S. Gieseke - University of Cambridge

S. Gieseke
Are you S. Gieseke?

Claim your profile, edit publications, add additional information:

Contact Details

Name
S. Gieseke
Affiliation
University of Cambridge
Country
United Kingdom

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (49)
 
High Energy Physics - Experiment (8)
 
Nuclear Theory (1)
 
High Energy Astrophysical Phenomena (1)
 
Nuclear Experiment (1)

Publications Authored By S. Gieseke

A new release of the Monte Carlo event generator Herwig (version 7.1) is now available. This version introduces a number of improvements, notably: multi-jet merging with the dipole shower at LO and NLO QCD; a new model for soft interactions and diffraction; improvements to mass effects and top decays in the dipole shower, as well as a new tune of the hadronisation parameters. Read More

We present an algorithm to combine multiple matrix elements at LO and NLO with a parton shower. We build on the unitarized merging paradigm. The inclusion of higher orders and multiplicities reduce the scale uncertainties for observables sensitive to hard emissions, while preserving the features of inclusive quantities. Read More

We present a new model for soft interactions in the Monte Carlo event-generator Herwig. The soft diffractive final states are modeled on the basis of the cluster hadronization model and interactions between soft particles are modeled as multiple particle production with multiperipheral kinematics. We further present much improved results of mininum-bias measurements at different energies. Read More

We introduce a new model for soft interactions in the Monte Carlo event generator Herwig. We add a new model for the simulation of diffractive final states, based on the cluster hadronization model in Herwig. The soft component of the Multiple partonic interaction model is replaced by a refined model for soft gluon production. Read More

We present a new model for soft interactions in the event-generator Herwig. The model consists of two components. One to model diffractive final states on the basis of the cluster hadronization model and a second component that addresses soft multiple interactions as multiple particle production in multi- peripheral kinematics. Read More

2016Oct
Authors: D. de Florian1, C. Grojean2, F. Maltoni3, C. Mariotti4, A. Nikitenko5, M. Pieri6, P. Savard7, M. Schumacher8, R. Tanaka9, R. Aggleton10, M. Ahmad11, B. Allanach12, C. Anastasiou13, W. Astill14, S. Badger15, M. Badziak16, J. Baglio17, E. Bagnaschi18, A. Ballestrero19, A. Banfi20, D. Barducci21, M. Beckingham22, C. Becot23, G. Bélanger24, J. Bellm25, N. Belyaev26, F. U. Bernlochner27, C. Beskidt28, A. Biekötter29, F. Bishara30, W. Bizon31, N. E. Bomark32, M. Bonvini33, S. Borowka34, V. Bortolotto35, S. Boselli36, F. J. Botella37, R. Boughezal38, G. C. Branco39, J. Brehmer40, L. Brenner41, S. Bressler42, I. Brivio43, A. Broggio44, H. Brun45, G. Buchalla46, C. D. Burgard47, A. Calandri48, L. Caminada49, R. Caminal Armadans50, F. Campanario51, J. Campbell52, F. Caola53, C. M. Carloni Calame54, S. Carrazza55, A. Carvalho56, M. Casolino57, O. Cata58, A. Celis59, F. Cerutti60, N. Chanon61, M. Chen62, X. Chen63, B. Chokoufé Nejad64, N. Christensen65, M. Ciuchini66, R. Contino67, T. Corbett68, R. Costa69, D. Curtin70, M. Dall'Osso71, A. David72, S. Dawson73, J. de Blas74, W. de Boer75, P. de Castro Manzano76, C. Degrande77, R. L. Delgado78, F. Demartin79, A. Denner80, B. Di Micco81, R. Di Nardo82, S. Dittmaier83, A. Dobado84, T. Dorigo85, F. A. Dreyer86, M. Dührssen87, C. Duhr88, F. Dulat89, K. Ecker90, K. Ellis91, U. Ellwanger92, C. Englert93, D. Espriu94, A. Falkowski95, L. Fayard96, R. Feger97, G. Ferrera98, A. Ferroglia99, N. Fidanza100, T. Figy101, M. Flechl102, D. Fontes103, S. Forte104, P. Francavilla105, E. Franco106, R. Frederix107, A. Freitas108, F. F. Freitas109, F. Frensch110, S. Frixione111, B. Fuks112, E. Furlan113, S. Gadatsch114, J. Gao115, Y. Gao116, M. V. Garzelli117, T. Gehrmann118, R. Gerosa119, M. Ghezzi120, D. Ghosh121, S. Gieseke122, D. Gillberg123, G. F. Giudice124, E. W. N. Glover125, F. Goertz126, D. Gonçalves127, J. Gonzalez-Fraile128, M. Gorbahn129, S. Gori130, C. A. Gottardo131, M. Gouzevitch132, P. Govoni133, D. Gray134, M. Grazzini135, N. Greiner136, A. Greljo137, J. Grigo138, A. V. Gritsan139, R. Gröber140, S. Guindon141, H. E. Haber142, C. Han143, T. Han144, R. Harlander145, M. A. Harrendorf146, H. B. Hartanto147, C. Hays148, S. Heinemeyer149, G. Heinrich150, M. Herrero151, F. Herzog152, B. Hespel153, V. Hirschi154, S. Hoeche155, S. Honeywell156, S. J. Huber157, C. Hugonie158, J. Huston159, A. Ilnicka160, G. Isidori161, B. Jäger162, M. Jaquier163, S. P. Jones164, A. Juste165, S. Kallweit166, A. Kaluza167, A. Kardos168, A. Karlberg169, Z. Kassabov170, N. Kauer171, D. I. Kazakov172, M. Kerner173, W. Kilian174, F. Kling175, K. Köneke176, R. Kogler177, R. Konoplich178, S. Kortner179, S. Kraml180, C. Krause181, F. Krauss182, M. Krawczyk183, A. Kulesza184, S. Kuttimalai185, R. Lane186, A. Lazopoulos187, G. Lee188, P. Lenzi189, I. M. Lewis190, Y. Li191, S. Liebler192, J. Lindert193, X. Liu194, Z. Liu195, F. J. Llanes-Estrada196, H. E. Logan197, D. Lopez-Val198, I. Low199, G. Luisoni200, P. Maierhöfer201, E. Maina202, B. Mansoulié203, H. Mantler204, M. Mantoani205, A. C. Marini206, V. I. Martinez Outschoorn207, S. Marzani208, D. Marzocca209, A. Massironi210, K. Mawatari211, J. Mazzitelli212, A. McCarn213, B. Mellado214, K. Melnikov215, S. B. Menari216, L. Merlo217, C. Meyer218, P. Milenovic219, K. Mimasu220, S. Mishima221, B. Mistlberger222, S. -O. Moch223, A. Mohammadi224, P. F. Monni225, G. Montagna226, M. Moreno Llácer227, N. Moretti228, S. Moretti229, L. Motyka230, A. Mück231, M. Mühlleitner232, S. Munir233, P. Musella234, P. Nadolsky235, D. Napoletano236, M. Nebot237, C. Neu238, M. Neubert239, R. Nevzorov240, O. Nicrosini241, J. Nielsen242, K. Nikolopoulos243, J. M. No244, C. O'Brien245, T. Ohl246, C. Oleari247, T. Orimoto248, D. Pagani249, C. E. Pandini250, A. Papaefstathiou251, A. S. Papanastasiou252, G. Passarino253, B. D. Pecjak254, M. Pelliccioni255, G. Perez256, L. Perrozzi257, F. Petriello258, G. Petrucciani259, E. Pianori260, F. Piccinini261, M. Pierini262, A. Pilkington263, S. Plätzer264, T. Plehn265, R. Podskubka266, C. T. Potter267, S. Pozzorini268, K. Prokofiev269, A. Pukhov270, I. Puljak271, M. Queitsch-Maitland272, J. Quevillon273, D. Rathlev274, M. Rauch275, E. Re276, M. N. Rebelo277, D. Rebuzzi278, L. Reina279, C. Reuschle280, J. Reuter281, M. Riembau282, F. Riva283, A. Rizzi284, T. Robens285, R. Röntsch286, J. Rojo287, J. C. Romão288, N. Rompotis289, J. Roskes290, R. Roth291, G. P. Salam292, R. Salerno293, M. O. P. Sampaio294, R. Santos295, V. Sanz296, J. J. Sanz-Cillero297, H. Sargsyan298, U. Sarica299, P. Schichtel300, J. Schlenk301, T. Schmidt302, C. Schmitt303, M. Schönherr304, U. Schubert305, M. Schulze306, S. Sekula307, M. Sekulla308, E. Shabalina309, H. S. Shao310, J. Shelton311, C. H. Shepherd-Themistocleous312, S. Y. Shim313, F. Siegert314, A. Signer315, J. P. Silva316, L. Silvestrini317, M. Sjodahl318, P. Slavich319, M. Slawinska320, L. Soffi321, M. Spannowsky322, C. Speckner323, D. M. Sperka324, M. Spira325, O. Stål326, F. Staub327, T. Stebel328, T. Stefaniak329, M. Steinhauser330, I. W. Stewart331, M. J. Strassler332, J. Streicher333, D. M. Strom334, S. Su335, X. Sun336, F. J. Tackmann337, K. Tackmann338, A. M. Teixeira339, R. Teixeira de Lima340, V. Theeuwes341, R. Thorne342, D. Tommasini343, P. Torrielli344, M. Tosi345, F. Tramontano346, Z. Trócsányi347, M. Trott348, I. Tsinikos349, M. Ubiali350, P. Vanlaer351, W. Verkerke352, A. Vicini353, L. Viliani354, E. Vryonidou355, D. Wackeroth356, C. E. M. Wagner357, J. Wang358, S. Wayand359, G. Weiglein360, C. Weiss361, M. Wiesemann362, C. Williams363, J. Winter364, D. Winterbottom365, R. Wolf366, M. Xiao367, L. L. Yang368, R. Yohay369, S. P. Y. Yuen370, G. Zanderighi371, M. Zaro372, D. Zeppenfeld373, R. Ziegler374, T. Zirke375, J. Zupan376
Affiliations: 1eds., 2eds., 3eds., 4eds., 5eds., 6eds., 7eds., 8eds., 9eds., 10The LHC Higgs Cross Section Working Group, 11The LHC Higgs Cross Section Working Group, 12The LHC Higgs Cross Section Working Group, 13The LHC Higgs Cross Section Working Group, 14The LHC Higgs Cross Section Working Group, 15The LHC Higgs Cross Section Working Group, 16The LHC Higgs Cross Section Working Group, 17The LHC Higgs Cross Section Working Group, 18The LHC Higgs Cross Section Working Group, 19The LHC Higgs Cross Section Working Group, 20The LHC Higgs Cross Section Working Group, 21The LHC Higgs Cross Section Working Group, 22The LHC Higgs Cross Section Working Group, 23The LHC Higgs Cross Section Working Group, 24The LHC Higgs Cross Section Working Group, 25The LHC Higgs Cross Section Working Group, 26The LHC Higgs Cross Section Working Group, 27The LHC Higgs Cross Section Working Group, 28The LHC Higgs Cross Section Working Group, 29The LHC Higgs Cross Section Working Group, 30The LHC Higgs Cross Section Working Group, 31The LHC Higgs Cross Section Working Group, 32The LHC Higgs Cross Section Working Group, 33The LHC Higgs Cross Section Working Group, 34The LHC Higgs Cross Section Working Group, 35The LHC Higgs Cross Section Working Group, 36The LHC Higgs Cross Section Working Group, 37The LHC Higgs Cross Section Working Group, 38The LHC Higgs Cross Section Working Group, 39The LHC Higgs Cross Section Working Group, 40The LHC Higgs Cross Section Working Group, 41The LHC Higgs Cross Section Working Group, 42The LHC Higgs Cross Section Working Group, 43The LHC Higgs Cross Section Working Group, 44The LHC Higgs Cross Section Working Group, 45The LHC Higgs Cross Section Working Group, 46The LHC Higgs Cross Section Working Group, 47The LHC Higgs Cross Section Working Group, 48The LHC Higgs Cross Section Working Group, 49The LHC Higgs Cross Section Working Group, 50The LHC Higgs Cross Section Working Group, 51The LHC Higgs Cross Section Working Group, 52The LHC Higgs Cross Section Working Group, 53The LHC Higgs Cross Section Working Group, 54The LHC Higgs Cross Section Working Group, 55The LHC Higgs Cross Section Working Group, 56The LHC Higgs Cross Section Working Group, 57The LHC Higgs Cross Section Working Group, 58The LHC Higgs Cross Section Working Group, 59The LHC Higgs Cross Section Working Group, 60The LHC Higgs Cross Section Working Group, 61The LHC Higgs Cross Section Working Group, 62The LHC Higgs Cross Section Working Group, 63The LHC Higgs Cross Section Working Group, 64The LHC Higgs Cross Section Working Group, 65The LHC Higgs Cross Section Working Group, 66The LHC Higgs Cross Section Working Group, 67The LHC Higgs Cross Section Working Group, 68The LHC Higgs Cross Section Working Group, 69The LHC Higgs Cross Section Working Group, 70The LHC Higgs Cross Section Working Group, 71The LHC Higgs Cross Section Working Group, 72The LHC Higgs Cross Section Working Group, 73The LHC Higgs Cross Section Working Group, 74The LHC Higgs Cross Section Working Group, 75The LHC Higgs Cross Section Working Group, 76The LHC Higgs Cross Section Working Group, 77The LHC Higgs Cross Section Working Group, 78The LHC Higgs Cross Section Working Group, 79The LHC Higgs Cross Section Working Group, 80The LHC Higgs Cross Section Working Group, 81The LHC Higgs Cross Section Working Group, 82The LHC Higgs Cross Section Working Group, 83The LHC Higgs Cross Section Working Group, 84The LHC Higgs Cross Section Working Group, 85The LHC Higgs Cross Section Working Group, 86The LHC Higgs Cross Section Working Group, 87The LHC Higgs Cross Section Working Group, 88The LHC Higgs Cross Section Working Group, 89The LHC Higgs Cross Section Working Group, 90The LHC Higgs Cross Section Working Group, 91The LHC Higgs Cross Section Working Group, 92The LHC Higgs Cross Section Working Group, 93The LHC Higgs Cross Section Working Group, 94The LHC Higgs Cross Section Working Group, 95The LHC Higgs Cross Section Working Group, 96The LHC Higgs Cross Section Working Group, 97The LHC Higgs Cross Section Working Group, 98The LHC Higgs Cross Section Working Group, 99The LHC Higgs Cross Section Working Group, 100The LHC Higgs Cross Section Working Group, 101The LHC Higgs Cross Section Working Group, 102The LHC Higgs Cross Section Working Group, 103The LHC Higgs Cross Section Working Group, 104The LHC Higgs Cross Section Working Group, 105The LHC Higgs Cross Section Working Group, 106The LHC Higgs Cross Section Working Group, 107The LHC Higgs Cross Section Working Group, 108The LHC Higgs Cross Section Working Group, 109The LHC Higgs Cross Section Working Group, 110The LHC Higgs Cross Section Working Group, 111The LHC Higgs Cross Section Working Group, 112The LHC Higgs Cross Section Working Group, 113The LHC Higgs Cross Section Working Group, 114The LHC Higgs Cross Section Working Group, 115The LHC Higgs Cross Section Working Group, 116The LHC Higgs Cross Section Working Group, 117The LHC Higgs Cross Section Working Group, 118The LHC Higgs Cross Section Working Group, 119The LHC Higgs Cross Section Working Group, 120The LHC Higgs Cross Section Working Group, 121The LHC Higgs Cross Section Working Group, 122The LHC Higgs Cross Section Working Group, 123The LHC Higgs Cross Section Working Group, 124The LHC Higgs Cross Section Working Group, 125The LHC Higgs Cross Section Working Group, 126The LHC Higgs Cross Section Working Group, 127The LHC Higgs Cross Section Working Group, 128The LHC Higgs Cross Section Working Group, 129The LHC Higgs Cross Section Working Group, 130The LHC Higgs Cross Section Working Group, 131The LHC Higgs Cross Section Working Group, 132The LHC Higgs Cross Section Working Group, 133The LHC Higgs Cross Section Working Group, 134The LHC Higgs Cross Section Working Group, 135The LHC Higgs Cross Section Working Group, 136The LHC Higgs Cross Section Working Group, 137The LHC Higgs Cross Section Working Group, 138The LHC Higgs Cross Section Working Group, 139The LHC Higgs Cross Section Working Group, 140The LHC Higgs Cross Section Working Group, 141The LHC Higgs Cross Section Working Group, 142The LHC Higgs Cross Section Working Group, 143The LHC Higgs Cross Section Working Group, 144The LHC Higgs Cross Section Working Group, 145The LHC Higgs Cross Section Working Group, 146The LHC Higgs Cross Section Working Group, 147The LHC Higgs Cross Section Working Group, 148The LHC Higgs Cross Section Working Group, 149The LHC Higgs Cross Section Working Group, 150The LHC Higgs Cross Section Working Group, 151The LHC Higgs Cross Section Working Group, 152The LHC Higgs Cross Section Working Group, 153The LHC Higgs Cross Section Working Group, 154The LHC Higgs Cross Section Working Group, 155The LHC Higgs Cross Section Working Group, 156The LHC Higgs Cross Section Working Group, 157The LHC Higgs Cross Section Working Group, 158The LHC Higgs Cross Section Working Group, 159The LHC Higgs Cross Section Working Group, 160The LHC Higgs Cross Section Working Group, 161The LHC Higgs Cross Section Working Group, 162The LHC Higgs Cross Section Working Group, 163The LHC Higgs Cross Section Working Group, 164The LHC Higgs Cross Section Working Group, 165The LHC Higgs Cross Section Working Group, 166The LHC Higgs Cross Section Working Group, 167The LHC Higgs Cross Section Working Group, 168The LHC Higgs Cross Section Working Group, 169The LHC Higgs Cross Section Working Group, 170The LHC Higgs Cross Section Working Group, 171The LHC Higgs Cross Section Working Group, 172The LHC Higgs Cross Section Working Group, 173The LHC Higgs Cross Section Working Group, 174The LHC Higgs Cross Section Working Group, 175The LHC Higgs Cross Section Working Group, 176The LHC Higgs Cross Section Working Group, 177The LHC Higgs Cross Section Working Group, 178The LHC Higgs Cross Section Working Group, 179The LHC Higgs Cross Section Working Group, 180The LHC Higgs Cross Section Working Group, 181The LHC Higgs Cross Section Working Group, 182The LHC Higgs Cross Section Working Group, 183The LHC Higgs Cross Section Working Group, 184The LHC Higgs Cross Section Working Group, 185The LHC Higgs Cross Section Working Group, 186The LHC Higgs Cross Section Working Group, 187The LHC Higgs Cross Section Working Group, 188The LHC Higgs Cross Section Working Group, 189The LHC Higgs Cross Section Working Group, 190The LHC Higgs Cross Section Working Group, 191The LHC Higgs Cross Section Working Group, 192The LHC Higgs Cross Section Working Group, 193The LHC Higgs Cross Section Working Group, 194The LHC Higgs Cross Section Working Group, 195The LHC Higgs Cross Section Working Group, 196The LHC Higgs Cross Section Working Group, 197The LHC Higgs Cross Section Working Group, 198The LHC Higgs Cross Section Working Group, 199The LHC Higgs Cross Section Working Group, 200The LHC Higgs Cross Section Working Group, 201The LHC Higgs Cross Section Working Group, 202The LHC Higgs Cross Section Working Group, 203The LHC Higgs Cross Section Working Group, 204The LHC Higgs Cross Section Working Group, 205The LHC Higgs Cross Section Working Group, 206The LHC Higgs Cross Section Working Group, 207The LHC Higgs Cross Section Working Group, 208The LHC Higgs Cross Section Working Group, 209The LHC Higgs Cross Section Working Group, 210The LHC Higgs Cross Section Working Group, 211The LHC Higgs Cross Section Working Group, 212The LHC Higgs Cross Section Working Group, 213The LHC Higgs Cross Section Working Group, 214The LHC Higgs Cross Section Working Group, 215The LHC Higgs Cross Section Working Group, 216The LHC Higgs Cross Section Working Group, 217The LHC Higgs Cross Section Working Group, 218The LHC Higgs Cross Section Working Group, 219The LHC Higgs Cross Section Working Group, 220The LHC Higgs Cross Section Working Group, 221The LHC Higgs Cross Section Working Group, 222The LHC Higgs Cross Section Working Group, 223The LHC Higgs Cross Section Working Group, 224The LHC Higgs Cross Section Working Group, 225The LHC Higgs Cross Section Working Group, 226The LHC Higgs Cross Section Working Group, 227The LHC Higgs Cross Section Working Group, 228The LHC Higgs Cross Section Working Group, 229The LHC Higgs Cross Section Working Group, 230The LHC Higgs Cross Section Working Group, 231The LHC Higgs Cross Section Working Group, 232The LHC Higgs Cross Section Working Group, 233The LHC Higgs Cross Section Working Group, 234The LHC Higgs Cross Section Working Group, 235The LHC Higgs Cross Section Working Group, 236The LHC Higgs Cross Section Working Group, 237The LHC Higgs Cross Section Working Group, 238The LHC Higgs Cross Section Working Group, 239The LHC Higgs Cross Section Working Group, 240The LHC Higgs Cross Section Working Group, 241The LHC Higgs Cross Section Working Group, 242The LHC Higgs Cross Section Working Group, 243The LHC Higgs Cross Section Working Group, 244The LHC Higgs Cross Section Working Group, 245The LHC Higgs Cross Section Working Group, 246The LHC Higgs Cross Section Working Group, 247The LHC Higgs Cross Section Working Group, 248The LHC Higgs Cross Section Working Group, 249The LHC Higgs Cross Section Working Group, 250The LHC Higgs Cross Section Working Group, 251The LHC Higgs Cross Section Working Group, 252The LHC Higgs Cross Section Working Group, 253The LHC Higgs Cross Section Working Group, 254The LHC Higgs Cross Section Working Group, 255The LHC Higgs Cross Section Working Group, 256The LHC Higgs Cross Section Working Group, 257The LHC Higgs Cross Section Working Group, 258The LHC Higgs Cross Section Working Group, 259The LHC Higgs Cross Section Working Group, 260The LHC Higgs Cross Section Working Group, 261The LHC Higgs Cross Section Working Group, 262The LHC Higgs Cross Section Working Group, 263The LHC Higgs Cross Section Working Group, 264The LHC Higgs Cross Section Working Group, 265The LHC Higgs Cross Section Working Group, 266The LHC Higgs Cross Section Working Group, 267The LHC Higgs Cross Section Working Group, 268The LHC Higgs Cross Section Working Group, 269The LHC Higgs Cross Section Working Group, 270The LHC Higgs Cross Section Working Group, 271The LHC Higgs Cross Section Working Group, 272The LHC Higgs Cross Section Working Group, 273The LHC Higgs Cross Section Working Group, 274The LHC Higgs Cross Section Working Group, 275The LHC Higgs Cross Section Working Group, 276The LHC Higgs Cross Section Working Group, 277The LHC Higgs Cross Section Working Group, 278The LHC Higgs Cross Section Working Group, 279The LHC Higgs Cross Section Working Group, 280The LHC Higgs Cross Section Working Group, 281The LHC Higgs Cross Section Working Group, 282The LHC Higgs Cross Section Working Group, 283The LHC Higgs Cross Section Working Group, 284The LHC Higgs Cross Section Working Group, 285The LHC Higgs Cross Section Working Group, 286The LHC Higgs Cross Section Working Group, 287The LHC Higgs Cross Section Working Group, 288The LHC Higgs Cross Section Working Group, 289The LHC Higgs Cross Section Working Group, 290The LHC Higgs Cross Section Working Group, 291The LHC Higgs Cross Section Working Group, 292The LHC Higgs Cross Section Working Group, 293The LHC Higgs Cross Section Working Group, 294The LHC Higgs Cross Section Working Group, 295The LHC Higgs Cross Section Working Group, 296The LHC Higgs Cross Section Working Group, 297The LHC Higgs Cross Section Working Group, 298The LHC Higgs Cross Section Working Group, 299The LHC Higgs Cross Section Working Group, 300The LHC Higgs Cross Section Working Group, 301The LHC Higgs Cross Section Working Group, 302The LHC Higgs Cross Section Working Group, 303The LHC Higgs Cross Section Working Group, 304The LHC Higgs Cross Section Working Group, 305The LHC Higgs Cross Section Working Group, 306The LHC Higgs Cross Section Working Group, 307The LHC Higgs Cross Section Working Group, 308The LHC Higgs Cross Section Working Group, 309The LHC Higgs Cross Section Working Group, 310The LHC Higgs Cross Section Working Group, 311The LHC Higgs Cross Section Working Group, 312The LHC Higgs Cross Section Working Group, 313The LHC Higgs Cross Section Working Group, 314The LHC Higgs Cross Section Working Group, 315The LHC Higgs Cross Section Working Group, 316The LHC Higgs Cross Section Working Group, 317The LHC Higgs Cross Section Working Group, 318The LHC Higgs Cross Section Working Group, 319The LHC Higgs Cross Section Working Group, 320The LHC Higgs Cross Section Working Group, 321The LHC Higgs Cross Section Working Group, 322The LHC Higgs Cross Section Working Group, 323The LHC Higgs Cross Section Working Group, 324The LHC Higgs Cross Section Working Group, 325The LHC Higgs Cross Section Working Group, 326The LHC Higgs Cross Section Working Group, 327The LHC Higgs Cross Section Working Group, 328The LHC Higgs Cross Section Working Group, 329The LHC Higgs Cross Section Working Group, 330The LHC Higgs Cross Section Working Group, 331The LHC Higgs Cross Section Working Group, 332The LHC Higgs Cross Section Working Group, 333The LHC Higgs Cross Section Working Group, 334The LHC Higgs Cross Section Working Group, 335The LHC Higgs Cross Section Working Group, 336The LHC Higgs Cross Section Working Group, 337The LHC Higgs Cross Section Working Group, 338The LHC Higgs Cross Section Working Group, 339The LHC Higgs Cross Section Working Group, 340The LHC Higgs Cross Section Working Group, 341The LHC Higgs Cross Section Working Group, 342The LHC Higgs Cross Section Working Group, 343The LHC Higgs Cross Section Working Group, 344The LHC Higgs Cross Section Working Group, 345The LHC Higgs Cross Section Working Group, 346The LHC Higgs Cross Section Working Group, 347The LHC Higgs Cross Section Working Group, 348The LHC Higgs Cross Section Working Group, 349The LHC Higgs Cross Section Working Group, 350The LHC Higgs Cross Section Working Group, 351The LHC Higgs Cross Section Working Group, 352The LHC Higgs Cross Section Working Group, 353The LHC Higgs Cross Section Working Group, 354The LHC Higgs Cross Section Working Group, 355The LHC Higgs Cross Section Working Group, 356The LHC Higgs Cross Section Working Group, 357The LHC Higgs Cross Section Working Group, 358The LHC Higgs Cross Section Working Group, 359The LHC Higgs Cross Section Working Group, 360The LHC Higgs Cross Section Working Group, 361The LHC Higgs Cross Section Working Group, 362The LHC Higgs Cross Section Working Group, 363The LHC Higgs Cross Section Working Group, 364The LHC Higgs Cross Section Working Group, 365The LHC Higgs Cross Section Working Group, 366The LHC Higgs Cross Section Working Group, 367The LHC Higgs Cross Section Working Group, 368The LHC Higgs Cross Section Working Group, 369The LHC Higgs Cross Section Working Group, 370The LHC Higgs Cross Section Working Group, 371The LHC Higgs Cross Section Working Group, 372The LHC Higgs Cross Section Working Group, 373The LHC Higgs Cross Section Working Group, 374The LHC Higgs Cross Section Working Group, 375The LHC Higgs Cross Section Working Group, 376The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We calculate the process $pp\to W^+W^-\to e^+ \nu_e \mu^-\bar{\nu}_\mu$ at NLO QCD, including also effective field theory (EFT) operators mediating the $ggW^+W^-$ interaction, which first occur at dimension eight. We further combine the NLO and EFT matrix elements produced by GoSam with the HERWIG7/MATCHBOX framework, which offers the possibility to study the impact of a parton shower. We assess the effects of the anomalous couplings by comparing them to top-mass effects as well as uncertainties related to variations of the renormalisation, factorisation and hard shower scales. Read More

We propose changes to the colour reconnection model in the Monte Carlo event generator Herwig in order to remove the quasi diffractive events from the soft multiple parton interactions. We then implement explicitly soft diffraction and show some preliminary results. Read More

With the advent and recent extension of the BLHA standard to interface Monte Carlo event generators and one-loop matrix element providers, the Herwig++ event generator has expanded its range of applicability to a multitude of underlying hard processes at NLO QCD. The new NLO development is centered around the Matchbox framework, which turns fixed NLO QCD calculations into parton shower matched calculations - to be matched to the two parton shower variants of Herwig++. Matchbox provides thereby for the automated setup of the underlying fixed NLO QCD calculations and the interface to the one-loop matrix element providers, as well as for an efficient and automated multi-channel phase space sampling, and forms the basis for the NLO capabilities of the new release of Herwig++. Read More

A major new release of the Monte Carlo event generator Herwig++ (version 3.0) is now available. This release marks the end of distinguishing Herwig++ and HERWIG development and therefore constitutes the first major release of version 7 of the Herwig event generator family. Read More

A study of QCD coherence is presented based on a sample of about 397000 $e^+e^-$ hadronic annihilation events collected at $\sqrt{s}=91$ GeV with the OPAL detector at LEP. The study is based on four recently proposed observables that are sensitive to coherence effects in the perturbative regime. The measurement of these observables is presented, along with a comparison with the predictions of different parton shower models. Read More

2014May
Affiliations: 1conveners, 2conveners, 3conveners, 4conveners, 5conveners, 6conveners, 7conveners, 8conveners, 9conveners, 10conveners, 11conveners, 12conveners, 13conveners, 14conveners, 15conveners, 16conveners, 17conveners, 18conveners, 19conveners, 20conveners, 21conveners, 22conveners, 23conveners, 24conveners, 25conveners, 26conveners, 27conveners, 28conveners, 29conveners, 30conveners, 31conveners, 32conveners, 33conveners, 34conveners, 35conveners, 36conveners, 37conveners, 38conveners, 39conveners, 40conveners, 41conveners, 42conveners, 43conveners, 44conveners, 45conveners, 46conveners, 47conveners, 48conveners, 49conveners, 50conveners, 51conveners, 52conveners, 53conveners, 54conveners, 55conveners, 56conveners, 57conveners, 58conveners, 59conveners, 60conveners, 61conveners, 62conveners, 63conveners, 64conveners, 65conveners, 66conveners, 67conveners, 68conveners, 69conveners, 70conveners, 71conveners, 72conveners, 73conveners, 74conveners, 75conveners, 76conveners, 77conveners, 78conveners, 79conveners, 80conveners

This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2. Read More

We propose four simple event-shape variables for semi-inclusive $e^+e^- \to 4$-jet events. The observables and cuts are designed to be especially sensitive to subleading aspects of the event structure, and allow to test the reliability of phenomenological QCD models in greater detail. Three of them, $\theta_{14}$, $\theta^*$, and $C_2^{(1/5)}$, focus on soft emissions off three-jet topologies with a small opening angle, for which coherence effects beyond the leading QCD dipole pattern are expected to be enhanced. Read More

The detailed study of vector-boson pair production processes at the LHC will lead to a better understanding of electroweak physics. As pointed out before, a consistent inclusion of higher-order electroweak effects in the analysis of corresponding experimental data may be crucial to properly predict the relevant phenomenological features of these important reactions. Those contributions lead to dramatic distortions of invariant-mass and angular distributions at high energies, but may also significantly affect the cross section near threshold, as is the case e. Read More

A new release of the Monte Carlo event generator Herwig++ (version 2.7) is now available. This version comes with a number of improvements including: an interface to the Universal FeynRules Output (UFO) format allowing the simulation of a wide range of new-physics models; developments of the Matchbox framework for next-to-leading order (NLO) simulations; better treatment of QCD radiation in heavy particle decays in new-physics models; a new tune of underlying event and colour connection parameters that allows a good simultaneous description of both Tevatron and LHC underlying event data and the effective cross-section parameter for double-parton scattering. Read More

Vector-boson pair production is of great phenomenological importance at the LHC. These processes will help to validate the Standard Model at highest energies, and they may also open the door for the discovery of new physics potentially showing up in subtle modifications of the non-abelian structure of weak interactions. In this letter, we review the status of the corresponding theory predictions, focusing on the higher-order electroweak corrections. Read More

2013Feb
Affiliations: 1Karlsruhe U., ITP, 2Karlsruhe U., ITP, 3University of Manchester

We review the implementation of a model for multiple partonic interactions in Herwig++. Moreover, we show how recent studies on the colour structure of events in Herwig++ led to a significant improvement in the description of soft inclusive observables in pp interactions at the LHC. Read More

We review the modelling of multiple interactions in the event generator Herwig++ and study implications of recent tuning efforts to LHC data. A crucial ingredient to a successful description of minimum-bias and underlying-event observables is a model for colour reconnection. Improvements to this model, inspired by statistical physics, are presented. Read More

We describe the implementation details of the colour reconnection model in the event generator Herwig++. We study the impact on final-state observables in detail and confirm the model idea from colour preconfinement on the basis of studies within the cluster hadronization model. Moreover, we show that the description of minimum bias and underlying event data at the LHC is improved with this model and present results of a tune to available data. Read More

A new release of the Monte Carlo event generator Herwig++ (version 2.6) is now available. This version comes with a number of improvements including: a new structure for the implementation of next-to-leading order matrix elements; an improved treatment of wide-angle gluon radiation; new hard-coded next-to-leading order matrix elements for deep inelastic scattering and weak vector boson fusion; additional models of physics beyond the Standard Model, including the production of colour sextet particles; a statistical colour reconnection model; automated energy scaling of underlying-event tunes. Read More

We review the recent progress in the theoretical description and experimental observation of multiple parton interactions. Subjects covered include experimental measurements of minimum bias interactions and of the underlying event, models of soft physics implemented in Monte Carlo generators, developments in the theoretical description of multiple parton interactions and phenomenological studies of double parton scattering. This article stems from contributions presented at the Helmholtz Alliance workshop on "Multi-Parton Interactions at the LHC", DESY Hamburg, 13-15 September 2010. Read More

We briefly review the status of the multiple partonic interaction model in the Herwig++ event generator. First, we show how a change in the colour structure of an event in Herwig++ results in a significant improvement in the description of soft inclusive observables in $pp$ interactions at $\sqrt{s}=900$ GeV. Then we present a comparison of some model results to ATLAS Underlying Event data at $\sqrt{s}=7$ TeV. Read More

We report on the implementation of a coherent dipole shower algorithm along with an automated implementation for dipole subtraction and for performing POWHEG- and MC@NLO-type matching to next-to-leading order (NLO) calculations. Both programs are implemented as add-on modules to the event generator Herwig++. A preliminary tune of parameters to data acquired at LEP, HERA and Drell-Yan pair production at the Tevatron has been performed, and we find an overall very good description which is slightly improved by the NLO matching. Read More

A new release of the Monte Carlo program Herwig++ (version 2.5) is now available. This version comes with a number of improvements including: new next-to-leading order matrix elements, including weak boson pair production; a colour reconnection model; diffractive processes; additional models of physics beyond the Standard Model and new leading-order matrix elements for hadron--hadron and lepton--lepton collisions as well as photon-initiated processes. Read More

We review the physics basis, main features and use of general-purpose Monte Carlo event generators for the simulation of proton-proton collisions at the Large Hadron Collider. Topics included are: the generation of hard-scattering matrix elements for processes of interest, at both leading and next-to-leading QCD perturbative order; their matching to approximate treatments of higher orders based on the showering approximation; the parton and dipole shower formulations; parton distribution functions for event generators; non-perturbative aspects such as soft QCD collisions, the underlying event and diffractive processes; the string and cluster models for hadron formation; the treatment of hadron and tau decays; the inclusion of QED radiation and beyond-Standard-Model processes. We describe the principal features of the ARIADNE, Herwig++, PYTHIA 8 and SHERPA generators, together with the Rivet and Professor validation and tuning tools, and discuss the physics philosophy behind the proper use of these generators and tools. Read More

The workshop on "Hadron-Hadron and Cosmic-Ray Interactions at multi-TeV Energies" held at the ECT* centre (Trento) in Nov.-Dec. 2010 gathered together both theorists and experimentalists to discuss issues of the physics of high-energy hadronic interactions of common interest for the particle, nuclear and cosmic-ray communities. Read More

The objective of this first workshop on Multiple Partonic Interactions (MPI) at the LHC is to raise the profile of MPI studies, summarizing the legacy from the older phenomenology at hadronic colliders and favouring further specific contacts between the theory and experimental communities. The MPI are experiencing a growing popularity and are currently widely invoked to account for observations that would not be explained otherwise: the activity of the Underlying Event, the cross sections for multiple heavy flavour production, the survival probability of large rapidity gaps in hard diffraction, etc. At the same time, the implementation of the MPI effects in the Monte Carlo models is quickly proceeding through an increasing level of sophistication and complexity that in perspective achieves deep general implications for the LHC physics. Read More

We outline a new formalism for dipole-type parton showers which maintain exact energy-momentum conservation at each step of the evolution. Particular emphasis is put on the coherence properties, the level at which recoil effects do enter and the role of transverse momentum generation from initial state radiation. The formulated algorithm is shown to correctly incorporate coherence for soft gluon radiation. Read More

2009May
Affiliations: 1Karlsruhe, 2University College London, 3Karlsruhe, 4Manchester

We describe the recent developments to extend the multi-parton interaction model of underlying events in Herwig++ into the soft, non-perturbative, regime. This allows the program to describe also minimum bias collisions in which there is no hard interaction, for the first time. It is publicly available from versions 2. Read More

The transverse momentum of electroweak bosons in a Drell-Yan process is an important quantity for the experimental program at the LHC. The new model of non-perturbative gluon emission in an initial state parton shower presented in this note gives a good description of this quantity for the data taken in previous experiments over a wide range of CM energy. The model's prediction for the transverse momentum distribution of Z bosons for the LHC is presented and used for a comparison with other approaches. Read More

2009Mar
Authors: H. Jung1, A. De Roeck2, Z. J. Ajaltouni3, S. Albino4, G. Altarelli5, F. Ambroglini6, J. Anderson7, G. Antchev8, M. Arneodo9, P. Aspell10, V. Avati11, M. Bahr12, A. Bacchetta13, M. G. Bagliesi14, R. D. Ball15, A. Banfi16, S. Baranov17, P. Bartalini18, J. Bartels19, F. Bechtel20, V. Berardi21, M. Berretti22, G. Beuf23, M. Biasini24, I. Bierenbaum25, J. Blumlein26, R. E. Blair27, C. Bombonati28, M. Boonekamp29, U. Bottigli30, S. Boutle31, M. Bozzo32, E. Brucken33, J. Bracinik34, A. Bruni35, G. E. Bruno36, A. Buckley37, A. Bunyatyan38, H. Burkhardt39, P. Bussey40, A. Buzzo41, M. Cacciari42, F. Cafagna43, M. Calicchio44, F. Caola45, M. G. Catanesi46, P. L. Catastini47, R. Cecchi48, F. A. Ceccopieri49, S. Cerci50, S. Chekanov51, R. Chierici52, M. Ciafaloni53, M. A. Ciocci54, V. Coco55, D. Colferai56, A. Cooper-Sarkar57, G. Corcella58, M. Czakon59, A. Dainese60, M. Dasgupta61, M. Deak62, M. Deile63, P. A. Delsart64, L. Del Debbio65, A. de Roeck66, C. Diaconu67, M. Diehl68, E. Dimovasili69, M. Dittmar70, I. M. Dremin71, K. Eggert72, R. Engel73, V. Eremin74, S. Erhan75, C. Ewerz76, L. Fano77, J. Feltesse78, G. Ferrera79, F. Ferro80, R. Field81, S. Forte82, F. Garcia83, A. Geiser84, F. Gelis85, S. Giani86, S. Gieseke87, M. A. Gigg88, A. Glazov89, K. Golec-Biernat90, K. Goulianos91, J. Grebenyuk92, V. Greco93, D. Grellscheid94, G. Grindhammer95, M. Grothe96, A. Guffanti97, C. Gwenlan98, V. Halyo99, K. Hamilton100, F. Hautmann101, J. Heino102, G. Heinrich103, T. Hilden104, K. Hiller105, J. Hollar106, X. Janssen107, S. Joseph108, A. W. Jung109, H. Jung110, V. Juranek, J. Kaspar, O. Kepka, V. A. Khoze, Ch. Kiesling, M. Klasen, S. Klein, B. A. Kniehl, A. Knutsson, J. Kopal, G. Kramer, F. Krauss, V. Kundrat, K. Kurvinen, K. Kutak, L. Lonnblad, S. Lami, G. Latino, J. I. Latorre, O. Latunde-Dada, R. Lauhakangas, V. Lendermann, P. Lenzi, G. Li, A. Likhoded, A. Lipatov, E. Lippmaa, M. Lokajicek, M. Lo Vetere, F. Lucas Rodriguez, G. Luisoni, E. Lytken, K. Muller, M. Macri, G. Magazzu, A. Majhi, S. Majhi, P. Marage, L. Marti, A. D. Martin, M. Meucci, D. A. Milstead, S. Minutoli, A. Nischke, A. Moares, S. Moch, L. Motyka, T. Namsoo, P. Newman, H. Niewiadomski, C. Nockles, E. Noschis, G. Notarnicola, J. Nystrand, E. Oliveri, F. Oljemark, K. Osterberg, R. Orava, M. Oriunno, S. Osman, S. Ostapchenko, P. Palazzi, E. Pedreschi, A. V. Pereira, H. Perrey, J. Petajajarvi, T. Petersen, A. Piccione, T. Pierog, J. L. Pinfold, O. I. Piskounova, S. Platzer, M. Quinto, Z. Rurikova, E. Radermacher, V. Radescu, E. Radicioni, F. Ravotti, G. Rella, P. Richardson, E. Robutti, G. Rodrigo, E. Rodrigues, M. Rogal, T. C. Rogers, J. Rojo, P. Roloff, L. Ropelewski, C. Rosemann, Ch. Royon, G. Ruggiero, A. Rummel, M. Ruspa, M. G. Ryskin, D. Salek, W. Slominski, H. Saarikko, A. Sabio Vera, T. Sako, G. P. Salam, V. A. Saleev, C. Sander, G. Sanguinetti, A. Santroni, Th. Schorner-Sadenius, R. Schicker, I. Schienbein, W. B. Schmidke, F. Schwennsen, A. Scribano, G. Sette, M. H. Seymour, A. Sherstnev, T. Sjostrand, W. Snoeys, G. Somogyi, L. Sonnenschein, G. Soyez, H. Spiesberger, F. Spinella, P. Squillacioti, A. M. Stasto, A. Starodumov, H. Stenzel, Ph. Stephens, A. Ster, D. Stocco, M. Strikman, C. Taylor, T. Teubner, R. S. Thorne, Z. Trocsanyi, M. Treccani, D. Treleani, L. Trentadue, A. Trummal, J. Tully, W. K. Tung, M. Turcato, N. Turini, M. Ubiali, A. Valkarova, A. van Hameren, P. Van Mechelen, J. A. M. Vermaseren, A. Vogt, B. F. L. Ward, G. Watt, B. R. Webber, Ch. Weiss, Ch. White, J. Whitmore, R. Wolf, J. Wu, A. Yagues-Molina, S. A. Yost, G. Zanderighi, N. Zotov, M. zur Nedden
Affiliations: 1DESY, U. Antwerp, 2CERN, U. Antwerp, 3DESY, U. Antwerp, 4DESY, U. Antwerp, 5DESY, U. Antwerp, 6DESY, U. Antwerp, 7DESY, U. Antwerp, 8DESY, U. Antwerp, 9DESY, U. Antwerp, 10DESY, U. Antwerp, 11DESY, U. Antwerp, 12DESY, U. Antwerp, 13DESY, U. Antwerp, 14DESY, U. Antwerp, 15DESY, U. Antwerp, 16DESY, U. Antwerp, 17DESY, U. Antwerp, 18DESY, U. Antwerp, 19DESY, U. Antwerp, 20DESY, U. Antwerp, 21DESY, U. Antwerp, 22DESY, U. Antwerp, 23DESY, U. Antwerp, 24DESY, U. Antwerp, 25DESY, U. Antwerp, 26DESY, U. Antwerp, 27DESY, U. Antwerp, 28DESY, U. Antwerp, 29DESY, U. Antwerp, 30DESY, U. Antwerp, 31DESY, U. Antwerp, 32DESY, U. Antwerp, 33DESY, U. Antwerp, 34DESY, U. Antwerp, 35DESY, U. Antwerp, 36DESY, U. Antwerp, 37DESY, U. Antwerp, 38DESY, U. Antwerp, 39DESY, U. Antwerp, 40DESY, U. Antwerp, 41DESY, U. Antwerp, 42DESY, U. Antwerp, 43DESY, U. Antwerp, 44DESY, U. Antwerp, 45DESY, U. Antwerp, 46DESY, U. Antwerp, 47DESY, U. Antwerp, 48DESY, U. Antwerp, 49DESY, U. Antwerp, 50DESY, U. Antwerp, 51DESY, U. Antwerp, 52DESY, U. Antwerp, 53DESY, U. Antwerp, 54DESY, U. Antwerp, 55DESY, U. Antwerp, 56DESY, U. Antwerp, 57DESY, U. Antwerp, 58DESY, U. Antwerp, 59DESY, U. Antwerp, 60DESY, U. Antwerp, 61DESY, U. Antwerp, 62DESY, U. Antwerp, 63DESY, U. Antwerp, 64DESY, U. Antwerp, 65DESY, U. Antwerp, 66DESY, U. Antwerp, 67DESY, U. Antwerp, 68DESY, U. Antwerp, 69DESY, U. Antwerp, 70DESY, U. Antwerp, 71DESY, U. Antwerp, 72DESY, U. Antwerp, 73DESY, U. Antwerp, 74DESY, U. Antwerp, 75DESY, U. Antwerp, 76DESY, U. Antwerp, 77DESY, U. Antwerp, 78DESY, U. Antwerp, 79DESY, U. Antwerp, 80DESY, U. Antwerp, 81DESY, U. Antwerp, 82DESY, U. Antwerp, 83DESY, U. Antwerp, 84DESY, U. Antwerp, 85DESY, U. Antwerp, 86DESY, U. Antwerp, 87DESY, U. Antwerp, 88DESY, U. Antwerp, 89DESY, U. Antwerp, 90DESY, U. Antwerp, 91DESY, U. Antwerp, 92DESY, U. Antwerp, 93DESY, U. Antwerp, 94DESY, U. Antwerp, 95DESY, U. Antwerp, 96DESY, U. Antwerp, 97DESY, U. Antwerp, 98DESY, U. Antwerp, 99DESY, U. Antwerp, 100DESY, U. Antwerp, 101DESY, U. Antwerp, 102DESY, U. Antwerp, 103DESY, U. Antwerp, 104DESY, U. Antwerp, 105DESY, U. Antwerp, 106DESY, U. Antwerp, 107DESY, U. Antwerp, 108DESY, U. Antwerp, 109DESY, U. Antwerp, 110DESY, U. Antwerp

2nd workshop on the implications of HERA for LHC physics. Working groups: Parton Density Functions Multi-jet final states and energy flows Heavy quarks (charm and beauty) Diffraction Cosmic Rays Monte Carlos and Tools Read More

A new release of the Monte Carlo program Herwig++ (version 2.3) is now available. This version includes a number of improvements including: the extension of the program to lepton-hadron collisions; the inclusion of several processes accurate at next-to-leading order in the POsitive Weight Hardest Emission Generator (POWHEG) scheme; the inclusion of three-body decays and finite-width effects in Beyond the Standard Model (BSM) physics processes; a new procedure for reconstructing the kinematics of the parton shower based on the colour structure of the hard scattering process; a new model for baryon decays including excited baryon multiplets; the addition of a soft component to the multiple scattering model of the underlying event; new matrix elements for Deep Inelastic Scattering (DIS) and e+e- processes. Read More

In this contribution we describe the new model of multiple partonic interactions (MPI) that has been implemented in Herwig++. Tuning its two free parameters is enough to find a good description of CDF underlying event data. We show extrapolations to the LHC and compare them to results from other models. Read More

In this contribution we describe a new model of multiple partonic interactions that has been implemented in Herwig++. Tuning its two free parameters we find a good description of CDF underlying event data. We show extrapolations to the LHC and discuss intrinsic PDF uncertainties. Read More

A new release of the Monte Carlo program Herwig++ (version 2.2) is now available. This version includes a number of improvements including: matrix elements for the production of an electroweak gauge boson, W and Z, in association with a jet; several new processes for Higgs production in association with an electroweak gauge boson; and the matrix element correction for QCD radiation in Higgs production via gluon fusion. Read More

In this paper we describe a new model of multiple partonic interactions that has been implemented in Herwig++. Tuning its two free parameters we find a good description of CDF underlying event data. We show extrapolations to the LHC. Read More

In this paper we describe Herwig++ version 2.3, a general-purpose Monte Carlo event generator for the simulation of hard lepton-lepton, lepton-hadron and hadron-hadron collisions. A number of important hard scattering processes are available, together with an interface via the Les Houches Accord to specialized matrix element generators for additional processes. Read More

We consider a model of transverse momentum production in which non-perturbative smearing takes place throughout the perturbative evolution, by a simple modification to an initial state parton shower algorithm. Using this as the important non-perturbative ingredient, we get a good fit to data over a wide range of energy. Combining it with the non-perturbative masses and cutoffs that are a feature of conventional parton showers also leads to a reasonable fit. Read More

A new release of the Monte Carlo program Herwig++ (version 2.1) is now available. This version includes a number of significant improvements including: an eikonal multiple parton-parton scattering model of the underlying event; the inclusion of Beyond the Standard Model physics; and a new hadronic decay model tuned to LEP data. Read More

We apply the positive-weight Monte Carlo method of Nason for simulating QCD processes accurate to Next-To-Leading Order to the case of e+e- annihilation to hadrons. The method entails the generation of the hardest gluon emission first and then subsequently adding a `truncated' shower before the emission. We have interfaced our result to the Herwig++ shower Monte Carlo program and obtained better results than those obtained with Herwig++ at leading order with a matrix element correction. Read More

A new release of the Monte Carlo program Herwig++ (version 2.0) is now available. This is the first version of the program which can be used for hadron-hadron physics and includes the full simulation of both initial- and final-state QCD radiation. Read More

A standard file format is proposed to store process and event information, primarily output from parton-level event generators for further use by general-purpose ones. The information content is identical with what was already defined by the Les Houches Accord five years ago, but then in terms of Fortran commonblocks. This information is embedded in a minimal XML-style structure, for clarity and to simplify parsing. Read More

A new release of the Monte Carlo program Herwig++ (version 2.0beta) is now available. The main new feature is the extension of the program to include simple hadron-hadron processes including the initial-state parton shower. Read More

2006Jan
Authors: S. Alekhin, G. Altarelli, N. Amapane, J. Andersen, V. Andreev, M. Arneodo, V. Avati, J. Baines, R. D. Ball, A. Banfi, S. P. Baranov, J. Bartels, O. Behnke, R. Bellan, J. Blumlein, H. Bottcher, S. Bolognesi, M. Boonekamp, D. Bourilkov, J. Bracinik, A. Bruni, G. Bruni, A. Buckley, A. Bunyatyan, C. M. Buttar, J. M. Butterworth, S. Butterworth, M. Cacciari, T. Carli, G. Cerminara, S. Chekanov, M. Ciafaloni, D. Colferai, J. Collins, A. Cooper-Sarkar, G. Corcella, M. Corradi, B. E. Cox, R. Croft, Z. Czyczula, A. Dainese, M. Dasgupta, G. Davatz, L. Del Debbio, Y. Delenda, A. De Roeck, M. Diehl, S. Diglio, G. Dissertori, M. Dittmar, J. Ellis, K. J. Eskola, T. O. Eynck, J. Feltesse, F. Ferro, R. D. Field, J. Forshaw, S. Forte, A. Geiser, S. Gieseke, A. Glazov, T. Gleisberg, P. Golonka, E. Gotsman, G. Grindhammer, M. Grothe, C. Group, M. Groys, A. Guffanti, G. Gustafson, C. Gwenlan, S. Hoche, C. Hogg, J. Huston, G. Iacobucci, G. Ingelman, S. Jadach, H. Jung, J. Kalliopuska, M. Kapishin, B. Kersevan, V. Khoze, M. Klasen, M. Klein, B. A. Kniehl, V. J. Kolhinen, H. Kowalski, G. Kramer, F. Krauss, S. Kretzer, K. Kutak, J. W. Lamsa, L. Lonnblad, T. Lastovicka, G. Lastovicka-Medin, E. Laenen, Th. Lagouri, J. I. Latorre, N. Lavesson, V. Lendermann, E. Levin, A. Levy, A. V. Lipatov, M. Lublinsky, L. Lytkin, T. Maki, L. Magnea, F. Maltoni, M. Mangano, U. Maor, C. Mariotti, N. Marola, A. D. Martin, A. Meyer, S. Moch, J. Monk, A. Moraes, A. Morsch, L. Motyka, E. Naftali, P. Newman, A. Nikitenko, F. Oljemark, R. Orava, M. Ottela, K. Osterberg, K. Peters, F. Petrucci, A. Piccione, A. Pilkington, K. Piotrzkowski, O. I. Piskounova, A. Proskuryakov, A. Prygarin, J. Pumplin, K. Rabbertz, R. Ranieri, V. Ravindran, B. Reisert, E. Richter-Was, L. Rinaldi, P. Robbe, E. Rodrigues, J. Rojo, H. Ruiz, M. Ruspa, M. G. Ryskin, A. Sabio Vera, G. P. Salam, A. Schalicke, S. Schatzel, T. Schorner-Sadenius, I. Schienbein, F-P. Schilling, S. Schumann, M. H. Seymour, F. Siegert, T. Sjostrand, M. Skrzypek, J. Smith, M. Smizanska, H. Spiesberger, F. Schrempp, A. Stasto, H. Stenzel, W. J. Stirling, P. Szczypka, S. Tapprogge, C. Targett-Adams, M. Tasevsky, T. Teubner, R. S. Thorne, A. Tonazzo, A. Tricoli, N. Tuning, J. Turnau, U. Uwer, P. Van Mechelen, R. Venugopalan, M. Verducci, J. A. M. Vermaseren, A. Vogt, R. Vogt, B. F. L. Ward, Z. Was, G. Watt, B. M. Waugh, C. Weiser, M. R. Whalley, M. Wing, J. Winter, S. A. Yost, G. Zanderighi, N. P. Zotov

The HERA electron--proton collider has collected 100 pb$^{-1}$ of data since its start-up in 1992, and recently moved into a high-luminosity operation mode, with upgraded detectors, aiming to increase the total integrated luminosity per experiment to more than 500 pb$^{-1}$. HERA has been a machine of excellence for the study of QCD and the structure of the proton. The Large Hadron Collider (LHC), which will collide protons with a centre-of-mass energy of 14 TeV, will be completed at CERN in 2007. Read More

2006Jan
Authors: S. Alekhin, G. Altarelli, N. Amapane, J. Andersen, V. Andreev, M. Arneodo, V. Avati, J. Baines, R. D. Ball, A. Banfi, S. P. Baranov, J. Bartels, O. Behnke, R. Bellan, J. Blumlein, H. Bottcher, S. Bolognesi, M. Boonekamp, D. Bourilkov, J. Bracinik, A. Bruni, G. Bruni, A. Buckley, A. Bunyatyan, C. M. Buttar, J. M. Butterworth, S. Butterworth, M. Cacciari, T. Carli, G. Cerminara, S. Chekanov, M. Ciafaloni, D. Colferai, J. Collins, A. Cooper-Sarkar, G. Corcella, M. Corradi, B. E. Cox, R. Croft, Z. Czyczula, A. Dainese, M. Dasgupta, G. Davatz, L. Del Debbio, Y. Delenda, A. De Roeck, M. Diehl, S. Diglio, G. Dissertori, M. Dittmar, J. Ellis, K. J. Eskola, T. O. Eynck, J. Feltesse, F. Ferro, R. D. Field, J. Forshaw, S. Forte, A. Geiser, S. Gieseke, A. Glazov, T. Gleisberg, P. Golonka, E. Gotsman, G. Grindhammer, M. Grothe, C. Group, M. Groys, A. Guffanti, G. Gustafson, C. Gwenlan, S. Hoche, C. Hogg, J. Huston, G. Iacobucci, G. Ingelman, S. Jadach, H. Jung, J. Kalliopuska, M. Kapishin, B. Kersevan, V. Khoze, M. Klasen, M. Klein, B. A. Kniehl, V. J. Kolhinen, H. Kowalski, G. Kramer, F. Krauss, S. Kretzer, K. Kutak, J. W. Lamsa, L. Lonnblad, T. Lastovicka, G. Lastovicka-Medin, E. Laenen, Th. Lagouri, J. I. Latorre, N. Lavesson, V. Lendermann, E. Levin, A. Levy, A. V. Lipatov, M. Lublinsky, L. Lytkin, T. Maki, L. Magnea, F. Maltoni, M. Mangano, U. Maor, C. Mariotti, N. Marola, A. D. Martin, A. Meyer, S. Moch, J. Monk, A. Moraes, A. Morsch, L. Motyka, E. Naftali, P. Newman, A. Nikitenko, F. Oljemark, R. Orava, M. Ottela, K. Osterberg, K. Peters, F. Petrucci, A. Piccione, A. Pilkington, K. Piotrzkowski, O. I. Piskounova, A. Proskuryakov, A. Prygarin, J. Pumplin, K. Rabbertz, R. Ranieri, V. Ravindran, B. Reisert, E. Richter-Was, L. Rinaldi, P. Robbe, E. Rodrigues, J. Rojo, H. Ruiz, M. Ruspa, M. G. Ryskin, A. Sabio Vera, G. P. Salam, A. Schalicke, S. Schatzel, T. Schorner-Sadenius, I. Schienbein, F-P. Schilling, S. Schumann, M. H. Seymour, F. Siegert, T. Sjostrand, M. Skrzypek, J. Smith, M. Smizanska, H. Spiesberger, F. Schrempp, A. Stasto, H. Stenzel, W. J. Stirling, P. Szczypka, S. Tapprogge, C. Targett-Adams, M. Tasevsky, T. Teubner, R. S. Thorne, A. Tonazzo, A. Tricoli, N. Tuning, J. Turnau, U. Uwer, P. Van Mechelen, R. Venugopalan, M. Verducci, J. A. M. Vermaseren, A. Vogt, R. Vogt, B. F. L. Ward, Z. Was, G. Watt, B. M. Waugh, C. Weiser, M. R. Whalley, M. Wing, J. Winter, S. A. Yost, G. Zanderighi, N. P. Zotov

The HERA electron--proton collider has collected 100 pb$^{-1}$ of data since its start-up in 1992, and recently moved into a high-luminosity operation mode, with upgraded detectors, aiming to increase the total integrated luminosity per experiment to more than 500 pb$^{-1}$. HERA has been a machine of excellence for the study of QCD and the structure of the proton. The Large Hadron Collider (LHC), which will collide protons with a centre-of-mass energy of 14 TeV, will be completed at CERN in 2007. Read More

2004Dec

We study the uncertainties of Sudakov form factors as the basis for parton shower evolution in Monte Carlo event generators. We discuss the particular cases of systematic uncertainties of parton distribution functions and scale uncertainties. Read More

2004Aug

We present results obtained with the new Monte Carlo event generator Herwig++. In its first version (1.0), Herwig++ is capable of simulating e+e- Annihilation events. Read More

2004Aug
Authors: Stefan Gieseke1
Affiliations: 1University of Cambridge

Some results obtained with the new Monte Carlo event generator Herwig++ are presented. In its first version (1.0), Herwig++ is capable of simulating e+e- Annihilation events. Read More