# S. F. Rey - Chungnam National University

## Contact Details

NameS. F. Rey |
||

AffiliationChungnam National University |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesHigh Energy Physics - Theory (29) Cosmology and Nongalactic Astrophysics (12) Astrophysics of Galaxies (9) General Relativity and Quantum Cosmology (9) Physics - Strongly Correlated Electrons (6) Mathematical Physics (3) Solar and Stellar Astrophysics (3) High Energy Physics - Phenomenology (3) Mathematics - Mathematical Physics (3) Mathematics - Algebraic Geometry (3) Physics - Statistical Mechanics (2) High Energy Astrophysical Phenomena (1) Nonlinear Sciences - Exactly Solvable and Integrable Systems (1) Physics - Mesoscopic Systems and Quantum Hall Effect (1) High Energy Physics - Lattice (1) Mathematics - Differential Geometry (1) High Energy Physics - Experiment (1) Physics - Accelerator Physics (1) Quantum Physics (1) Physics - Disordered Systems and Neural Networks (1) |

## Publications Authored By S. F. Rey

A fraction of early-type dwarf galaxies in the Virgo cluster have a disk component and even possess disk features such as bar, lens, and spiral arms. In this study, we construct 15 galaxy models that resemble VCC856, considered to be an infalling progenitor of disk dwarf galaxies, within observational error ranges, and use $N$-body simulations to study their long-term dynamical evolution in isolation as well as the formation of bar in them. We find that dwarf disk galaxies readily form bars unless they have an excessively concentrated halo or a hot disk. Read More

Partial symmetries are described by generalized group structures known as symmetric inverse semigroups. We use the algebras arising from these structures to realize supersymmetry in (0+1) dimensions and to build many-body quantum systems on a chain. This construction consists in associating appropriate supercharges to chain sites, in analogy to what is done in spin chains. Read More

The (heterotic) double field theories and the exceptional field theories are recently developed for manifestly duality covariant formulation of various supergravity theories, describing low-energy limit of various (heterotic) superstring and M-theory compactifications. These field theories are known to be reduced to the standard descriptions by introducing appropriately parameterized generalized metric and by applying suitably chosen section conditions. We generalize this development to non-geometric backgrounds by utilizing dual fields pertinent to non-geometric fluxes. Read More

We revisit the filamentary structures of galaxies around the Virgo cluster, exploiting a larger dataset based on the HyperLeda database than previous studies. In particular, this includes a large number of low-luminosity galaxies, resulting in better sampled individual structures. We confirm seven known structures in the distance range 4~$h^{-1}$~Mpc~$<$ SGY~$<$ 16~$h^{-1}$ Mpc, now identified as filaments, where SGY is the axis of the supergalactic coordinate system roughly along the line of sight. Read More

A particular two-parameter class of little string theories can be described by $M$ parallel M5-branes probing a transverse affine $A_{N-1}$ singularity. We previously discussed the duality between the theories labelled by $(N,M)$ and $(M,N)$. In this work, we propose that these two are in fact only part of a larger web of dual theories. Read More

**Authors:**The CLIC, CLICdp collaborations, :, M. J. Boland, U. Felzmann, P. J. Giansiracusa, T. G. Lucas, R. P. Rassool, C. Balazs, T. K. Charles, K. Afanaciev, I. Emeliantchik, A. Ignatenko, V. Makarenko, N. Shumeiko, A. Patapenka, I. Zhuk, A. C. Abusleme Hoffman, M. A. Diaz Gutierrez, M. Vogel Gonzalez, Y. Chi, X. He, G. Pei, S. Pei, G. Shu, X. Wang, J. Zhang, F. Zhao, Z. Zhou, H. Chen, Y. Gao, W. Huang, Y. P. Kuang, B. Li, Y. Li, J. Shao, J. Shi, C. Tang, X. Wu, L. Ma, Y. Han, W. Fang, Q. Gu, D. Huang, X. Huang, J. Tan, Z. Wang, Z. Zhao, T. Laštovička, U. Uggerhoj, T. N. Wistisen, A. Aabloo, K. Eimre, K. Kuppart, S. Vigonski, V. Zadin, M. Aicheler, E. Baibuz, E. Brücken, F. Djurabekova, P. Eerola, F. Garcia, E. Haeggström, K. Huitu, V. Jansson, V. Karimaki, I. Kassamakov, A. Kyritsakis, S. Lehti, A. Meriläinen, R. Montonen, T. Niinikoski, K. Nordlund, K. Österberg, M. Parekh, N. A. Törnqvist, J. Väinölä, M. Veske, W. Farabolini, A. Mollard, O. Napoly, F. Peauger, J. Plouin, P. Bambade, I. Chaikovska, R. Chehab, M. Davier, W. Kaabi, E. Kou, F. LeDiberder, R. Pöschl, D. Zerwas, B. Aimard, G. Balik, J. -P. Baud, J. -J. Blaising, L. Brunetti, M. Chefdeville, C. Drancourt, N. Geoffroy, J. Jacquemier, A. Jeremie, Y. Karyotakis, J. M. Nappa, S. Vilalte, G. Vouters, A. Bernard, I. Peric, M. Gabriel, F. Simon, M. Szalay, N. van der Kolk, T. Alexopoulos, E. N. Gazis, N. Gazis, E. Ikarios, V. Kostopoulos, S. Kourkoulis, P. D. Gupta, P. Shrivastava, H. Arfaei, M. K. Dayyani, H. Ghasem, S. S. Hajari, H. Shaker, Y. Ashkenazy, H. Abramowicz, Y. Benhammou, O. Borysov, S. Kananov, A. Levy, I. Levy, O. Rosenblat, G. D'Auria, S. Di Mitri, T. Abe, A. Aryshev, T. Higo, Y. Makida, S. Matsumoto, T. Shidara, T. Takatomi, Y. Takubo, T. Tauchi, N. Toge, K. Ueno, J. Urakawa, A. Yamamoto, M. Yamanaka, R. Raboanary, R. Hart, H. van der Graaf, G. Eigen, J. Zalieckas, E. Adli, R. Lillestøl, L. Malina, J. Pfingstner, K. N. Sjobak, W. Ahmed, M. I. Asghar, H. Hoorani, S. Bugiel, R. Dasgupta, M. Firlej, T. A. Fiutowski, M. Idzik, M. Kopec, M. Kuczynska, J. Moron, K. P. Swientek, W. Daniluk, B. Krupa, M. Kucharczyk, T. Lesiak, A. Moszczynski, B. Pawlik, P. Sopicki, T. Wojtoń, L. Zawiejski, J. Kalinowski, M. Krawczyk, A. F. Żarnecki, E. Firu, V. Ghenescu, A. T. Neagu, T. Preda, I-S. Zgura, A. Aloev, N. Azaryan, J. Budagov, M. Chizhov, M. Filippova, V. Glagolev, A. Gongadze, S. Grigoryan, D. Gudkov, V. Karjavine, M. Lyablin, A. Olyunin, A. Samochkine, A. Sapronov, G. Shirkov, V. Soldatov, A. Solodko, E. Solodko, G. Trubnikov, I. Tyapkin, V. Uzhinsky, A. Vorozhtov, E. Levichev, N. Mezentsev, P. Piminov, D. Shatilov, P. Vobly, K. Zolotarev, I. Bozovic Jelisavcic, G. Kacarevic, S. Lukic, G. Milutinovic-Dumbelovic, M. Pandurovic, U. Iriso, F. Perez, M. Pont, J. Trenado, M. Aguilar-Benitez, J. Calero, L. Garcia-Tabares, D. Gavela, J. L. Gutierrez, D. Lopez, F. Toral, D. Moya, A. Ruiz Jimeno, I. Vila, T. Argyropoulos, C. Blanch Gutierrez, M. Boronat, D. Esperante, A. Faus-Golfe, J. Fuster, N. Fuster Martinez, N. Galindo Muñoz, I. García, J. Giner Navarro, E. Ros, M. Vos, R. Brenner, T. Ekelöf, M. Jacewicz, J. Ögren, M. Olvegård, R. Ruber, V. Ziemann, D. Aguglia, N. Alipour Tehrani, A. Andersson, F. Andrianala, F. Antoniou, K. Artoos, S. Atieh, R. Ballabriga Sune, M. J. Barnes, J. Barranco Garcia, H. Bartosik, C. Belver-Aguilar, A. Benot Morell, D. R. Bett, S. Bettoni, G. Blanchot, O. Blanco Garcia, X. A. Bonnin, O. Brunner, H. Burkhardt, S. Calatroni, M. Campbell, N. Catalan Lasheras, M. Cerqueira Bastos, A. Cherif, E. Chevallay, B. Constance, R. Corsini, B. Cure, S. Curt, B. Dalena, D. Dannheim, G. De Michele, L. De Oliveira, N. Deelen, J. P. Delahaye, T. Dobers, S. Doebert, M. Draper, F. Duarte Ramos, A. Dubrovskiy, K. Elsener, J. Esberg, M. Esposito, V. Fedosseev, P. Ferracin, A. Fiergolski, K. Foraz, A. Fowler, F. Friebel, J-F. Fuchs, C. A. Fuentes Rojas, A. Gaddi, L. Garcia Fajardo, H. Garcia Morales, C. Garion, L. Gatignon, J-C. Gayde, H. Gerwig, A. N. Goldblatt, C. Grefe, A. Grudiev, F. G. Guillot-Vignot, M. L. Gutt-Mostowy, M. Hauschild, C. Hessler, J. K. Holma, E. Holzer, M. Hourican, D. Hynds, Y. Inntjore Levinsen, B. Jeanneret, E. Jensen, M. Jonker, M. Kastriotou, J. M. K. Kemppinen, R. B. Kieffer, W. Klempt, O. Kononenko, A. Korsback, E. Koukovini Platia, J. W. Kovermann, C-I. Kozsar, I. Kremastiotis, S. Kulis, A. Latina, F. Leaux, P. Lebrun, T. Lefevre, L. Linssen, X. Llopart Cudie, A. A. Maier, H. Mainaud Durand, E. Manosperti, C. Marelli, E. Marin Lacoma, R. Martin, S. Mazzoni, G. Mcmonagle, O. Mete, L. M. Mether, M. Modena, R. M. Münker, T. Muranaka, E. Nebot Del Busto, N. Nikiforou, D. Nisbet, J-M. Nonglaton, F. X. Nuiry, A. Nürnberg, M. Olvegard, J. Osborne, S. Papadopoulou, Y. Papaphilippou, A. Passarelli, M. Patecki, L. Pazdera, D. Pellegrini, K. Pepitone, E. Perez Codina, A. Perez Fontenla, T. H. B. Persson, M. Petrič, F. Pitters, S. Pittet, F. Plassard, R. Rajamak, S. Redford, Y. Renier, S. F. Rey, G. Riddone, L. Rinolfi, E. Rodriguez Castro, P. Roloff, C. Rossi, V. Rude, G. Rumolo, A. Sailer, E. Santin, D. Schlatter, H. Schmickler, D. Schulte, N. Shipman, E. Sicking, R. Simoniello, P. K. Skowronski, P. Sobrino Mompean, L. Soby, M. P. Sosin, S. Sroka, S. Stapnes, G. Sterbini, R. Ström, I. Syratchev, F. Tecker, P. A. Thonet, L. Timeo, H. Timko, R. Tomas Garcia, P. Valerio, A. L. Vamvakas, A. Vivoli, M. A. Weber, R. Wegner, M. Wendt, B. Woolley, W. Wuensch, J. Uythoven, H. Zha, P. Zisopoulos, M. Benoit, M. Vicente Barreto Pinto, M. Bopp, H. H. Braun, M. Csatari Divall, M. Dehler, T. Garvey, J. Y. Raguin, L. Rivkin, R. Zennaro, A. Aksoy, Z. Nergiz, E. Pilicer, I. Tapan, O. Yavas, V. Baturin, R. Kholodov, S. Lebedynskyi, V. Miroshnichenko, S. Mordyk, I. Profatilova, V. Storizhko, N. Watson, A. Winter, J. Goldstein, S. Green, J. S. Marshall, M. A. Thomson, B. Xu, W. A. Gillespie, R. Pan, M. A Tyrk, D. Protopopescu, A. Robson, R. Apsimon, I. Bailey, G. Burt, D. Constable, A. Dexter, S. Karimian, C. Lingwood, M. D. Buckland, G. Casse, J. Vossebeld, A. Bosco, P. Karataev, K. Kruchinin, K. Lekomtsev, L. Nevay, J. Snuverink, E. Yamakawa, V. Boisvert, S. Boogert, G. Boorman, S. Gibson, A. Lyapin, W. Shields, P. Teixeira-Dias, S. West, R. Jones, N. Joshi, R. Bodenstein, P. N. Burrows, G. B. Christian, D. Gamba, C. Perry, J. Roberts, J. A. Clarke, N. A. Collomb, S. P. Jamison, B. J. A. Shepherd, D. Walsh, M. Demarteau, J. Repond, H. Weerts, L. Xia, J. D. Wells, C. Adolphsen, T. Barklow, M. Breidenbach, N. Graf, J. Hewett, T. Markiewicz, D. McCormick, K. Moffeit, Y. Nosochkov, M. Oriunno, N. Phinney, T. Rizzo, S. Tantawi, F. Wang, J. Wang, G. White, M. Woodley

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Read More

Higgs mechanism to massive higher-spin gauge fields is an outstanding open problem. We investigate this issue in the context of Kaluza-Klein compactification. Starting from a free massless higher-spin field in $(d+2)$-dimensional anti-de Sitter space and compactifying over a finite angular wedge, we obtain an infinite tower of heavy, light and massless higher-spin fields in $(d+1)$-dimensional anti-de Sitter space. Read More

We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a group manifold, we obtain a d=4 colored dissipative fluid coupled to Yang-Mills gauge field. We calculate the transport coefficients of the new fluid, which show the non-Abelian character of the gauge group. Read More

We study a class of ${\cal N}=(1,0)$ little string theories obtained from orbifolds of M-brane configurations. These are realised in two different ways that are dual to each other: either as $M$ parallel M5-branes probing a transverse $A_{N-1}$ singularity or $N$ M5-branes probing an $A_{M-1}$ singularity. These backgrounds can further be dualised into toric, non-compact Calabi-Yau threefolds $X_{N,M}$ which have double elliptic fibrations and thus give a natural geometric description of T-duality of the little string theories. Read More

We interpret Janus as an interface in a conformal field theory and study its properties. The Janus is created by an exactly marginal operator and we study its effect on the interface conformal field theory on the Janus. We do this by utilizing the AdS/CFT correspondence. Read More

We present the galaxy luminosity function (LF) of the Abell 119 cluster down to $M_r\sim-14$ mag based on deep images in the $u$-, $g$-, and $r$-bands taken by using MOSAIC II CCD mounted on the Blanco 4m telescope at the CTIO. The cluster membership was accurately determined based on the radial velocity information as well as on the color-magnitude relation for bright galaxies and the scaling relation for faint galaxies. The overall LF exhibits a bimodal behavior with a distinct dip at $r\sim18. Read More

We study the color-decoration of higher-spin (anti)-de Sitter gravity in three dimensions. We show that the rainbow vacua, which we found recently for the colored gravity theory, also pertain in the colored higher-spin theory. The color singlet spin-two plays the role of first fundamental form (metric). Read More

We propose a theory of three-dimensional (anti) de Sitter gravity carrying Chan-Paton color charges. We define the theory by Chern-Simons formulation with the gauge algebra $(\mathfrak{gl}_{2}\oplus \mathfrak{gl}_{2})\otimes \mathfrak{u}(N)$, obtaining a color-decorated version of interacting spin-one and spin-two fields. We also describe the theory in metric formulation and show that, among $N^{2}$ massless spin-two fields, only the singlet one plays the role of metric graviton whereas the rest behave as \emph{colored spinning matter} that strongly interacts at large $N$. Read More

We study BPS excitations in M5-M2-brane configurations with a compact transverse direction, which are also relevant for type IIa and IIb little string theories. These configurations are dual to a class of toric elliptically fibered Calabi-Yau manifolds $X_N$ with manifest $SL(2, \mathbb{Z}) \times SL(2,\mathbb{Z})$ modular symmetry. They admit two dual gauge theory descriptions. Read More

**Affiliations:**

^{1}Seoul National University,

^{2}Chungnam National University,

^{3}Chungnam National University

**Category:**Cosmology and Nongalactic Astrophysics

The first observational evidence for the violation of the maximum turn-around radius on the galaxy group scale is presented. The NGC 5353/4 group is chosen as an ideal target for our investigation of the bound-violation because of its proximity, low-density environment, optimal mass scale, and existence of a nearby thin straight filament. Using the observational data on the line-of-sight velocities and three-dimensional distances of the filament galaxies located in the bound zone of the NGC 5353/4 group, we construct their radial velocity profile as a function of separation distance from the group center and then compare it to the analytic formula obtained empirically by Falco et al. Read More

In the double field theory, gauge symmetries are realized as generalized diffeomorphisms in the doubled spacetime. By consistency of the theory, dependence of tensor fields on the doubled coordinates is strongly constrained. This causes finite transformation law highly complicated, both technically and conceptually. Read More

Supersymmetric field theories can be studied exactly on suitable off-shell supergravity backgrounds. We show that in two dimensions such backgrounds are identifiable with BRST invariant backgrounds of topological gravity coupled to an abelian topological gauge multiplet. This latter background is required for the consistent coupling of the topological `matter' YM theory to topological gravity. Read More

Double field theory is an approach for massless modes of string theory, unifying and geometrizing all gauge invariance in manifest $\mathbf{O}(D,D)$ covariant manner. In this approach, we derive off-shell conserved Noether current and corresponding Noether potential associated with unified gauge invariance. We add Wald-type counter two-form to the Noether potential and define conserved global charges as surface integral. Read More

We study relations between M-strings (one-dimensional intersections of M2-branes and M5-branes) in six dimensions and m-strings (magnetically charged monopole strings) in five dimensions. For specific configurations, we propose that the counting functions of BPS bound-states of M-strings capture the elliptic genus of the moduli space of m-strings. We check this proposal for the known cases, the Taub-NUT and Atiyah-Hitchin spaces for which we find complete agreement. Read More

**Affiliations:**

^{1}Seoul National University,

^{2}Chungnam National University,

^{3}Chungnam National University

**Category:**Cosmology and Nongalactic Astrophysics

The radial velocities of the galaxies in the vicinity of a cluster shows deviation from the pure Hubble flow due to their gravitational interaction with the cluster. According to a recent study of Falco et al. (2014) based on a high-resolution N-body simulation, the radial velocity profile of the galaxies located at distances larger than three times the virial radius of a neighbor cluster can be well approximated by a universal formula and could be reconstructed from direct observables provided that the galaxies are distributed along one dimensional filament. Read More

Field theories on anti-de Sitter (AdS) space can be studied by realizing them as low-energy limits of AdS vacua of string/M theory. In an appropriate limit, the field theories decouple from the rest of string/M theory. Since these vacua are dual to conformal field theories (CFTs), this relates some of the observables of these field theories on AdS to a subsector of the dual CFTs. Read More

Expectation value of lightlike polygon Wilson loop is computed in the three-dimensional ABJM theory up to second-order in `t Hooft coupling in the limit of infinitely many colors and the result is critically compared with that in the four-dimensional N=4 super Yang-Mills theory. We first obtain analytic result for hexagon Wilson loop by combining Mellin-Barnes transformation, high precision numerical computation and the PSLQ algorithm. We then derive a version of operator product expansion (OPE) that reduces lightlike n-gon to a linear combination of (n-2)-gons in the soft-collinear limit of the polygon geometry. Read More

Whether O(N)-invariant conformal field theory exists in five dimensions with its implication to higher-spin holography was much debated. We find an affirmative result on this question by utilizing conformal bootstrap approach. In solving for the crossing symmetry condition, we propose a new approach based on specification for the low-lying spectrum distribution. Read More

Using SDSS-DR7 and NASA/IPAC Extragalactic Database spectroscopic data, we identify 166 galaxies as members of the Ursa Major cluster with Mr < -13.5 mag. We morphological classify all galaxies by means of carefully inspecting g-, r-, i-band colour and monochromatic images. Read More

We present a new catalog of galaxies in the wider region of the Virgo cluster, based on the Sloan Digital Sky Survey (SDSS) Data Release 7. The Extended Virgo Cluster Catalog (EVCC) covers an area of 725 deg^2 or 60.1 Mpc^2. Read More

**Affiliations:**

^{1}Seoul National University,

^{2}Chungnam National University,

^{3}Chungnam National University

An observational evidence is presented for the alignment between the cosmic sheet and the principal axis of the velocity shear field at the position of the Virgo cluster. The galaxies in and around the Virgo cluster from the Extended Virgo Cluster Catalog recently constructed by Kim et al. are used to determine the direction of the local sheet. Read More

Is it possible for an anisotropic Lifshitz critical point to actually exhibit isotropic conformal invariance? We answer this question in the affirmative by constructing a concrete holographic realization. We study three-dimensional spin-3 higher-spin gauge theory with a z=2 Lifshitz ground state with non-trivial spin-3 background. We provide consistent boundary conditions and determine the associated asymptotic symmetry algebra. Read More

We establish resolution bounds on reconstructing a bulk field from boundary data on a timelike hypersurface. If the bulk only supports propagating modes, reconstruction is complete. If the bulk also supports evanescent modes, local reconstruction is not achievable unless one has exponential precision in knowledge of the boundary data. Read More

We present the observational results of this kind of rare object 1SWASP J093010.78+533859.5, for which the doubly eclips- ing feature had been detected previously from the SuperWASP photometric archive. Read More

We construct three-dimensional N=2 supersymmetric conformal field theories on conic spaces. Built upon the fact that the partition function depends solely on the Reeb vector of the Killing vector, we propose that holographic dual of these theories are four-dimensional, supersymmetric charged topological black holes. With the supersymmetry localization technique, we study conserved supercharges, free energy, and Renyi entropy. Read More

**Authors:**Sooyoung Kim

^{1}, Suk-Jin Yoon

^{2}, Chul Chung

^{3}, Nelson Caldwell

^{4}, Ricardo P. Schiavon

^{5}, Yongbeom Kang

^{6}, Soo-Chang Rey

^{7}, Young-Wook Lee

^{8}

**Affiliations:**

^{1}Yonsei University,

^{2}Yonsei University,

^{3}Yonsei University,

^{4}Center for Astrophysics,

^{5}Gemini Observatory,

^{6}Department of Astronomy and Space Science, Chungnam University,

^{7}Department of Astronomy and Space Science, Chungnam University,

^{8}Yonsei University

**Category:**Astrophysics of Galaxies

Recent spectroscopy on the globular cluster (GC) system of M31 with unprecedented precision witnessed a clear bimodality in absorption-line index distributions of old GCs. Such division of extragalactic GCs, so far asserted mainly by photometric color bimodality, has been viewed as the presence of merely two distinct metallicity subgroups within individual galaxies and forms a critical backbone of various galaxy formation theories. Given that spectroscopy is a more detailed probe into stellar population than photometry, the discovery of index bimodality may point to the very existence of dual GC populations. Read More

We present a study of correlations between the elemental abundances and galaxy morphologies of 91 blue compact galaxies (BCGs) at z=0.20-0.35 with Sloan Digital Sky Survey (SDSS) DR7 data. Read More

We consider (2+1)-dimensional (N, M)-extended higher-spin anti-de Sitter supergravity and study its asymptotic symmetries. The theory is described by the Chern-Simons action based on a real, infinite-dimensional higher-spin superalgebra. We specify consistent boundary conditions on the higher-spin super-gauge connection corresponding to asymptotically anti-de Sitter spacetimes. Read More

We present GALEX data for 44 Galactic globular clusters obtained during 3 GALEX observing cycles between 2004 and 2008. This is the largest homogeneous data set on the UV photometric properties of Galactic globular clusters ever collected. The sample selection and photometric analysis are discussed, and color-magnitude diagrams are presented. Read More

**Authors:**Yongbeom Kang

^{1}, Soo-Chang Rey

^{2}, Luciana Bianchi

^{3}, Kyungsook Lee

^{4}, YoungKwang Kim

^{5}, Sangmo Tony Sohn

^{6}

**Affiliations:**

^{1}Chungnam National University,

^{2}Chungnam National University,

^{3}Johns Hopkins University,

^{4}Chungnam National University,

^{5}Chungnam National University,

^{6}Space Telescope Science Institute

**Category:**Cosmology and Nongalactic Astrophysics

We present a comprehensive catalog of 700 confirmed star clusters in the field of M31 compiled from three major existing catalogs. We detect 418 and 257 star clusters in Galaxy Evolution Explorer (GALEX) near-ultraviolet (NUV) and far-ultraviolet (FUV) imaging, respectively. Our final catalog includes photometry of star clusters in up to 16 passbands ranging from FUV to NIR as well as ancillary information such as reddening, metallicity, and radial velocities. Read More

In the current models of galaxy formation and evolution, AGN feedback is crucial to reproduce galaxy luminosity function, colour-magnitude relation and M-sigma relation. However, if AGN-feedback can indeed expel and heat up significant amount of cool molecular gas and consequently quench star formation, is yet to be demonstrated observationally. Only in four cases so far (Cen A, NGC 3801, NGC 6764 and Mrk 6), X-ray observations have found evidences of jet-driven shocks heating the ISM. Read More

**Authors:**Ananda Hota

^{1}, S. K. Sirothia

^{2}, Youichi Ohyama

^{3}, C. Konar

^{4}, Suk Kim

^{5}, Soo-Chang Rey

^{6}, D. J. Saikia

^{7}, J. H. Croston

^{8}, Satoki Matsushita

^{9}

**Affiliations:**

^{1}ASIAA, Taiwan,

^{2}NCRA-TIFR, India,

^{3}ASIAA, Taiwan,

^{4}ASIAA, Taiwan,

^{5}DASS, CNU, Korea,

^{6}DASS, CNU, Korea,

^{7}NCRA-TIFR, India,

^{8}SPA, Univ. of Southampton, UK,

^{9}ASIAA, Taiwan

We report the discovery of a unique radio galaxy at z=0.137, which could possibly be the second spiral-host large radio galaxy and also the second triple-double episodic radio galaxy. The host galaxy shows signs of recent star formation in the UV but is optically red and is the brightest galaxy of a possible cluster. Read More

D3-brane probes of E-type Yukawa points lead to strongly coupled nearly conformal sectors nearby the Standard Model (visible sector) which are motivated by F-theory GUTs. Realistic visible sector brane configurations induce a seesaw mass hierarchy in the hidden sector with light GUT singlets charged under a strongly coupled hidden sector U(1). Interpreting these GUT singlets as dark matter, this leads to a matter genesis scenario where the freeze out and subsequent decay of heavy mediators between the two sectors simultaneously populates comparable amounts of baryon and dark matter asymmetry. Read More

**Authors:**Boryana V. Efremova, Luciana Bianchi, David A. Thilker, James D. Neill, Denis Burgarella, Ted K. Wyder, Barry F. Madore, Soo-Chang Rey, Tom A. Barlow, Tim Conrow, Karl Forster, Peter G. Friedman, D. Christopher Martin, Patrick Morrissey, Susan G. Neff, David Schiminovich, Mark Seibert, Todd Small

**Category:**Astrophysics of Galaxies

We characterize the star formation in the low-metallicity galaxy NGC 6822 over the past few hundred million years, using GALEX far-UV (FUV, 1344-1786 A) and near-UV (NUV, 1771-2831 A) imaging, and ground-based Ha imaging. From GALEX FUV image, we define 77 star-forming (SF) regions with area >860 pc^2, and surface brightness <=26.8 mag(AB)arcsec^-2, within 0. Read More

We investigate the asymptotic symmetry algebra of (2+1)-dimensional higher spin, anti-de Sitter gravity. We use the formulation of the theory as a Chern-Simons gauge theory based on the higher spin algebra hs(1,1). Expanding the gauge connection around asymptotically anti-de Sitter spacetime, we specify consistent boundary conditions on the higher spin gauge fields. Read More

We present ultraviolet (UV) color-magnitude relations (CMRs) of early-type dwarf galaxies in the Virgo cluster, based on Galaxy Evolution Explorer (GALEX) UV and Sloan Digital Sky Survey (SDSS) optical imaging data. We find that dwarf lenticular galaxies (dS0s), including peculiar dwarf elliptical galaxies (dEs) with disk substructures and blue centers, show a surprisingly distinct and tight locus separated from that of ordinary dEs, which is not clearly seen in previous CMRs. The dS0s in UV CMRs follow a steeper sequence than dEs and show bluer UV-optical color at a given magnitude. Read More

We propose a nonperturbative approach to nonabelian two-form gauge theory. We formulate the theory on a lattice in terms of plaquette as fundamental dynamical variable, and assign U(N) Chan-Paton colors at each boundary link. We show that, on hypercubic lattices, such colored plaquette variables constitute Yang-Baxter maps, where holonomy is characterized by certain dynamical deformation of quantum Yang-Baxter equations. Read More

Using localization, matrix model and saddle-point techniques, we determine exact behavior of circular Wilson loop in N=2 superconformal (quiver) gauge theories. Focusing at planar and large `t Hooft couling limits, we compare its asymptotic behavior with well-known exponential growth of Wilson loop in N=4 super Yang-Mills theory. For theory with gauge group SU(N) coupled to 2N fundamental hypermultiplets, we find that Wilson loop exhibits non-exponential growth -- at most, it can grow a power of `t Hooft coupling. Read More

Rotation and magnetic activity are intimately linked in main-sequence stars of G or later spectral types. The presence and level of magnetic activity depend on stellar rotation, and rotation itself is strongly influenced by strength and topology of the magnetic fields. Open clusters represent especially useful targets to investigate the rotation/activity/age connection. Read More

We propose that string theory in the background of dyon black holes in four-dimensional anti-de Sitter spacetime is holographic dual to conformally invariant composite Dirac fermion metal. By utilizing S-duality map, we show that thermodynamic and transport properties of the black hole match with those of composite fermion metal, exhibiting Fermi liquid-like. Built upon Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to constituent fermions. Read More

I make a novel contact between string theory and degenerate fermion dynamics in thin semiconductors. Utilizing AdS/CFT correspondence in string theory and tunability of coupling parameters in condensed matter systems, I focus on the possibilities testing string theory from tabletop experiments. I first discuss the observation that stability of Fermi surface is classifiable according to K-theory. Read More

We study issues concerning perturbative integrability of N=6 Chern-Simons theory at planar and weak `t Hooft coupling regime. By Feynman diagrammatics, we derive so called maximal-ranged interactions in the quantum dilatation generator, originating from homogeneous and inhomogeneous diagrams. These diagrams require proper regularization of not only ultraviolet but also infrared divergences. Read More

**Authors:**T. Lisker

^{1}, J. Janz

^{2}, G. Hensler

^{3}, S. Kim

^{4}, S. -C. Rey

^{5}, S. Weinmann

^{6}, C. Mastropietro

^{7}, O. Hielscher

^{8}, S. Paudel

^{9}, R. Kotulla

^{10}

**Affiliations:**

^{1}ARI/ZAH, Univ. of Heidelberg,

^{2}ARI/ZAH, Univ. of Heidelberg,

^{3}Institute of Astronomy, Vienna University,

^{4}Chungnam National University,

^{5}Chungnam National University,

^{6}MPA,

^{7}LERMA, Observatoire de Paris,

^{8}ARI/ZAH, Univ. of Heidelberg,

^{9}ARI/ZAH, Univ. of Heidelberg,

^{10}Univ. of Hertfordshire

**Category:**Cosmology and Nongalactic Astrophysics

In the light of the question whether most early-type dwarf (dE) galaxies in clusters formed through infall and transformation of late-type progenitors, we search for an imprint of such an infall history in the oldest, most centrally concentrated dE subclass of the Virgo cluster: the nucleated dEs that show no signatures of disks or central residual star formation. We select dEs in a (projected) region around the central elliptical galaxies, and subdivide them by their line-of-sight velocity into fast-moving and slow-moving ones. These subsamples turn out to have significantly different shapes: while the fast dEs are relatively flat objects, the slow dEs are nearly round. Read More

We present a comprehensive study of star-forming (SF) regions in the nearest large spiral galaxy M31. We use GALEX far-UV (1344-1786 \AA, FUV) and near-UV (1771-2831 \AA, NUV) imaging to detect young massive stars and trace the recent star formation across the galaxy. The FUV and NUV flux measurements of the SF regions, combined with ground-based data for estimating the reddening by interstellar dust from the massive stars they contain, are used to derive their ages and masses. Read More

The ABJM theory refers to superconformal Chern-Simons-matter theory with product gauge group U(L)xU(R) and level +k, -k, respectively. The theory is a candidate for worldvolume dynamics of M2-branes sitting at C(4)/Z(k)k. By utilizing monopole operators, we prove that ABJM theory gets enhanced N=8 supersymmetry and SO(8) R-symmetry at Chern-Simons levels k=1,2. Read More