higgs Cross Section Working Group, 120The LHC Higgs Cross Section Working Group, 121The LHC Higgs Cross Section Working Group, 122The LHC Higgs Cross Section Working Group, 123The LHC Higgs Cross Section Working Group, 124The LHC Higgs Cross Section Working Group, 125The LHC Higgs Cross Section Working Group, 126The LHC Higgs Cross Section Working Group, 127The LHC Higgs Cross Section Working Group, 128The LHC Higgs Cross Section Working Group, 129The LHC Higgs Cross Section Working Group, 130The LHC Higgs Cross Section Working Group, 131The LHC Higgs Cross Section Working Group, 132The LHC Higgs Cross Section Working Group, 133The LHC Higgs Cross Section Working Group, 134The LHC Higgs Cross Section Working Group, 135The LHC Higgs Cross Section Working Group, 136The LHC Higgs Cross Section Working Group, 137The LHC Higgs Cross Section Working Group, 138The LHC Higgs Cross Section Working Group, 139The LHC Higgs Cross Section Working Group, 140The LHC Higgs Cross Section Working Group, 141The LHC Higgs Cross Section Working Group, 142The LHC Higgs Cross Section Working Group, 143The LHC Higgs Cross Section Working Group, 144The LHC Higgs Cross Section Working Group, 145The LHC Higgs Cross Section Working Group, 146The LHC Higgs Cross Section Working Group, 147The LHC Higgs Cross Section Working Group, 148The LHC Higgs Cross Section Working Group, 149The LHC Higgs Cross Section Working Group, 150The LHC Higgs Cross Section Working Group, 151The LHC Higgs Cross Section Working Group, 152The LHC Higgs Cross Section Working Group, 153The LHC Higgs Cross Section Working Group, 154The LHC Higgs Cross Section Working Group, 155The LHC Higgs Cross Section Working Group, 156The LHC Higgs Cross Section Working Group, 157The LHC Higgs Cross Section Working Group, 158The LHC Higgs Cross Section Working Group, 159The LHC Higgs Cross Section Working Group, 160The LHC Higgs Cross Section Working Group, 161The LHC Higgs Cross Section Working Group, 162The LHC Higgs Cross Section Working Group, 163The LHC Higgs Cross Section Working Group, 164The LHC Higgs Cross Section Working Group, 165The LHC Higgs Cross Section Working Group, 166The LHC Higgs Cross Section Working Group, 167The LHC Higgs Cross Section Working Group, 168The LHC Higgs Cross Section Working Group, 169The LHC Higgs Cross Section Working Group, 170The LHC Higgs Cross Section Working Group, 171The LHC Higgs Cross Section Working Group, 172The LHC Higgs Cross Section Working Group, 173The LHC Higgs Cross Section Working Group, 174The LHC Higgs Cross Section Working Group, 175The LHC Higgs Cross Section Working Group, 176The LHC Higgs Cross Section Working Group, 177The LHC Higgs Cross Section Working Group, 178The LHC Higgs Cross Section Working Group, 179The LHC Higgs Cross Section Working Group, 180The LHC Higgs Cross Section Working Group, 181The LHC Higgs Cross Section Working Group, 182The LHC Higgs Cross Section Working Group, 183The LHC Higgs Cross Section Working Group, 184The LHC Higgs Cross Section Working Group, 185The LHC Higgs Cross Section Working Group, 186The LHC Higgs Cross Section Working Group, 187The LHC Higgs Cross Section Working Group, 188The LHC Higgs Cross Section Working Group, 189The LHC Higgs Cross Section Working Group, 190The LHC Higgs Cross Section Working Group, 191The LHC Higgs Cross Section Working Group, 192The LHC Higgs Cross Section Working Group, 193The LHC Higgs Cross Section Working Group, 194The LHC Higgs Cross Section Working Group, 195The LHC Higgs Cross Section Working Group, 196The LHC Higgs Cross Section Working Group, 197The LHC Higgs Cross Section Working Group, 198The LHC Higgs Cross Section Working Group, 199The LHC Higgs Cross Section Working Group, 200The LHC Higgs Cross Section Working Group, 201The LHC Higgs Cross Section Working Group, 202The LHC Higgs Cross Section Working Group, 203The LHC Higgs Cross Section Working Group, 204The LHC Higgs Cross Section Working Group, 205The LHC Higgs Cross Section Working Group, 206The LHC Higgs Cross Section Working Group, 207The LHC Higgs Cross Section Working Group, 208The LHC Higgs Cross Section Working Group, 209The LHC Higgs Cross Section Working Group, 210The LHC Higgs Cross Section Working Group, 211The LHC Higgs Cross Section Working Group, 212The LHC Higgs Cross Section Working Group, 213The LHC Higgs Cross Section Working Group, 214The LHC Higgs Cross Section Working Group, 215The LHC Higgs Cross Section Working Group, 216The LHC Higgs Cross Section Working Group, 217The LHC Higgs Cross Section Working Group, 218The LHC Higgs Cross Section Working Group, 219The LHC Higgs Cross Section Working Group, 220The LHC Higgs Cross Section Working Group, 221The LHC Higgs Cross Section Working Group, 222The LHC Higgs Cross Section Working Group, 223The LHC Higgs Cross Section Working Group, 224The LHC Higgs Cross Section Working Group, 225The LHC Higgs Cross Section Working Group, 226The LHC Higgs Cross Section Working Group, 227The LHC Higgs Cross Section Working Group, 228The LHC Higgs Cross Section Working Group, 229The LHC Higgs Cross Section Working Group, 230The LHC Higgs Cross Section Working Group, 231The LHC Higgs Cross Section Working Group, 232The LHC Higgs Cross Section Working Group, 233The LHC Higgs Cross Section Working Group, 234The LHC Higgs Cross Section Working Group, 235The LHC Higgs Cross Section Working Group, 236The LHC Higgs Cross Section Working Group, 237The LHC Higgs Cross Section Working Group, 238The LHC Higgs Cross Section Working Group, 239The LHC Higgs Cross Section Working Group, 240The LHC Higgs Cross Section Working Group, 241The LHC Higgs Cross Section Working Group, 242The LHC Higgs Cross Section Working Group, 243The LHC Higgs Cross Section Working Group, 244The LHC Higgs Cross Section Working Group, 245The LHC Higgs Cross Section Working Group, 246The LHC Higgs Cross Section Working Group, 247The LHC Higgs Cross Section Working Group, 248The LHC Higgs Cross Section Working Group, 249The LHC Higgs Cross Section Working Group, 250The LHC Higgs Cross Section Working Group, 251The LHC Higgs Cross Section Working Group, 252The LHC Higgs Cross Section Working Group, 253The LHC Higgs Cross Section Working Group, 254The LHC Higgs Cross Section Working Group, 255The LHC Higgs Cross Section Working Group, 256The LHC Higgs Cross Section Working Group, 257The LHC Higgs Cross Section Working Group, 258The LHC Higgs Cross Section Working Group, 259The LHC Higgs Cross Section Working Group, 260The LHC Higgs Cross Section Working Group, 261The LHC Higgs Cross Section Working Group, 262The LHC Higgs Cross Section Working Group, 263The LHC Higgs Cross Section Working Group, 264The LHC Higgs Cross Section Working Group, 265The LHC Higgs Cross Section Working Group, 266The LHC Higgs Cross Section Working Group, 267The LHC Higgs Cross Section Working Group, 268The LHC Higgs Cross Section Working Group, 269The LHC Higgs Cross Section Working Group, 270The LHC Higgs Cross Section Working Group, 271The LHC Higgs Cross Section Working Group, 272The LHC Higgs Cross Section Working Group, 273The LHC Higgs Cross Section Working Group, 274The LHC Higgs Cross Section Working Group, 275The LHC Higgs Cross Section Working Group, 276The LHC Higgs Cross Section Working Group, 277The LHC Higgs Cross Section Working Group, 278The LHC Higgs Cross Section Working Group, 279The LHC Higgs Cross Section Working Group, 280The LHC Higgs Cross Section Working Group, 281The LHC Higgs Cross Section Working Group, 282The LHC Higgs Cross Section Working Group, 283The LHC Higgs Cross Section Working Group, 284The LHC Higgs Cross Section Working Group, 285The LHC Higgs Cross Section Working Group, 286The LHC Higgs Cross Section Working Group, 287The LHC Higgs Cross Section Working Group, 288The LHC Higgs Cross Section Working Group, 289The LHC Higgs Cross Section Working Group, 290The LHC Higgs Cross Section Working Group, 291The LHC Higgs Cross Section Working Group, 292The LHC Higgs Cross Section Working Group, 293The LHC Higgs Cross Section Working Group, 294The LHC Higgs Cross Section Working Group, 295The LHC Higgs Cross Section Working Group, 296The LHC Higgs Cross Section Working Group, 297The LHC Higgs Cross Section Working Group, 298The LHC Higgs Cross Section Working Group, 299The LHC Higgs Cross Section Working Group, 300The LHC Higgs Cross Section Working Group, 301The LHC Higgs Cross Section Working Group, 302The LHC Higgs Cross Section Working Group, 303The LHC Higgs Cross Section Working Group, 304The LHC Higgs Cross Section Working Group, 305The LHC Higgs Cross Section Working Group, 306The LHC Higgs Cross Section Working Group, 307The LHC Higgs Cross Section Working Group, 308The LHC Higgs Cross Section Working Group, 309The LHC Higgs Cross Section Working Group, 310The LHC Higgs Cross Section Working Group, 311The LHC Higgs Cross Section Working Group, 312The LHC Higgs Cross Section Working Group, 313The LHC Higgs Cross Section Working Group, 314The LHC Higgs Cross Section Working Group, 315The LHC Higgs Cross Section Working Group, 316The LHC Higgs Cross Section Working Group, 317The LHC Higgs Cross Section Working Group, 318The LHC Higgs Cross Section Working Group, 319The LHC Higgs Cross Section Working Group, 320The LHC Higgs Cross Section Working Group, 321The LHC Higgs Cross Section Working Group, 322The LHC Higgs Cross Section Working Group, 323The LHC Higgs Cross Section Working Group, 324The LHC Higgs Cross Section Working Group, 325The LHC Higgs Cross Section Working Group, 326The LHC Higgs Cross Section Working Group, 327The LHC Higgs Cross Section Working Group, 328The LHC Higgs Cross Section Working Group, 329The LHC Higgs Cross Section Working Group, 330The LHC Higgs Cross Section Working Group, 331The LHC Higgs Cross Section Working Group, 332The LHC Higgs Cross Section Working Group, 333The LHC Higgs Cross Section Working Group, 334The LHC Higgs Cross Section Working Group, 335The LHC Higgs Cross Section Working Group, 336The LHC Higgs Cross Section Working Group, 337The LHC Higgs Cross Section Working Group, 338The LHC Higgs Cross Section Working Group, 339The LHC Higgs Cross Section Working Group, 340The LHC Higgs Cross Section Working Group, 341The LHC Higgs Cross Section Working Group, 342The LHC Higgs Cross Section Working Group, 343The LHC Higgs Cross Section Working Group, 344The LHC Higgs Cross Section Working Group, 345The LHC Higgs Cross Section Working Group, 346The LHC Higgs Cross Section Working Group, 347The LHC Higgs Cross Section Working Group, 348The LHC Higgs Cross Section Working Group, 349The LHC Higgs Cross Section Working Group, 350The LHC Higgs Cross Section Working Group, 351The LHC Higgs Cross Section Working Group, 352The LHC Higgs Cross Section Working Group, 353The LHC Higgs Cross Section Working Group, 354The LHC Higgs Cross Section Working Group, 355The LHC Higgs Cross Section Working Group, 356The LHC Higgs Cross Section Working Group, 357The LHC Higgs Cross Section Working Group, 358The LHC Higgs Cross Section Working Group, 359The LHC Higgs Cross Section Working Group, 360The LHC Higgs Cross Section Working Group, 361The LHC Higgs Cross Section Working Group, 362The LHC Higgs Cross Section Working Group, 363The LHC Higgs Cross Section Working Group, 364The LHC Higgs Cross Section Working Group, 365The LHC Higgs Cross Section Working Group, 366The LHC Higgs Cross Section Working Group, 367The LHC Higgs Cross Section Working Group, 368The LHC Higgs Cross Section Working Group, 369The LHC Higgs Cross Section Working Group, 370The LHC Higgs Cross Section Working Group, 371The LHC Higgs Cross Section Working Group, 372The LHC Higgs Cross Section Working Group, 373The LHC Higgs Cross Section Working Group, 374The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

These notes are based on the lectures I gave at the 2015 European School of High-Energy Physics (ESHEP2015). I discuss 1) flavor physics within the Standard Model, 2) effective field theories and Minimal Flavor Violation, 3) flavor physics in theories beyond the Standard Model and "high energy" flavor transitions of the top quark and of the Higgs boson. As a bi-product, I present the most updated constraints from the measurements of B_s -> mu^+mu^-, as well as I discuss the most recent development in the LHC searches for top flavor changing couplings. Read More

Motivated by our limited knowledge of the Higgs couplings to first two generation fermions, we analyze the collider phenomenology of a class of two Higgs doublet models (2HDMs) with a non-standard Yukawa sector. One Higgs doublet is mainly responsible for the masses of the weak gauge bosons and the third generation fermions, while the second Higgs doublet provides mass for the lighter fermion generations. The characteristic collider signatures of this setup differ significantly from well-studied 2HDMs with natural flavor conservation, flavor alignment, or minimal flavor violation. Read More

We present a dark sector model based on gauging the $L_\mu - L_\tau$ symmetry that addresses anomalies in $b \rightarrow s \mu^+ \mu^-$ decays and that features a particle dark matter candidate. The dark matter particle candidate is a vector-like Dirac fermion coupled to the $Z^\prime$ gauge boson of the $L_{\mu}-L_{\tau}$ symmetry. We compute the dark matter thermal relic density, its pair-annihilation cross section, and the loop-suppressed dark matter-nucleon scattering cross section, and compare our predictions with current and future experimental results. Read More

2016Aug
Authors: Jim Alexander, Marco Battaglieri, Bertrand Echenard, Rouven Essig, Matthew Graham, Eder Izaguirre, John Jaros, Gordan Krnjaic, Jeremy Mardon, David Morrissey, Tim Nelson, Maxim Perelstein, Matt Pyle, Adam Ritz, Philip Schuster, Brian Shuve, Natalia Toro, Richard G Van De Water, Daniel Akerib, Haipeng An, Konrad Aniol, Isaac J. Arnquist, David M. Asner, Henning O. Back, Keith Baker, Nathan Baltzell, Dipanwita Banerjee, Brian Batell, Daniel Bauer, James Beacham, Jay Benesch, James Bjorken, Nikita Blinov, Celine Boehm, Mariangela Bondí, Walter Bonivento, Fabio Bossi, Stanley J. Brodsky, Ran Budnik, Stephen Bueltmann, Masroor H. Bukhari, Raymond Bunker, Massimo Carpinelli, Concetta Cartaro, David Cassel, Gianluca Cavoto, Andrea Celentano, Animesh Chaterjee, Saptarshi Chaudhuri, Gabriele Chiodini, Hsiao-Mei Sherry Cho, Eric D. Church, D. A. Cooke, Jodi Cooley, Robert Cooper, Ross Corliss, Paolo Crivelli, Francesca Curciarello, Annalisa D'Angelo, Hooman Davoudiasl, Marzio De Napoli, Raffaella De Vita, Achim Denig, Patrick deNiverville, Abhay Deshpande, Ranjan Dharmapalan, Bogdan Dobrescu, Sergey Donskov, Raphael Dupre, Juan Estrada, Stuart Fegan, Torben Ferber, Clive Field, Enectali Figueroa-Feliciano, Alessandra Filippi, Bartosz Fornal, Arne Freyberger, Alexander Friedland, Iftach Galon, Susan Gardner, Francois-Xavier Girod, Sergei Gninenko, Andrey Golutvin, Stefania Gori, Christoph Grab, Enrico Graziani, Keith Griffioen, Andrew Haas, Keisuke Harigaya, Christopher Hearty, Scott Hertel, JoAnne Hewett, Andrew Hime, David Hitlin, Yonit Hochberg, Roy J. Holt, Maurik Holtrop, Eric W. Hoppe, Todd W. Hossbach, Lauren Hsu, Phil Ilten, Joe Incandela, Gianluca Inguglia, Kent Irwin, Igal Jaegle, Robert P. Johnson, Yonatan Kahn, Grzegorz Kalicy, Zhong-Bo Kang, Vardan Khachatryan, Venelin Kozhuharov, N. V. Krasnikov, Valery Kubarovsky, Eric Kuflik, Noah Kurinsky, Ranjan Laha, Gaia Lanfranchi, Dale Li, Tongyan Lin, Mariangela Lisanti, Kun Liu, Ming Liu, Ben Loer, Dinesh Loomba, Valery E. Lyubovitskij, Aaron Manalaysay, Giuseppe Mandaglio, Jeremiah Mans, W. J. Marciano, Thomas Markiewicz, Luca Marsicano, Takashi Maruyama, Victor A. Matveev, David McKeen, Bryan McKinnon, Dan McKinsey, Harald Merkel, Jeremy Mock, Maria Elena Monzani, Omar Moreno, Corina Nantais, Sebouh Paul, Michael Peskin, Vladimir Poliakov, Antonio D Polosa, Maxim Pospelov, Igor Rachek, Balint Radics, Mauro Raggi, Nunzio Randazzo, Blair Ratcliff, Alessandro Rizzo, Thomas Rizzo, Alan Robinson, Andre Rubbia, David Rubin, Dylan Rueter, Tarek Saab, Elena Santopinto, Richard Schnee, Jessie Shelton, Gabriele Simi, Ani Simonyan, Valeria Sipala, Oren Slone, Elton Smith, Daniel Snowden-Ifft, Matthew Solt, Peter Sorensen, Yotam Soreq, Stefania Spagnolo, James Spencer, Stepan Stepanyan, Jan Strube, Michael Sullivan, Arun S. Tadepalli, Tim Tait, Mauro Taiuti, Philip Tanedo, Rex Tayloe, Jesse Thaler, Nhan V. Tran, Sean Tulin, Christopher G. Tully, Sho Uemura, Maurizio Ungaro, Paolo Valente, Holly Vance, Jerry Vavra, Tomer Volansky, Belina von Krosigk, Andrew Whitbeck, Mike Williams, Peter Wittich, Bogdan Wojtsekhowski, Wei Xue, Jong Min Yoon, Hai-Bo Yu, Jaehoon Yu, Tien-Tien Yu, Yue Zhang, Yue Zhao, Yiming Zhong, Kathryn Zurek

This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years. Read More

2016Jun

This report summarises the physics opportunities in the search and study of physics beyond the Standard Model at a 100 TeV pp collider. Read More

We consider search strategies for an extended Higgs sector at the high-luminosity LHC14 utilizing multi-top final states. In the framework of a Two Higgs Doublet Model, the purely top final states ($t\bar t, \, 4t$) are important channels for heavy Higgs bosons with masses in the wedge above $2\,m_t$ and at low values of $\tan\beta$, while a $2 b 2t$ final state is most relevant at moderate values of $\tan \beta$. We find, in the $t\bar t H$ channel, with $H \rightarrow t \bar t$, that both single and 3 lepton final states can provide statistically significant constraints at low values of $\tan \beta$ for $m_A$ as high as $\sim 750$ GeV. Read More

We explore several perturbative scenarios in which the di-photon excess at 750 GeV can potentially be explained: a scalar singlet, a two Higgs doublet model (2HDM), a 2HDM with an extra singlet, and the decays of heavier resonances, both vector and scalar. We draw the following conclusions: (i) due to gauge invariance a 750 GeV scalar singlet can accommodate the observed excess more readily than a scalar SU(2)_L doublet; (ii) scalar singlet production via gluon fusion is one option, however, vector boson fusion can also provide a large enough rate, (iii) 2HDMs with an extra singlet and no extra fermions can only give a signal in a severely tuned region of the parameter space; (iv) decays of heavier resonances can give a large enough di-photon signal at 750 GeV, while simultaneously explaining the absence of a signal at 8 TeV. Read More

The International Linear Collider (ILC) will advance our understanding of fundamental physics, through a program for precision measurements of the Higgs boson and of the top quark properties. An additional crucial goal of the ILC will be the direct discovery of light New Physics (NP) particles. This proceeding gives an overview of the ILC direct discovery potential. Read More

Many new physics models predict sizable modifications to the SM Zbb couplings, while the corresponding measurements at LEP and SLC exhibit some discrepancy with the SM predictions. After updating the current results on the Zbb coupling constraints from global fits, we list the observables that are most important for improving the Zbb coupling constraints and estimate the expected precision reach of three proposed future e+e- colliders, CEPC, ILC and FCC-ee. We consider both the case that the results are SM-like and the one that the Zbb couplings deviate significantly from the SM predictions. Read More

A discovery of the flavor violating decay h --> tau mu at the LHC would require extra sources of electroweak symmetry breaking (EWSB) beyond the Higgs in order to reconcile it with the bounds from tau --> mu gamma, barring fine-tuned cancellations. In fact, an h --> tau mu decay rate at a level indicated by the CMS measurement is easily realized if the muon and electron masses are due to a new source of EWSB, while the tau mass is due to the Higgs. We illustrate this with two examples: a two Higgs doublet model, and a model in which the Higgs is partially composite, with EWSB triggered by a technicolor sector. Read More

2015Apr

This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (Search for Hidden Particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, $\tau\to 3\mu$ and to search for weakly-interacting sub-GeV dark matter candidates. Read More

A fermion dark matter candidate with a relic abundance set by annihilation through a pseudoscalar can evade constraints from direct detection experiments. We present simplified models that realize this fact by coupling a fermion dark sector to a two-Higgs doublet model. These models are generalizations of mixed bino-Higgsino dark matter in the MSSM, with more freedom in the couplings and scalar spectra. Read More

High-energy colliders offer a unique sensitivity to dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model (SM) hypercharge. Dark photons can be detected in the exotic decay of the 125 GeV Higgs boson, h -> Z Z_D -> 4l, and in Drell-Yan events, pp -> Z_D -> ll. If the dark U(1) is broken by a hidden-sector Higgs mechanism, then mixing between the dark and SM Higgs bosons also allows the exotic decay h -> Z_D Z_D -> 4l. Read More

We investigate the prospects of discovering split Supersymmetry at a future 100 TeV proton-proton collider through the direct production of electroweakino next-to-lightest-supersymmetric-particles (NLSPs). We focus on signatures with multi-lepton and missing energy: $3\ell$, opposite-sign dileptons and same-sign dileptons. We perform a comprehensive study of different electroweakino spectra. Read More

Higgs triplet models are known to have difficulties obtaining agreement with electroweak precision data and in particular constraints on the $\rho$ parameter. Either a global $SU(2)_L \otimes SU(2)_R$ symmetry has to be imposed on the scalar potential at the electroweak scale, as done in the well-known Georgi-Machacek (GM) model, or the triplet vacuum expectation values must be very small. We construct a supersymmetric model that can satisfy constraints on the $\rho$ parameter, even if these two conditions are not fulfilled. Read More

The production of a mu+mu- pair from the scattering of a muon-neutrino off the Coulomb field of a nucleus, known as neutrino trident production, is a sub-weak process that has been observed in only a couple of experiments. As such, we show that it constitutes an exquisitely sensitive probe in the search for new neutral currents among leptons, putting the strongest constraints on well-motivated and well-hidden extensions of the Standard Model gauge group, including the one coupled to the difference of the lepton number between the muon and tau flavor, L_mu-L_tau. The new gauge boson, Z', increases the rate of neutrino trident production by inducing additional $(\bar\mu \gamma_\alpha \mu)(\bar\nu \gamma^\alpha \nu)$ interactions, which interfere constructively with the Standard Model contribution. Read More

We consider a new massive vector-boson Z' that couples to leptons through the L_mu - L_tau current, and to quarks through an arbitrary set of couplings. We show that such a model can be obtained from a renormalizable field theory involving new heavy fermions in an anomaly-free representation. The model is a candidate explanation for the discrepancy observed recently by the LHCb collaboration in angular distributions of the final state particles in the rare decay B \to K* mu^+ mu^-. Read More

We perform an extensive survey of non-standard Higgs decays that are consistent with the 125 GeV Higgs-like resonance. Our aim is to motivate a large set of new experimental analyses on the existing and forthcoming data from the Large Hadron Collider (LHC). The explicit search for exotic Higgs decays presents a largely untapped discovery opportunity for the LHC collaborations, as such decays may be easily missed by other searches. Read More

2013Oct

This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Read More

Squeezed supersymmetric spectra are challenging for the LHC searches based on a sizable missing energy and hard visible particles. One such scenario consists of chargino/second-lightest neutralino NLSPs and a lightest neutralino LSP with a relatively small mass gap (10-50GeV). In this note, we explore search strategies to better probe this parameter space. Read More

New particles entering into self-energies of the Higgs boson would necessarily modify loop-induced couplings of the Higgs, if the new particle carries standard model gauge quantum numbers. For a 1 TeV new particle, deviations in these "Higgs oblique corrections" are generically of the order of v^2/(1 TeV)^2 ~ 5%. We study constraints on masses and couplings of new scalars and fermions that can be derived from 5-10% deviations in the Higgs digluon and diphoton partial widths. Read More

2013Jun
Authors: Andreas S. Kronfeld1, Robert S. Tschirhart2, Usama Al-Binni, Wolfgang Altmannshofer, Charles Ankenbrandt, Kaladi Babu, Sunanda Banerjee, Matthew Bass, Brian Batell, David V. Baxter, Zurab Berezhiani, Marc Bergevin, Robert Bernstein, Sudeb Bhattacharya, Mary Bishai, Thomas Blum, S. Alex Bogacz, Stephen J. Brice, Joachim Brod, Alan Bross, Michael Buchoff, Thomas W. Burgess, Marcela Carena, Luis A. Castellanos, Subhasis Chattopadhyay, Mu-Chun Chen, Daniel Cherdack, Norman H. Christ, Tim Chupp, Vincenzo Cirigliano, Pilar Coloma, Christopher E. Coppola, Ramanath Cowsik, J. Allen Crabtree, André de Gouvêa, Jean-Pierre Delahaye, Dmitri Denisov, Patrick deNiverville, Ranjan Dharmapalan, Markus Diefenthaler, Alexander Dolgov, Georgi Dvali, Estia Eichten, Jürgen Engelfried, Phillip D. Ferguson, Tony Gabriel, Avraham Gal, Franz Gallmeier, Kenneth S. Ganezer, Susan Gardner, Douglas Glenzinski, Stephen Godfrey, Elena S. Golubeva, Stefania Gori, Van B. Graves, Geoffrey Greene, Cory L. Griffard, Ulrich Haisch, Thomas Handler, Brandon Hartfiel, Athanasios Hatzikoutelis, Ayman Hawari, Lawrence Heilbronn, James E. Hill, Patrick Huber, David E. Jaffe, Xiaodong Jiang, Christian Johnson, Yuri Kamyshkov, Daniel M. Kaplan, Boris Kerbikov, Brendan Kiburg, Harold G. Kirk, Andreas Klein, Kyle Knoepfel, Boris Kopeliovich, Vladimir Kopeliovich, Joachim Kopp, Wolfgang Korsch, Graham Kribs, Ronald Lipton, Chen-Yu Liu, Wolfgang Lorenzon, Zheng-Tian Lu, Naomi C. R. Makins, David McKeen, Geoffrey Mills, Michael Mocko, Rabindra Mohapatra, Nikolai V. Mokhov, Guenter Muhrer, Pieter Mumm, David Neuffer, Lev Okun, Mark A. Palmer, Robert Palmer, Robert W. Pattie Jr., David G. Phillips II, Kevin Pitts, Maxim Pospelov, Vitaly S. Pronskikh, Chris Quigg, Erik Ramberg, Amlan Ray, Paul E. Reimer, David G. Richards, Adam Ritz, Amit Roy, Arthur Ruggles, Robert Ryne, Utpal Sarkar, Andy Saunders, Yannis K. Semertzidis, Anatoly Serebrov, Hirohiko Shimizu, Robert Shrock, Arindam K. Sikdar, Pavel V. Snopok, William M. Snow, Aria Soha, Stefan Spanier, Sergei Striganov, Zhaowen Tang, Lawrence Townsend, Jon Urheim, Arkady Vainshtein, Richard Van de Water, Ruth S. Van de Water, Richard J. Van Kooten, Bernard Wehring, William C. Wester III, Lisa Whitehead, Robert J. Wilson, Elizabeth Worcester, Albert R. Young, Geralyn Zeller
Affiliations: 1Editors, 2Editors

Part 2 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". In this Part, we outline the particle-physics program that can be achieved with Project X, a staged superconducting linac for intensity-frontier particle physics. Topics include neutrino physics, kaon physics, muon physics, electric dipole moments, neutron-antineutron oscillations, new light particles, hadron structure, hadron spectroscopy, and lattice-QCD calculations. Read More

The ATLAS and CMS experiments have recently announced the discovery of a Higgs-like resonance with mass close to 125 GeV. Overall, the data is consistent with a Standard Model (SM)-like Higgs boson. Such a particle may arise in the minimal supersymmetric extension of the SM with average stop masses of the order of the TeV scale and a sizable stop mixing parameter. Read More

Current Higgs data at the Large Hadron Collider is compatible with a SM signal at the 2$\sigma$ level, but the central value of the signal strength in the diphoton channel is enhanced with respect to the SM expectation. If the enhancement resides in the diphoton partial decay width, the data could be accommodated in the Minimally Supersymmetric Standard Model (MSSM) with highly mixed light staus. We revisit the issue of vacuum instability induced by large mixing in the stau sector, including effects of a radiatively-corrected tau Yukawa coupling. Read More

We explore the phenomenology of a two Higgs doublet model where both Higgs doublets couple to up-type and down-type fermions with couplings determined by the minimal flavor violation ansatz. This 2HDM "Type MFV" generalizes 2HDM Types I-IV, where the decay rates of h --> bb and h --> tau+tau- are governed by MFV couplings independent of the Higgs couplings to gauge bosons or the top quark. To determine the implications of the present Higgs data on the model, we have performed global fits to all relevant data. Read More

In light of the discovery of a Higgs-like particle at the LHC, we revisit the status of the precision electroweak data, focusing on two discrepant observables: 1) the long-standing 2.4 sigma deviation in the forward-backward asymmetry of the bottom quark A_{FB}^b, and 2) the 2.3 sigma deviation in R_b, the ratio of the Z \rightarrow b \bar b partial width to the inclusive hadronic width, which is now in tension after a recent calculation including new two-loop electroweak corrections. Read More

Recently, an excess of events consistent with a Higgs boson with mass of about 125 GeV was reported by the CMS and ATLAS experiments. This Higgs boson mass is consistent with the values that may be obtained in minimal supersymmetric extensions of the Standard Model (SM), with both stop masses less than a TeV and large mixing. The apparently enhanced photon production rate associated with this potential Higgs signal may be the result of light staus with large mixing. Read More

In a variety of well motivated models, such as two Higgs Doublet Models (2HDMs) and the Minimal Supersymmetric Standard Model (MSSM), there are neutral Higgs bosons that have significantly enhanced couplings to b-quarks and tau leptons in comparison to those of the SM Higgs. These so called non-standard Higgs bosons could be copiously produced at the LHC in association with b quarks, and subsequently decay into b-quark pairs. However, this production channel suffers from large irreducible QCD backgrounds. Read More

We consider the impact of new exotic colored and/or charged matter interacting through the Higgs portal on Standard Model Higgs boson searches at the LHC. Such Higgs portal couplings can induce shifts in the effective Higgs-gluon-gluon and Higgs-photon-photon couplings, thus modifying the Higgs production and decay patterns. We consider two possible interpretations of the current LHC Higgs searches based on ~ 5/fb of data at each detector: 1) a Higgs boson in the mass range (124-126) GeV and 2) a `hidden' heavy Higgs boson which is underproduced due to the suppression of its gluon fusion production cross section. Read More

We consider the possibility of a Standard Model (SM)-like Higgs in the context of the Minimal Supersymmetric Standard Model (MSSM), with a mass of about 125 GeV and with a production times decay rate into two photons which is similar or somewhat larger than the SM one. The relatively large value of the SM-like Higgs mass demands stops in the several hundred GeV mass range with somewhat large mixing, or a large hierarchy between the two stop masses in the case that one of the two stops is light. We find that, in general, if the heaviest stop mass is smaller than a few TeV, the rate of gluon fusion production of Higgs bosons decaying into two photons tends to be somewhat suppressed with respect to the SM one in this region of parameters. Read More

We study an extension of the Higgs sector of the Minimal Supersymmetric Standard Model (MSSM), considering the effects of new degrees of freedom at the TeV scale, and allowing for sources of CP violation beyond the MSSM (BMSSM). We analyze the impact of the BMSSM sources of CP violation on the Higgs collider phenomenology and on low energy flavor and CP violating observables. We identify distinct Higgs collider signatures that cannot be realized, either in the case without CP violating phases or in the CP violating MSSM, and investigate the prospects to probe them at the Tevatron and the LHC. Read More

We show that, the result recently reported by the CDF collaboration showing an excess in the invariant mass distribution of jet pairs produced in association with a W-boson can be explained by a simple extension of the Standard Model (SM) with an additional quasi-inert Higgs doublet. The two additional neutral Higgs states H^0 and A^0 have a mass of about 150 GeV and decay into a pair of jets. W^\pm H^0/A^0 pairs are produced from the decay of the heavier charged Higgs boson H^\pm. Read More

The Minimal Supersymmetric Extension of the Standard Model (MSSM) is a well motivated theoretical framework, which contains an extended Higgs sector, including a light Higgs with Standard Model-like properties in most of the parameter space. Due to the large QCD background, searches for such a Higgs, decaying into a pair of bottom quarks, is very challenging at the LHC. It has been long realized that the situation may be ameliorated by searching for Higgs bosons in supersymmetric decay chains. Read More

We compare the effectiveness of two hypotheses, Natural Flavour Conservation (NFC) and Minimal Flavour Violation (MFV), in suppressing the strength of flavour-changing neutral-currents (FCNCs) in models with more than one Higgs doublet. We show that the MFV hypothesis, in its general formulation, is more stable in suppressing FCNCs than the hypothesis of NFC alone when quantum corrections are taken into account. The phenomenological implications of the two scenarios are discussed analysing meson-antimeson mixing observables and the rare decays B -> mu+ mu-. Read More

We discuss the generation of the mu-term in a class of supersymmetric models characterized by a low energy effective superpotential containing a term lambda S H_1 H_2 with a large coupling lambda~2. These models generically predict a lightest Higgs boson well above the LEP limit of 114 GeV and have been shown to be compatible with the unification of gauge couplings. Here we discuss a specific example where the superpotential has no dimensionful parameters and we point out the relation between the generated mu-term and the mass of the lightest Higgs boson. Read More

The aim of these proceedings is to present the main predictions of the Randall-Sundrum model with custodial protection for particle-antiparticle mixing and rare decays of K and B_(s,d) mesons, putting particular attention on the testability of the resulting NP effects at future experiments. Before giving numerical results, we discuss theoretical expectations, residing in the flavor structure of the model. The high energy scale M_KK is chosen in such a way that direct searches of new particles at the LHC are possible, still being consistent with electroweak precision observables. Read More

We perform an extensive study of FCNC and CP Violation within Supersymmetric (SUSY) theories with particular emphasis put on processes governed by b->s transitions and of their correlations with processes governed by b->d transitions, s->d transitions, $D^0-\bar D^0$ oscillations, lepton flavour violating decays, electric dipole moments and (g-2)_mu. We first perform a comprehensive model-independent analysis of Delta F=2 observables and we emphasize the usefulness of the R_b-gamma plane in exhibiting transparently various tensions in the present UT analyses. Secondly, we consider a number of SUSY models: the general MSSM, a flavour blind MSSM, the MSSM with Minimal Flavour Violation as well as SUSY flavour models based on abelian and non-abelian flavour symmetries that show representative flavour structures in the soft SUSY breaking terms. Read More

We reconsider the impact of heavy vector-like fermions on the couplings of standard model (SM) quarks to the SM gauge bosons W and Z and to the SM Higgs boson H. Integrating out these fermions at tree level we derive general formulae that can be used in any model containing such particles. We apply these formulae to the case of the lightest Kaluza-Klein (KK) fermions in a Randall-Sundrum (RS) model with a custodial protection of flavour conserving $Zd_L^i d_L^i$ and flavour violating $Zd_L^i d_L^j$ couplings. Read More

We present a particular warped extra dimensional model, where the flavour diagonal and flavour non-diagonal Z boson couplings to left-handed down quarks are protected by the custodial symmetry P_LR. After a brief introduction of the model and of its main theoretical motivations, we present a complete study of rare K and B meson decays, including K+ --> pi+ nu anti-nu, K_L --> pi0 nu anti-nu, B_{s,d} --> mu+ mu- and B_{s,d} --> X_{s,d} nu anti-nu. In particular we restrict the parameter space of the model to the subspace which fits all quark masses, CKM mixing parameters and all the measured Delta F=2 observables, keeping the Kaluza-Klein scale in the reach of LHC (~(2-3)TeV). Read More

Nuclear Reaction Analysis with ${}^{3}$He holds the promise to measure Deuterium depth profiles up to large depths. However, the extraction of the depth profile from the measured data is an ill-posed inversion problem. Here we demonstrate how Bayesian Experimental Design can be used to optimize the number of measurements as well as the measurement energies to maximize the information gain. Read More

We present a complete study of rare K and B meson decays in a warped extra dimensional model with a custodial protection of (both diagonal and non-diagonal) Z d_L^i \bar d_L^j couplings, including K^+ -> pi^+ nu anti-nu, K_L -> pi^0 nu anti-nu, K_L -> pi^0 l^+ l^-, K_L -> mu^+ mu^-, B_{s,d} -> mu^+ mu^-, B -> K nu anti-nu, B -> K^* nu anti-nu and B -> X_{s,d} nu anti-nu. In this model in addition to Standard Model one loop contributions these processes receive tree level contributions from the Z boson and the new heavy electroweak gauge bosons. We analyse all these contributions that turn out to be dominated by tree level Z boson exchanges governed by right-handed couplings to down-type quarks. Read More

We present a complete study of Delta S = 2 and Delta B = 2 processes in a warped extra dimensional model with a custodial protection of Z b_L bar b_L, including epsilon_K, Delta M_K, Delta M_s, Delta M_d, A^q_SL, Delta Gamma_q, A_CP(B_d -> psi K_S) and A_CP(B_s -> psi phi). These processes are affected by tree level contributions from Kaluza-Klein gluons, the heavy KK photon, new heavy electroweak gauge bosons Z_H and Z', and in principle by tree level Z contributions. We confirm recent findings that the fully anarchic approach where all the hierarchies in quark masses and weak mixing angles are geometrically explained seems implausible and we confirm that the KK mass scale M_KK generically has to be at least ~20TeV to satisfy the epsilon_K constraint. Read More