S. Enomoto - Univ. of Washington

S. Enomoto
Are you S. Enomoto?

Claim your profile, edit publications, add additional information:

Contact Details

S. Enomoto
Univ. of Washington
United States

Pubs By Year

External Links

Pub Categories

High Energy Physics - Experiment (15)
Physics - Instrumentation and Detectors (13)
High Energy Physics - Phenomenology (12)
Nuclear Experiment (12)
High Energy Physics - Theory (5)
Cosmology and Nongalactic Astrophysics (4)
High Energy Astrophysical Phenomena (3)
Solar and Stellar Astrophysics (2)
Physics - Accelerator Physics (1)
Physics - Computational Physics (1)

Publications Authored By S. Enomoto

In this paper we investigate the role of additional light fields not directly coupled to the background during preheating. We extend our previous study that proved that the production of particles associated with such fields can be abundant due to quantum corrections, even for the massless states. We also obtain the expression for the occupation number operator in terms of interacting fields which includes the non-linear effects important for non-perturbative particle production. Read More

The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease of use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occuring at interfaces, including transmission and reflection effects. Read More

We present a search for low energy antineutrino events coincident with the gravitational wave events GW150914 and GW151226, and the candidate event LVT151012 using KamLAND, a kiloton-scale antineutrino detector. We find no inverse beta-decay neutrino events within $\pm 500$ seconds of either gravitational wave signal. This non-detection is used to constrain the electron antineutrino fluence and the luminosity of the astrophysical sources. Read More

Authors: M. Arenz, M. Babutzka, M. Bahr, J. P. Barrett, S. Bauer, M. Beck, A. Beglarian, J. Behrens, T. Bergmann, U. Besserer, J. Blümer, L. I. Bodine, K. Bokeloh, J. Bonn, B. Bornschein, L. Bornschein, S. Büsch, T. H. Burritt, S. Chilingaryan, T. J. Corona, L. De Viveiros, P. J. Doe, O. Dragoun, G. Drexlin, S. Dyba, S. Ebenhöch, K. Eitel, E. Ellinger, S. Enomoto, M. Erhard, D. Eversheim, M. Fedkevych, A. Felden, S. Fischer, J. A. Formaggio, F. Fränkle, D. Furse, M. Ghilea, W. Gil, F. Glück, A. Gonzalez Urena, S. Görhardt, S. Groh, S. Grohmann, R. Grössle, R. Gumbsheimer, M. Hackenjos, V. Hannen, F. Harms, N. Hauÿmann, F. Heizmann, K. Helbing, W. Herz, S. Hickford, D. Hilk, B. Hillen, T. Höhn, B. Holzapfel, M. Hötzel, M. A. Howe, A. Huber, A. Jansen, N. Kernert, L. Kippenbrock, M. Kleesiek, M. Klein, A. Kopmann, A. Kosmider, A. Kovalík, B. Krasch, M. Kraus, H. Krause, M. Krause, L. Kuckert, B. Kuffner, L. La Cascio, O. Lebeda, B. Leiber, J. Letnev, V. M. Lobashev, A. Lokhov, E. Malcherek, M. Mark, E. L. Martin, S. Mertens, S. Mirz, B. Monreal, K. Müller, M. Neuberger, H. Neumann, S. Niemes, M. Noe, N. S. Oblath, A. Off, H. -W. Ortjohann, A. Osipowicz, E. Otten, D. S. Parno, P. Plischke, A. W. P. Poon, M. Prall, F. Priester, P. C. -O. Ranitzsch, J. Reich, O. Rest, R. G. H. Robertson, M. Röllig, S. Rosendahl, S. Rupp, M. Rysavy, K. Schlösser, M. Schlösser, K. Schönung, M. Schrank, J. Schwarz, W. Seiler, H. Seitz-Moskaliuk, J. Sentkerestiova, A. Skasyrskaya, M. Slezak, A. Spalek, M. Steidl, N. Steinbrink, M. Sturm, M. Suesser, H. H. Telle, T. Thümmler, N. Titov, I. Tkachev, N. Trost, A. Unru, K. Valerius, D. Venos, R. Vianden, S. Vöcking, B. L. Wall, N. Wandkowsky, M. Weber, C. Weinheimer, C. Weiss, S. Welte, J. Wendel, K. L. Wierman, J. F. Wilkerson, D. Winzen, J. Wolf, S. Wüstling, M. Zacher, S. Zadoroghny, M. Zboril

The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. Read More

When the Higgs field starts oscillation after Higgs inflation, gauge bosons are produced non-perturbatively near the Enhanced Symmetry Point (ESP). Just after the particle production, when the Higgs field is going away from the ESP, these gauge bosons gain mass and decay or annihilate into Standard Model (SM) fermions. Left-handed neutrinos can be generated in that way. Read More

It is known that time-dependent vacuum expectation value of the background field may lead to abundant particle production in the early Universe. In supersymmetric theories bosons and fermions are produced in a correlated manner that depends on the details of the supersymmetric scenario. Paper presents the general method of calculating the number density of produced particles based on the WKB approximation and the generalized Bogoliubov transformation law. Read More

A search for double-beta decays of 136Xe to excited states of 136Ba has been performed with the first phase data set of the KamLAND-Zen experiment. The 0+1, 2+1 and 2+2 transitions of 0{\nu}\{beta}\{beta} decay were evaluated in an exposure of 89.5kg-yr of 136Xe, while the same transitions of 2{\nu}\{beta}\{beta} decay were evaluated in an exposure of 61. Read More

In the late stages of nuclear burning for massive stars ($M>8~M_{\sun}$), the production of neutrino-antineutrino pairs through various processes becomes the dominant stellar cooling mechanism. As the star evolves, the energy of these neutrinos increases and in the days preceding the supernova a significant fraction of emitted electron anti-neutrinos exceeds the energy threshold for inverse beta decay on free hydrogen. This is the golden channel for liquid scintillator detectors because the coincidence signature allows for significant reductions in background signals. Read More

We search for electron anti-neutrinos ($\overline{\nu}_e$) from long and short-duration gamma-ray bursts~(GRBs) using data taken by the KamLAND detector from August 2002 to June 2013. No statistically significant excess over the background level is found. We place the tightest upper limits on $\overline{\nu}_e$ fluence from GRBs below 7 MeV and place first constraints on the relation between $\overline{\nu}_e$ luminosity and effective temperature. Read More

The antikaon-nucleon interaction close to threshold provides crucial information on the interplay between spontaneous and explicit chiral symmetry breaking in low-energy QCD. In this context the importance of kaonic deuterium X-ray spectroscopy has been well recognized, but no experimental results have yet been obtained due to the difficulty of the measurement. We propose to measure the shift and width of the kaonic deuterium 1s state with an accuracy of 60 eV and 140 eV respectively at J-PARC. Read More

We have investigated effects of interaction terms on non-perturbative particle production. It is well known that time-varying masses induce abundant particle production. In this paper we have shown that it is possible to induce particle production even if the mass term of a particle species is not varying in time. Read More

An experiment to search for the $K^-pp$ bound state was performed via the in-flight $^3$He($K^-,n)$ reaction using 5.3 $\times$ $10^9$ kaons at 1 GeV/$c$ at the J-PARC hadron experimental facility. In the semi-inclusive neutron missing-mass spectrum at $\theta_{n}^{lab}=0^\circ$, no significant peak was observed in the region corresponding to $K^-pp$ binding energy larger than 80 MeV, where a bump structure has been reported in the $\Lambda p$ final state in different reactions. Read More

We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. Read More

Affiliations: 1The KamLAND Collaboration, 2The KamLAND Collaboration, 3The KamLAND Collaboration, 4The KamLAND Collaboration, 5The KamLAND Collaboration, 6The KamLAND Collaboration, 7The KamLAND Collaboration, 8The KamLAND Collaboration, 9The KamLAND Collaboration, 10The KamLAND Collaboration, 11The KamLAND Collaboration, 12The KamLAND Collaboration, 13The KamLAND Collaboration, 14The KamLAND Collaboration, 15The KamLAND Collaboration, 16The KamLAND Collaboration, 17The KamLAND Collaboration, 18The KamLAND Collaboration, 19The KamLAND Collaboration, 20The KamLAND Collaboration, 21The KamLAND Collaboration, 22The KamLAND Collaboration, 23The KamLAND Collaboration, 24The KamLAND Collaboration, 25The KamLAND Collaboration, 26The KamLAND Collaboration, 27The KamLAND Collaboration, 28The KamLAND Collaboration, 29The KamLAND Collaboration, 30The KamLAND Collaboration, 31The KamLAND Collaboration, 32The KamLAND Collaboration, 33The KamLAND Collaboration, 34The KamLAND Collaboration, 35The KamLAND Collaboration, 36The KamLAND Collaboration, 37The KamLAND Collaboration, 38The KamLAND Collaboration, 39The KamLAND Collaboration, 40The KamLAND Collaboration, 41The KamLAND Collaboration, 42The KamLAND Collaboration, 43The KamLAND Collaboration, 44The KamLAND Collaboration, 45The KamLAND Collaboration, 46The KamLAND Collaboration, 47The KamLAND Collaboration, 48The KamLAND Collaboration, 49The KamLAND Collaboration, 50The KamLAND Collaboration, 51The KamLAND Collaboration, 52The KamLAND Collaboration, 53The KamLAND Collaboration, 54The KamLAND Collaboration, 55The KamLAND Collaboration, 56The KamLAND Collaboration, 57The KamLAND Collaboration, 58The KamLAND Collaboration, 59The KamLAND Collaboration, 60The KamLAND Collaboration, 61The KamLAND Collaboration, 62The KamLAND Collaboration, 63The KamLAND Collaboration, 64The KamLAND Collaboration, 65The KamLAND Collaboration, 66The KamLAND Collaboration, 67The KamLAND Collaboration, 68The KamLAND Collaboration, 69The KamLAND Collaboration, 70The KamLAND Collaboration, 71The KamLAND Collaboration

We report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kton-day exposure of KamLAND. The observed rate is 582 +/- 90 (kton-day)^-1, which corresponds to a 862 keV 7Be solar neutrino flux of (3. Read More

Particle production caused by the oscillation after inflation is important since it explains reheating after inflation. On the particle theory side, we know that effective action may have additional higher dimensional terms (usually called non-renormalizable terms) suppressed by the cut-off scale. Moreover, interaction between inflaton and so-called moduli field will be higher dimensional. Read More

The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation. Read More

Affiliations: 1Tohoku University, 2Tohoku University, 3Tohoku University, 4Tohoku University, 5Tohoku University, 6Tohoku University, 7Tohoku University, 8Tohoku University, 9Tohoku University, 10Tohoku University, 11Tohoku University, 12Tohoku University, 13Tohoku University, 14Tohoku University, 15Tohoku University, 16Tohoku University, 17Tohoku University, 18Tohoku University, 19Tohoku University, 20Tohoku University, 21Tohoku University, 22Tohoku University, 23Tohoku University, 24Tohoku University, 25Tohoku University, 26Tohoku University, 27Tohoku University, 28CEA-Saclay, 29CEA-Saclay, 30CEA-Saclay, 31CEA-Saclay, 32CEA-Saclay, 33CEA-Saclay, 34CEA-Saclay, 35CEA-Saclay, 36CEA-Saclay, 37CEA-Saclay, 38CEA-Saclay, 39CEA-Saclay, 40CEA-Saclay, 41CEA-Saclay, 42CEA-Saclay, 43Colorado State University, 44Colorado State University, 45University of Tokyo, 46Lawrence Berkeley National Laboratory and Berkeley University, 47Lawrence Berkeley National Laboratory and Berkeley University, 48Lawrence Berkeley National Laboratory and Berkeley University, 49Lawrence Berkeley National Laboratory and Berkeley University, 50Lawrence Berkeley National Laboratory and Berkeley University, 51Lawrence Berkeley National Laboratory and Berkeley University, 52Lawrence Berkeley National Laboratory and Berkeley University, 53Nikhef and the University of Amsterdam, 54North Carolina Central University, 55Osaka University, 56ITEP/INR RAS, 57IPCE RAS, 58Mephi, 59University of Hawaii, 60University of Hawaii, 61University of Hawaii, 62University of Hawaii, 63University of North Carolina, 64University of Tennessee, 65University of Washington, 66University of Washington

The reactor neutrino and gallium anomalies can be tested with a 3-4 PBq (75-100 kCi scale) 144Ce-144Pr antineutrino beta-source deployed at the center or next to a large low-background liquid scintillator detector. The antineutrino generator will be produced by the Russian reprocessing plant PA Mayak as early as 2014, transported to Japan, and deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND) as early as 2015. KamLAND's 13 m diameter target volume provides a suitable environment to measure the energy and position dependence of the detected neutrino flux. Read More

We study quantum effects on moduli dynamics arising from particle production near the enhanced symmetry point (ESP). We focus on non-renormalizable couplings between the moduli field and the field that becomes light at the ESP. Considering higher dimensional interaction, we find that particle production is significant in a large area, which is even larger than the area that is expected from a renormalizable interaction. Read More

Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon \textit{p-i-n} diode used in the KATRIN neutrino-mass experiment has such a dead layer. Read More

We propose to test for short baseline neutrino oscillations, implied by the recent reevaluation of the reactor antineutrino flux and by anomalous results from the gallium solar neutrino detectors. The test will consist of producing a 75 kCi 144Ce - 144Pr antineutrino source to be deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLAND's 13m diameter target volume provides a suitable environment to measure energy and position dependence of the detected neutrino flux. Read More

Authors: LBNE Collaboration, Corey Adams1, David Adams2, Tarek Akiri3, Tyler Alion4, Kris Anderson5, Costas Andreopoulos6, Mike Andrews7, Ioana Anghel8, João Carlos Costa dos Anjos9, Maddalena Antonello10, Enrique Arrieta-Diaz11, Marina Artuso12, Jonathan Asaadi13, Xinhua Bai14, Bagdat Baibussinov15, Michael Baird16, Baha Balantekin17, Bruce Baller18, Brian Baptista19, D'Ann Barker20, Gary Barker21, William A. Barletta22, Giles Barr23, Larry Bartoszek24, Amit Bashyal25, Matt Bass26, Vincenzo Bellini27, Pietro Angelo Benetti28, Bruce E. Berger29, Marc Bergevin30, Eileen Berman31, Hans-Gerd Berns32, Adam Bernstein33, Robert Bernstein34, Babu Bhandari35, Vipin Bhatnagar36, Bipul Bhuyan37, Jianming Bian38, Mary Bishai39, Andrew Blake40, Flor Blaszczyk41, Erik Blaufuss42, Bruce Bleakley43, Edward Blucher44, Steve Blusk45, Virgil Bocean46, F. Boffelli47, Jan Boissevain48, Timothy Bolton49, Maurizio Bonesini50, Steve Boyd51, Andrew Brandt52, Richard Breedon53, Carl Bromberg54, Ralph Brown55, Giullia Brunetti56, Norman Buchanan57, Bill Bugg58, Jerome Busenitz59, E. Calligarich60, Leslie Camilleri61, Giada Carminati62, Rachel Carr63, Cesar Castromonte64, Flavio Cavanna65, Sandro Centro66, Alex Chen67, Hucheng Chen68, Kai Chen69, Daniel Cherdack70, Cheng-Yi Chi71, Sam Childress72, Brajesh Chandra Choudhary73, Georgios Christodoulou74, Cabot-Ann Christofferson75, Eric Church76, David Cline77, Thomas Coan78, Alfredo Cocco79, Joao Coelho80, Stephen Coleman81, Janet M. Conrad82, Mark Convery83, Robert Corey84, Luke Corwin85, Jack Cranshaw86, Daniel Cronin-Hennessy87, A. Curioni88, Helio da Motta89, Tristan Davenne90, Gavin S. Davies91, Steven Dazeley92, Kaushik De93, Andre de Gouvea94, Jeffrey K. de Jong95, David Demuth96, Chris Densham97, Milind Diwan98, Zelimir Djurcic99, R. Dolfini100, Jeffrey Dolph101, Gary Drake102, Stephen Dye103, Hongue Dyuang104, Daniel Edmunds105, Steven Elliott106, Muhammad Elnimr107, Sarah Eno108, Sanshiro Enomoto109, Carlos O. Escobar110, Justin Evans111, A. Falcone112, Lisa Falk113, Amir Farbin114, Christian Farnese115, Angela Fava116, John Felde117, S. Fernandes118, Fernando Ferroni119, Farshid Feyzi120, Laura Fields121, Alex Finch122, Mike Fitton123, Bonnie Fleming124, Jack Fowler125, Walt Fox126, Alex Friedland127, Stu Fuess128, Brian Fujikawa129, Hugh Gallagher130, Raj Gandhi131, Gerald Garvey132, Victor M. Gehman133, Gianluigi de Geronimo134, Daniele Gibin135, Ronald Gill136, Ricardo A. Gomes137, Maury C. Goodman138, Jason Goon139, Nicholas Graf140, Mathew Graham141, Rik Gran142, Christopher Grant143, Nick Grant144, Herbert Greenlee145, Leland Greenler146, Sean Grullon147, Elena Guardincerri148, Victor Guarino149, Evan Guarnaccia150, Germano Guedes151, Roxanne Guenette152, Alberto Guglielmi153, Marcelo M. Guzzo154, Alec T. Habig155, Robert W. Hackenburg156, Haleh Hadavand157, Alan Hahn158, Martin Haigh159, Todd Haines160, Thomas Handler161, Sunej Hans162, Jeff Hartnell163, John Harton164, Robert Hatcher165, Athans Hatzikoutelis166, Steven Hays167, Eric Hazen168, Mike Headley169, Anne Heavey170, Karsten Heeger171, Jaret Heise172, Robert Hellauer173, Jeremy Hewes174, Alexander Himmel175, Matthew Hogan176, Pedro Holanda177, Anna Holin178, Glenn Horton-Smith179, Joe Howell180, Patrick Hurh181, Joey Huston182, James Hylen183, Richard Imlay184, Jonathan Insler185, G. Introzzi186, Zeynep Isvan187, Chris Jackson188, John Jacobsen189, David E. Jaffe190, Cat James191, Chun-Min Jen192, Marvin Johnson193, Randy Johnson194, Robert Johnson195, Scott Johnson196, William Johnston197, John Johnstone198, Ben J. P. Jones199, H. Jostlein200, Thomas Junk201, Richard Kadel202, Karl Kaess203, Georgia Karagiorgi204, Jarek Kaspar205, Teppei Katori206, Boris Kayser207, Edward Kearns208, Paul Keener209, Ernesto Kemp210, Steve H. Kettell211, Mike Kirby212, Joshua Klein213, Gordon Koizumi214, Sacha Kopp215, Laura Kormos216, William Kropp217, Vitaly A. Kudryavtsev218, Ashok Kumar219, Jason Kumar220, Thomas Kutter221, Franco La Zia222, Kenneth Lande223, Charles Lane224, Karol Lang225, Francesco Lanni226, Richard Lanza227, Tony Latorre228, John Learned229, David Lee230, Kevin Lee231, Qizhong Li232, Shaorui Li233, Yichen Li234, Zepeng Li235, Jiang Libo236, Steve Linden237, Jiajie Ling238, Jonathan Link239, Laurence Littenberg240, Hu Liu241, Qiuguang Liu242, Tiankuan Liu243, John Losecco244, William Louis245, Byron Lundberg246, Tracy Lundin247, Jay Lundy248, Ana Amelia Machado249, Cara Maesano250, Steve Magill251, George Mahler252, David Malon253, Stephen Malys254, Francesco Mammoliti255, Samit Kumar Mandal256, Anthony Mann257, Paul Mantsch258, Alberto Marchionni259, William Marciano260, Camillo Mariani261, Jelena Maricic262, Alysia Marino263, Marvin Marshak264, John Marshall265, Shiegenobu Matsuno266, Christopher Mauger267, Konstantinos Mavrokoridis268, Nate Mayer269, Neil McCauley270, Elaine McCluskey271, Kirk McDonald272, Kevin McFarland273, David McKee274, Robert McKeown275, Robert McTaggart276, Rashid Mehdiyev277, Dongming Mei278, A. Menegolli279, Guang Meng280, Yixiong Meng281, David Mertins282, Mark Messier283, William Metcalf284, Radovan Milincic285, William Miller286, Geoff Mills287, Sanjib R. Mishra288, Nikolai Mokhov289, Claudio Montanari290, David Montanari291, Craig Moore292, Jorge Morfin293, Ben Morgan294, William Morse295, Zander Moss296, Célio A. Moura297, Stuart Mufson298, David Muller299, Jim Musser300, Donna Naples301, Jim Napolitano302, Mitch Newcomer303, Ryan Nichol304, Tim Nicholls305, Evan Niner306, Barry Norris307, Jaroslaw Nowak308, Helen O'Keeffe309, Roberto Oliveira310, Travis Olson311, Brian Page312, Sandip Pakvasa313, Ornella Palamara314, Jon Paley315, Vittorio Paolone316, Vaia Papadimitriou317, Seongtae Park318, Zohreh Parsa319, Kinga Partyka320, Bob Paulos321, Zarko Pavlovic322, Simon Peeters323, Andy Perch324, Jon D. Perkin325, Roberto Petti326, Andre Petukhov327, Francesco Pietropaolo328, Robert Plunkett329, Chris Polly330, Stephen Pordes331, Maxim Potekhin332, Renato Potenza333, Arati Prakash334, Oleg Prokofiev335, Xin Qian336, Jennifer L. Raaf337, Veljko Radeka338, Igor Rakhno339, Yorck Ramachers340, Regina Rameika341, John Ramsey342, A. Rappoldi343, G. L. Raselli344, Peter Ratoff345, Shreyas Ravindra346, Brian Rebel347, Juergen Reichenbacher348, Dianne Reitzner349, Sergio Rescia350, Martin Richardson351, Kieth Rielage352, Kurt Riesselmann353, Matt Robinson354, Leon Rochester355, Michael Ronquest356, Marc Rosen357, M. Rossella358, Carlo Rubbia359, Russ Rucinski360, Sandeep Sahijpal361, Himansu Sahoo362, Paola Sala363, Delia Salmiera364, Nicholas Samios365, Mayly Sanchez366, Alberto Scaramelli367, Heidi Schellman368, Richard Schmitt369, David Schmitz370, Jack Schneps371, Kate Scholberg372, Ettore Segreto373, Stanley Seibert374, Liz Sexton-Kennedy375, Mike Shaevitz376, Peter Shanahan377, Rahul Sharma378, Terri Shaw379, Nikolaos Simos380, Venktesh Singh381, Gus Sinnis382, William Sippach383, Tomasz Skwarnicki384, Michael Smy385, Henry Sobel386, Mitch Soderberg387, John Sondericker388, Walter Sondheim389, Alexandre Sousa390, Neil J. C. Spooner391, Michelle Stancari392, Ion Stancu393, Dorota Stefan394, Andy Stefanik395, James Stewart396, Sheldon Stone397, James Strait398, Matthew Strait399, Sergei Striganov400, Gregory Sullivan401, Yujing Sun402, Louise Suter403, Andrew Svenson404, Robert Svoboda405, Barbara Szczerbinska406, Andrzej Szelc407, Matthew Szydagis408, Stefan Söldner-Rembold409, Richard Talaga410, Matthew Tamsett411, Salman Tariq412, Rex Tayloe413, Charles Taylor414, David Taylor415, Artin Teymourian416, Harry Themann417, Matthew Thiesse418, Jenny Thomas419, Lee F. Thompson420, Mark Thomson421, Craig Thorn422, Matt Thorpe423, Xinchun Tian424, Doug Tiedt425, Walter Toki426, Nikolai Tolich427, M. Torti428, Matt Toups429, Christos Touramanis430, Mani Tripathi431, Igor Tropin432, Yun-Tse Tsai433, Craig Tull434, Martin Tzanov435, Jon Urheim436, Shawn Usman437, Mark Vagins438, Gustavo Valdiviesso439, Rick Van Berg440, Richard Van de Water441, Peter Van Gemmeren442, Filippo Varanini443, Gary Varner444, Kamran Vaziri445, Gueorgui Velev446, Sandro Ventura447, Chiara Vignoli448, Brett Viren449, Dan Wahl450, Abby Waldron451, Christopher W. Walter452, Hanguo Wang453, Wei Wang454, Karl Warburton455, David Warner456, Ryan Wasserman457, Blake Watson458, Alfons Weber459, Wenzhao Wei460, Douglas Wells461, Matthew Wetstein462, Andy White463, Hywel White464, Lisa Whitehead465, Denver Whittington466, Joshua Willhite467, Robert J. Wilson468, Lindley Winslow469, Kevin Wood470, Elizabeth Worcester471, Matthew Worcester472, Tian Xin473, Kevin Yarritu474, Jingbo Ye475, Minfang Yeh476, Bo Yu477, Jae Yu478, Tianlu Yuan479, A. Zani480, Geralyn P. Zeller481, Chao Zhang482, Chao Zhang483, Eric D. Zimmerman484, Robert Zwaska485
Affiliations: 1Yale University, 2Brookhaven National Lab, 3Duke University, 4Univ. of South Carolina, 5Fermi National Accelerator Lab, 6Univ. of Liverpool, 7Fermi National Accelerator Lab, 8Iowa State University, 9Centro Brasileiro de Pesquisas Físicas, 10Laboratori Nazionali del Gran Sasso, 11Michigan State University, 12Syracuse University, 13Syracuse University, 14South Dakota School of Mines and Technology, 15Univ. of Padova, 16Indiana University, 17Univ. of Wisconsin, 18Fermi National Accelerator Lab, 19Indiana University, 20Univ. of South Dakota, 21Univ. of Warwick, 22Massachusetts Institute of Technology, 23Univ. of Oxford, 24Los Alamos National Laboratory, 25Univ. of Texas, 26Colorado State University, 27Univ. di Catania, 28Univ. of Pavia, INFN Sezione di Pavia, 29Colorado State University, 30Univ. of California, 31Fermi National Accelerator Lab, 32Univ. of California, 33Lawrence Livermore National Lab, 34Fermi National Accelerator Lab, 35Univ. of Houston, 36Panjab University, 37Indian Institute of Technology Guwahati, 38Univ. of Minnesota, 39Brookhaven National Lab, 40Univ. of Cambridge, 41Louisiana State University, 42Univ. of Maryland, 43South Dakota State University, 44Univ. of Chicago, 45Syracuse University, 46Fermi National Accelerator Lab, 47Univ. of Pavia, INFN Sezione di Pavia, 48Los Alamos National Laboratory, 49Kansas State University, 50Univ. of Milano and INFN Sezione di Milano Bicocca, 51Univ. of Warwick, 52Univ. of Texas, 53Univ. of California, 54Michigan State University, 55Brookhaven National Lab, 56Fermi National Accelerator Lab, 57Colorado State University, 58Univ. of Tennessee, 59Univ. of Alabama, 60Univ. of Pavia, INFN Sezione di Pavia, 61Columbia University, 62Univ. of California, 63Columbia University, 64Univ. Federal de Goias, 65Yale University, 66Univ. of Padova, 67Fermi National Accelerator Lab, 68Brookhaven National Lab, 69Brookhaven National Lab, 70Colorado State University, 71Columbia University, 72Fermi National Accelerator Lab, 73Univ. of Delhi, 74Univ. of Liverpool, 75South Dakota School of Mines and Technology, 76Yale University, 77Univ. of California, 78Southern Methodist University, 79Univ. di Napoli, 80Tufts University, 81Univ. of Colorado, 82Massachusetts Institute of Technology, 83SLAC National Acceleratory Laboratory, 84South Dakota School of Mines and Technology, 85South Dakota School of Mines and Technology, 86Argonne National Lab, 87Univ. of Minnesota, 88Univ. of Milano and INFN Sezione di Milano Bicocca, 89Centro Brasileiro de Pesquisas Físicas, 90STFC Rutherford Appleton Laboratory, 91Iowa State University, 92Lawrence Livermore National Lab, 93Univ. of Texas, 94Northwestern University, 95Univ. of Oxford, 96Univ. of Minnesota, 97STFC Rutherford Appleton Laboratory, 98Brookhaven National Lab, 99Argonne National Lab, 100Univ. of Pavia, INFN Sezione di Pavia, 101Brookhaven National Lab, 102Argonne National Lab, 103Univ. of Hawaii, 104Univ. of South Carolina, 105Michigan State University, 106Los Alamos National Laboratory, 107Univ. of Alabama, 108Univ. of Maryland, 109Univ. of Washington, 110Fermi National Accelerator Lab, 111Univ. of Manchester, 112Univ. of Pavia, INFN Sezione di Pavia, 113Univ. of Sussex, 114Univ. of Texas, 115Univ. of Padova, 116Univ. of Padova, 117Univ. of Maryland, 118Univ. of Alabama, 119Univ. of Pavia, INFN Sezione di Pavia, 120Univ. of Wisconsin, 121Northwestern University, 122Lancaster University, 123STFC Rutherford Appleton Laboratory, 124Yale University, 125Duke University, 126Indiana University, 127Los Alamos National Laboratory, 128Fermi National Accelerator Lab, 129Lawrence Berkeley National Lab, 130Tufts University, 131Harish-Chandra Research Institute, 132Los Alamos National Laboratory, 133Lawrence Berkeley National Lab, 134Brookhaven National Lab, 135Univ. of Padova, 136Brookhaven National Lab, 137Univ. Federal de Goias, 138Argonne National Lab, 139Univ. of South Dakota, 140Univ. of Pittsburgh, 141SLAC National Acceleratory Laboratory, 142Univ. of Minnesota, 143Univ. of California, 144Lancaster University, 145Fermi National Accelerator Lab, 146Univ. of Wisconsin, 147Univ. of Pennsylvania, 148Los Alamos National Laboratory, 149Argonne National Lab, 150Virginia Tech, 151Univ. Estadual de Feira de Santana, 152Yale University, 153Univ. of Padova, 154Univ. de Campinas, 155Univ. of Minnesota, 156Brookhaven National Lab, 157Univ. of Texas, 158Fermi National Accelerator Lab, 159Univ. of Warwick, 160Los Alamos National Laboratory, 161Univ. of Tennessee, 162Brookhaven National Lab, 163Univ. of Sussex, 164Colorado State University, 165Fermi National Accelerator Lab, 166Univ. of Tennessee, 167Fermi National Accelerator Lab, 168Boston University, 169South Dakota Science and Technology Authority, 170Fermi National Accelerator Lab, 171Yale University, 172South Dakota Science and Technology Authority, 173Univ. of Maryland, 174Univ. of Manchester, 175Duke University, 176Colorado State University, 177Univ. de Campinas, 178University College London, 179Kansas State University, 180Fermi National Accelerator Lab, 181Fermi National Accelerator Lab, 182Michigan State University, 183Fermi National Accelerator Lab, 184Louisiana State University, 185Louisiana State University, 186Univ. of Pavia, INFN Sezione di Pavia, 187Brookhaven National Lab, 188Univ. of Texas, 189Univ. of Maryland, 190Brookhaven National Lab, 191Fermi National Accelerator Lab, 192Virginia Tech, 193Fermi National Accelerator Lab, 194Univ. of Cincinnati, 195Univ. of Colorado, 196Univ. of Colorado, 197Colorado State University, 198Fermi National Accelerator Lab, 199Massachusetts Institute of Technology, 200Fermi National Accelerator Lab, 201Fermi National Accelerator Lab, 202Lawrence Berkeley National Lab, 203Univ. of Minnesota, 204Columbia University, 205Univ. of Washington, 206Massachusetts Institute of Technology, 207Fermi National Accelerator Lab, 208Boston University, 209Univ. of Pennsylvania, 210Univ. de Campinas, 211Brookhaven National Lab, 212Fermi National Accelerator Lab, 213Univ. of Pennsylvania, 214Fermi National Accelerator Lab, 215Univ. of Texas, 216Lancaster University, 217Univ. of California, 218Univ. of Sheffield, 219Panjab University, 220Univ. of Hawaii, 221Louisiana State University, 222Univ. di Catania, 223Univ. of Pennsylvania, 224Drexel University, 225Univ. of Texas, 226Brookhaven National Lab, 227Massachusetts Institute of Technology, 228Univ. of Pennsylvania, 229Univ. of Hawaii, 230Los Alamos National Laboratory, 231Univ. of California, 232Fermi National Accelerator Lab, 233Brookhaven National Lab, 234Brookhaven National Lab, 235Duke University, 236Univ. of South Carolina, 237Boston University, 238Brookhaven National Lab, 239Virginia Tech, 240Brookhaven National Lab, 241Univ. of Houston, 242Los Alamos National Laboratory, 243Southern Methodist University, 244Univ. of Notre Dame, 245Los Alamos National Laboratory, 246Fermi National Accelerator Lab, 247Fermi National Accelerator Lab, 248Univ. of Texas, 249INFN, Laboratori Nazionali del Gran Sasso, 250Univ. of California, 251Argonne National Lab, 252Brookhaven National Lab, 253Argonne National Lab, 254National Geospatial-Intelligence Agency, 255Univ. di Catania, 256Univ. of Delhi, 257Tufts University, 258Fermi National Accelerator Lab, 259Fermi National Accelerator Lab, 260Brookhaven National Lab, 261Virginia Tech, 262Univ. of Hawaii, 263Univ. of Colorado, 264Univ. of Minnesota, 265Univ. of Cambridge, 266Univ. of Hawaii, 267Los Alamos National Laboratory, 268Univ. of Liverpool, 269Tufts University, 270Univ. of Liverpool, 271Fermi National Accelerator Lab, 272Princeton University, 273Univ. of Rochester, 274Kansas State University, 275College of William and Mary, 276South Dakota State University, 277Univ. of Texas, 278Univ. of South Dakota, 279Univ. of Pavia, INFN Sezione di Pavia, 280Univ. of Padova, 281Univ. of California, 282Univ. of Alabama, 283Indiana University, 284Louisiana State University, 285Univ. of Hawaii, 286Univ. of Minnesota, 287Los Alamos National Laboratory, 288Univ. of South Carolina, 289Fermi National Accelerator Lab, 290Univ. of Pavia, INFN Sezione di Pavia, 291Fermi National Accelerator Lab, 292Fermi National Accelerator Lab, 293Fermi National Accelerator Lab, 294Univ. of Warwick, 295Brookhaven National Lab, 296Massachusetts Institute of Technology, 297ABC Federal University, 298Indiana University, 299SLAC National Acceleratory Laboratory, 300Indiana University, 301Univ. of Pittsburgh, 302Rensselaer Polytechnic Inst, 303Univ. of Pennsylvania, 304University College London, 305STFC Rutherford Appleton Laboratory, 306Indiana University, 307Fermi National Accelerator Lab, 308Lancaster University, 309Lancaster University, 310Univ. de Campinas, 311Tufts University, 312Michigan State University, 313Univ. of Hawaii, 314Yale University, 315Argonne National Lab, 316Univ. of Pittsburgh, 317Fermi National Accelerator Lab, 318Univ. of Texas, 319Brookhaven National Lab, 320Yale University, 321Univ. of Wisconsin, 322Los Alamos National Laboratory, 323Univ. of Sussex, 324University College London, 325Univ. of Sheffield, 326Univ. of South Carolina, 327South Dakota School of Mines and Technology, 328Univ. of Padova, 329Fermi National Accelerator Lab, 330Fermi National Accelerator Lab, 331Fermi National Accelerator Lab, 332Brookhaven National Lab, 333Univ. di Catania, 334Massachusetts Institute of Technology, 335Fermi National Accelerator Lab, 336Brookhaven National Lab, 337Fermi National Accelerator Lab, 338Brookhaven National Lab, 339Fermi National Accelerator Lab, 340Univ. of Warwick, 341Fermi National Accelerator Lab, 342Los Alamos National Laboratory, 343Univ. of Pavia, INFN Sezione di Pavia, 344Univ. of Pavia, INFN Sezione di Pavia, 345Lancaster University, 346Univ. of Texas, 347Fermi National Accelerator Lab, 348Univ. of Alabama, 349Fermi National Accelerator Lab, 350Brookhaven National Lab, 351Univ. of Sheffield, 352Los Alamos National Laboratory, 353Fermi National Accelerator Lab, 354Univ. of Sheffield, 355SLAC National Acceleratory Laboratory, 356Los Alamos National Laboratory, 357Univ. of Hawaii, 358Univ. of Pavia, INFN Sezione di Pavia, 359INFN, Laboratori Nazionali del Gran Sasso, 360Fermi National Accelerator Lab, 361Panjab University, 362Argonne National Lab, 363Univ. di Milano, 364Univ. of Pavia, INFN Sezione di Pavia, 365Brookhaven National Lab, 366Iowa State University, 367Univ. di Milano, 368Northwestern University, 369Fermi National Accelerator Lab, 370Univ. of Chicago, 371Tufts University, 372Duke University, 373Laboratori Nazionali del Gran Sasso, 374Univ. of Pennsylvania, 375Fermi National Accelerator Lab, 376Columbia University, 377Fermi National Accelerator Lab, 378Brookhaven National Lab, 379Fermi National Accelerator Lab, 380Brookhaven National Lab, 381Banaras Hindu University, 382Los Alamos National Laboratory, 383Columbia University, 384Syracuse University, 385Univ. of California, 386Univ. of California, 387Syracuse University, 388Brookhaven National Lab, 389Los Alamos National Laboratory, 390Univ. of Cincinnati, 391Univ. of Sheffield, 392Fermi National Accelerator Lab, 393Univ. of Alabama, 394Laboratori Nazionali del Gran Sasso, 395Fermi National Accelerator Lab, 396Brookhaven National Lab, 397Syracuse University, 398Fermi National Accelerator Lab, 399Univ. of Chicago, 400Fermi National Accelerator Lab, 401Univ. of Maryland, 402Univ. of Hawaii, 403Argonne National Lab, 404Univ. of South Carolina, 405Univ. of California, 406Dakota State University, 407Yale University, 408Univ. of California, 409Univ. of Manchester, 410Argonne National Lab, 411Univ. of Sussex, 412Fermi National Accelerator Lab, 413Indiana University, 414Los Alamos National Laboratory, 415South Dakota Science and Technology Authority, 416Univ. of California, 417Brookhaven National Lab, 418Univ. of Sheffield, 419University College London, 420Univ. of Sheffield, 421Univ. of Cambridge, 422Brookhaven National Lab, 423STFC Rutherford Appleton Laboratory, 424Univ. of South Carolina, 425South Dakota School of Mines and Technology, 426Colorado State University, 427Univ. of Washington, 428Univ. of Pavia, INFN Sezione di Pavia, 429Massachusetts Institute of Technology, 430Univ. of Liverpool, 431Univ. of California, 432Fermi National Accelerator Lab, 433SLAC National Acceleratory Laboratory, 434Lawrence Berkeley National Lab, 435Louisiana State University, 436Indiana University, 437National Geospatial-Intelligence Agency, 438Kavli IPMU, Univ. of Tokyo, 439Univ. Federal de Alfenas em Poços de Caldas, 440Univ. of Pennsylvania, 441Los Alamos National Laboratory, 442Argonne National Lab, 443Univ. of Padova, 444Univ. of Hawaii, 445Fermi National Accelerator Lab, 446Fermi National Accelerator Lab, 447Univ. of Padova, 448Laboratori Nazionali del Gran Sasso, 449Brookhaven National Lab, 450Univ. of Wisconsin, 451Univ. of Sussex, 452Duke University, 453Univ. of California, 454College of William and Mary, 455Univ. of Sheffield, 456Colorado State University, 457Colorado State University, 458Univ. of Texas, 459Univ. of Oxford, 460Univ. of South Dakota, 461South Dakota School of Mines and Technology, 462Univ. of Chicago, 463Univ. of Texas, 464Los Alamos National Laboratory, 465Univ. of Houston, 466Indiana University, 467South Dakota Science and Technology Authority, 468Colorado State University, 469Univ. of California, 470Univ. of South Carolina, 471Brookhaven National Lab, 472Brookhaven National Lab, 473Iowa State University, 474Los Alamos National Laboratory, 475Southern Methodist University, 476Brookhaven National Lab, 477Brookhaven National Lab, 478Univ. of Texas, 479Univ. of Colorado, 480Univ. of Pavia, INFN Sezione di Pavia, 481Fermi National Accelerator Lab, 482Brookhaven National Lab, 483Brookhaven National Lab, 484Univ. of Colorado, 485Fermi National Accelerator Lab

The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. Read More

The evolution of the curvature perturbation after multi-field inflation is studied in the light of the curvaton mechanism. Past numerical studies show that many-field inflation causes significant evolution of the curvature perturbation after inflation, which generates significant non-Gaussianity at the same time. We reveal the underlying mechanism of the evolution and show that the evolution is possible in a typical two-field inflation model. Read More

The early Universe after inflation may have oscillations, kinations (nonoscillatory evolution of a field), topological defects, relativistic and non-relativistic particles at the same time. The Universe whose energy density is a sum of those components can be called the multi-component Universe. The components, which may have distinguishable density scalings, may decay modulated. Read More

Inflating curvaton can create curvature perturbation when the curvaton density is slowly varying. Using the delta-N formalism, we discuss the evolution of the curvature perturbation during curvaton inflation and find analytic formulation of the non-Gaussianity parameter. We first consider the inflating curvaton with sufficiently long inflationary expansion. Read More

A new spectrometer system was designed and constructed at the secondary beam line K1.8BR in the hadron hall of J-PARC to investigate $\bar K N$ interactions and $\bar K$-nuclear bound systems. The spectrometer consists of a high precision beam line spectrometer, a liquid $^3$He/$^4$He/D$_2$ target system, a Cylindrical Detector System that surrounds the target to detect the decay particles from the target region, and a neutron time-of-flight counter array located $\sim$15 m downstream from the target position. Read More

A liquid helium-3 target system was developed for experimental studies of kaonic atoms and kaonic nuclei at J-PARC. helium-3 gas is liquefied in a heat exchanger cooled below 3.2 K by decompression of liquid helium-4. Read More

Authors: The LBNE Collaboration, T. Akiri, D. Allspach, M. Andrews, K. Arisaka, E. Arrieta-Diaz, M. Artuso, X. Bai, B. Balantekin, B. Baller, W. Barletta, G. Barr, M. Bass, A. Beck, B. Becker, V. Bellini, O. Benhar, B. Berger, M. Bergevin, E. Berman, H. Berns, A. Bernstein, F. Beroz, V. Bhatnagar, B. Bhuyan, R. Bionta, M. Bishai, A. Blake, E. Blaufuss, B. Bleakley, E. Blucher, S. Blusk, D. Boehnlein, T. Bolton, J. Brack, R. Bradford, R. Breedon, C. Bromberg, R. Brown, N. Buchanan, L. Camilleri, M. Campbell, R. Carr, G. Carminati, A. Chen, H. Chen, D. Cherdack, C. Chi, S. Childress, B. Choudhary, E. Church, D. Cline, S. Coleman, R. Corey, M. D'Agostino, G. Davies, S. Dazeley, J. De Jong, B. DeMaat, D. Demuth, A. Dighe, Z. Djurcic, J. Dolph, G. Drake, A. Drozhdin, H. Duan, H. Duyang, S. Dye, T. Dykhuis, D. Edmunds, S. Elliott, S. Enomoto, C. Escobar, J. Felde, F. Feyzi, B. Fleming, J. Fowler, W. Fox, A. Friedland, B. Fujikawa, H. Gallagher, G. Garilli, G. Garvey, V. Gehman, G. Geronimo, R. Gill, M. Goodman, J. Goon, D. Gorbunov, R. Gran, V. Guarino, E. Guarnaccia, R. Guenette, P. Gupta, A. Habig, R. Hackenberg, A. Hahn, R. Hahn, T. Haines, S. Hans, J. Harton, S. Hays, E. Hazen, Q. He, A. Heavey, K. Heeger, R. Hellauer, A. Himmel, G. Horton-Smith, J. Howell, P. Huber, P. Hurh, J. Huston, J. Hylen, J. Insler, D. Jaffe, C. James, C. Johnson, M. Johnson, R. Johnson, W. Johnson, W. Johnston, J. Johnstone, B. Jones, H. Jostlein, T. Junk, S. Junnarkar, R. Kadel, T. Kafka, D. Kaminski, G. Karagiorgi, A. Karle, J. Kaspar, T. Katori, B. Kayser, E. Kearns, S. Kettell, F. Khanam, J. Klein, J. Kneller, G. Koizumi, J. Kopp, S. Kopp, W. Kropp, V. Kudryavtsev, A. Kumar, J. Kumar, T. Kutter, T. Lackowski, K. Lande, C. Lane, K. Lang, F. Lanni, R. Lanza, T. Latorre, J. Learned, D. Lee, K. Lee, Y. Li, S. Linden, J. Ling, J. Link, L. Littenberg, L. Loiacono, T. Liu, J. Losecco, W. Louis, P. Lucas, C. Lunardini, B. Lundberg, T. Lundin, D. Makowiecki, S. Malys, S. Mandal, A. Mann, A. Mann, P. Mantsch, W. Marciano, C. Mariani, J. Maricic, A. Marino, M. Marshak, R. Maruyama, J. Mathews, S. Matsuno, C. Mauger, E. McCluskey, K. McDonald, K. McFarland, R. McKeown, R. McTaggart, R. Mehdiyev, W. Melnitchouk, Y. Meng, B. Mercurio, M. Messier, W. Metcalf, R. Milincic, W. Miller, G. Mills, S. Mishra, S. MoedSher, D. Mohapatra, N. Mokhov, C. Moore, J. Morfin, W. Morse, A. Moss, S. Mufson, J. Musser, D. Naples, J. Napolitano, M. Newcomer, B. Norris, S. Ouedraogo, B. Page, S. Pakvasa, J. Paley, V. Paolone, V. Papadimitriou, Z. Parsa, K. Partyka, Z. Pavlovic, C. Pearson, S. Perasso, R. Petti, R. Plunkett, C. Polly, S. Pordes, R. Potenza, A. Prakash, O. Prokofiev, X. Qian, J. Raaf, V. Radeka, R. Raghavan, R. Rameika, B. Rebel, S. Rescia, D. Reitzner, M. Richardson, K. Riesselman, M. Robinson, M. Rosen, C. Rosenfeld, R. Rucinski, T. Russo, S. Sahijpal, S. Salon, N. Samios, M. Sanchez, R. Schmitt, D. Schmitz, J. Schneps, K. Scholberg, S. Seibert, F. Sergiampietri, M. Shaevitz, P. Shanahan, M. Shaposhnikov, R. Sharma, N. Simos, V. Singh, G. Sinnis, W. Sippach, T. Skwarnicki, M. Smy, H. Sobel, M. Soderberg, J. Sondericker, W. Sondheim, J. Spitz, N. Spooner, M. Stancari, I. Stancu, J. Stewart, P. Stoler, J. Stone, S. Stone, J. Strait, T. Straszheim, S. Striganov, G. Sullivan, R. Svoboda, B. Szczerbinska, A. Szelc, R. Talaga, H. Tanaka, R. Tayloe, D. Taylor, J. Thomas, L. Thompson, M. Thomson, C. Thorn, X. Tian, W. Toki, N. Tolich, M. Tripathi, M. Trovato, H. Tseung, M. Tzanov, J. Urheim, S. Usman, M. Vagins, R. Van Berg, R. Van de Water, G. Varner, K. Vaziri, G. Velev, B. Viren, T. Wachala, C. Walter, H. Wang, Z. Wang, D. Warner, D. Webber, A. Weber, R. Wendell, C. Wendt, M. Wetstein, H. White, S. White, L. Whitehead, W. Willis, R. J. Wilson, L. Winslow, J. Ye, M. Yeh, B. Yu, G. Zeller, C. Zhang, E. Zimmerman, R. Zwaska

In early 2010, the Long-Baseline Neutrino Experiment (LBNE) science collaboration initiated a study to investigate the physics potential of the experiment with a broad set of different beam, near- and far-detector configurations. Nine initial topics were identified as scientific areas that motivate construction of a long-baseline neutrino experiment with a very large far detector. We summarize the scientific justification for each topic and the estimated performance for a set of far detector reference configurations. Read More

We have shown that the $B-L$ generation due to the decay of the thermally produced superheavy fields can explain the Baryon assymmetry in the universe if the superheavy fields are heavier than $10^{13-14}$ GeV. Note that although the superheavy fields have non-vanishing charges under the standard model gauge interactions, the thermally prduced baryon asymmetry is sizable. The $B-L$ violating effective operators induced by integrating the superheavy fields have dimension 7, while the operator in the famous leptogenesis has dimension 5. Read More

The Kamioka liquid scintillator anti-neutrino detector (KamLAND) is a low-energy and low-background neutrino detector which could be a useful probe for determining the U and Th abundances of the Earth. We constructed a model of the Earth in order to evaluate the rate of geologically produced anti-neutrinos (geo-neutrinos) detectable by KamLAND. We found that KamLAND can be used to determine the absolute abundances of U and Th in the Earth with an accuracy sufficient for placing important constraints on Earth's accretional process and succeeding thermal history. Read More