S. Danagoulian - HKS - JLab E05-115 and E01-001 - Collaborations

S. Danagoulian
Are you S. Danagoulian?

Claim your profile, edit publications, add additional information:

Contact Details

Name
S. Danagoulian
Affiliation
HKS - JLab E05-115 and E01-001 - Collaborations
Location

Pubs By Year

Pub Categories

 
Nuclear Experiment (22)
 
High Energy Physics - Experiment (4)
 
High Energy Physics - Phenomenology (3)
 
Nuclear Theory (3)

Publications Authored By S. Danagoulian

2016Jun
Affiliations: 1HKS, 2HKS, 3HKS, 4HKS, 5HKS, 6HKS, 7HKS, 8HKS, 9HKS, 10HKS, 11HKS, 12HKS, 13HKS, 14HKS, 15HKS, 16HKS, 17HKS, 18HKS, 19HKS, 20HKS, 21HKS, 22HKS, 23HKS, 24HKS, 25HKS, 26HKS, 27HKS, 28HKS, 29HKS, 30HKS, 31HKS, 32HKS, 33HKS, 34HKS, 35HKS, 36HKS, 37HKS, 38HKS, 39HKS, 40HKS, 41HKS, 42HKS, 43HKS, 44HKS, 45HKS, 46HKS, 47HKS, 48HKS, 49HKS, 50HKS, 51HKS, 52HKS, 53HKS, 54HKS, 55HKS, 56HKS, 57HKS, 58HKS, 59HKS, 60HKS, 61HKS, 62HKS, 63HKS, 64HKS, 65HKS, 66HKS, 67HKS, 68HKS, 69HKS, 70HKS, 71HKS, 72HKS, 73HKS, 74HKS, 75HKS, 76HKS, 77HKS, 78HKS, 79HKS, 80HKS, 81HKS, 82HKS, 83HKS, 84HKS, 85HKS, 86HKS

The missing mass spectroscopy of the $^{7}_{\Lambda}$He hypernucleus was performed, using the $^{7}$Li$(e,e^{\prime}K^{+})^{7}_{\Lambda}$He reaction at the Thomas Jefferson National Accelerator Facility Hall C. The $\Lambda$ binding energy of the ground state (1/2$^{+}$) was determined with a smaller error than that of the previous measurement, being $B_{\Lambda}$ = 5.55 $\pm$ 0. Read More

Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the quark dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available for the longitudinal structure function in particular. Here we present separated structure functions for hydrogen and deuterium at low four--momentum transfer squared, Q^2< 1 GeV^2, and compare these with parton distribution parameterizations and a k_T factorization approach. Read More

2014Nov
Authors: MOLLER Collaboration, J. Benesch, P. Brindza, R. D. Carlini, J-P. Chen, E. Chudakov, S. Covrig, M. M. Dalton, A. Deur, D. Gaskell, A. Gavalya, J. Gomez, D. W. Higinbotham, C. Keppel, D. Meekins, R. Michaels, B. Moffit, Y. Roblin, R. Suleiman, R. Wines, B. Wojtsekhowski, G. Cates, D. Crabb, D. Day, K. Gnanvo, D. Keller, N. Liyanage, V. V. Nelyubin, H. Nguyen, B. Norum, K. Paschke, V. Sulkosky, J. Zhang, X. Zheng, J. Birchall, P. Blunden, M. T. W. Gericke, W. R. Falk, L. Lee, J. Mammei, S. A. Page, W. T. H. van Oers, K. Dehmelt, A. Deshpande, N. Feege, T. K. Hemmick, K. S. Kumar, T. Kutz, R. Miskimen, M. J. Ramsey-Musolf, S. Riordan, N. Hirlinger Saylor, J. Bessuille, E. Ihloff, J. Kelsey, S. Kowalski, R. Silwal, G. De Cataldo, R. De Leo, D. Di Bari, L. Lagamba, E. NappiV. Bellini, F. Mammoliti, F. Noto, M. L. Sperduto, C. M. Sutera, P. Cole, T. A. Forest, M. Khandekar, D. McNulty, K. Aulenbacher, S. Baunack, F. Maas, V. Tioukine, R. Gilman, K. Myers, R. Ransome, A. Tadepalli, R. Beniniwattha, R. Holmes, P. Souder, D. S. Armstrong, T. D. Averett, W. Deconinck, W. Duvall, A. Lee, M. L. Pitt, J. A. Dunne, D. Dutta, L. El Fassi, F. De Persio, F. Meddi, G. M. Urciuoli, E. Cisbani, C. Fanelli, F. Garibaldi, K. Johnston, N. Simicevic, S. Wells, P. M. King, J. Roche, J. Arrington, P. E. Reimer, G. Franklin, B. Quinn, A. Ahmidouch, S. Danagoulian, O. Glamazdin, R. Pomatsalyuk, R. Mammei, J. W. Martin, T. Holmstrom, J. Erler, Yu. G. Kolomensky, J. Napolitano, K. A. Aniol, W. D. Ramsay, E. Korkmaz, D. T. Spayde, F. Benmokhtar, A. Del Dotto, R. Perrino, S. Barkanova, A. Aleksejevs, J. Singh

The physics case and an experimental overview of the MOLLER (Measurement Of a Lepton Lepton Electroweak Reaction) experiment at the 12 GeV upgraded Jefferson Lab are presented. A highlight of the Fundamental Symmetries subfield of the 2007 NSAC Long Range Plan was the SLAC E158 measurement of the parity-violating asymmetry $A_{PV}$ in polarized electron-electron (M{\o}ller) scattering. The proposed MOLLER experiment will improve on this result by a factor of five, yielding the most precise measurement of the weak mixing angle at low or high energy anticipated over the next decade. Read More

2014Jun
Authors: L. Tang1, C. Chen2, T. Gogami3, D. Kawama4, Y. Han5, L. Yuan6, A. Matsumura7, Y. Okayasu8, T. Seva9, V. M. Rodriguez10, P. Baturin11, A. Acha12, P. Achenbach13, A. Ahmidouch14, I. Albayrak15, D. Androic16, A. Asaturyan17, R. Asaturyan18, O. Ates19, R. Badui20, O. K. Baker21, F. Benmokhtar22, W. Boeglin23, J. Bono24, P. Bosted25, E. Brash26, P. Carter27, R. Carlini28, A. Chiba29, M. E. Christy30, L. Cole31, M. M. Dalton32, S. Danagoulian33, A. Daniel34, R. De Leo35, V. Dharmawardane36, D. Doi37, K. Egiyan38, M. Elaasar39, R. Ent40, H. Fenker41, Y. Fujii42, M. Furic43, M. Gabrielyan44, L. Gan45, F. Garibaldi46, D. Gaskell47, A. Gasparian48, E. F. Gibson49, P. Gueye50, O. Hashimoto51, D. Honda52, T. Horn53, B. Hu54, Ed V. Hungerford55, C. Jayalath56, M. Jones57, K. Johnston58, N. Kalantarians59, H. Kanda60, M. Kaneta61, F. Kato62, S. Kato63, M. Kawai64, C. Keppel65, H. Khanal66, M. Kohl67, L. Kramer68, K. J. Lan69, Y. Li70, A. Liyanage71, W. Luo72, D. Mack73, K. Maeda74, S. Malace75, A. Margaryan76, G. Marikyan77, P. Markowitz78, T. Maruta79, N. Maruyama80, V. Maxwell81, D. J. Millener82, T. Miyoshi83, A. Mkrtchyan84, H. Mkrtchyan85, T. Motoba86, S. Nagao87, S. N. Nakamura88, A. Narayan89, C. Neville90, G. Niculescu91, M. I. Niculescu92, A. Nunez93, Nuruzzaman94, H. Nomura95, K. Nonaka96, A. Ohtani97, M. Oyamada98, N. Perez99, T. Petkovic100, J. Pochodzalla101, X. Qiu102, S. Randeniya103, B. Raue104, J. Reinhold105, R. Rivera106, J. Roche107, C. Samanta108, Y. Sato109, B. Sawatzky110, E. K. Segbefia111, D. Schott112, A. Shichijo113, N. Simicevic114, G. Smith115, Y. Song116, M. Sumihama117, V. Tadevosyan118, T. Takahashi119, N. Taniya120, K. Tsukada121, V. Tvaskis122, M. Veilleux123, W. Vulcan124, S. Wells125, F. R. Wesselmann126, S. A. Wood127, T. Yamamoto128, C. Yan129, Z. Ye130, K. Yokota131, S. Zhamkochyan132, L. Zhu133
Affiliations: 1HKS - JLab E05-115 and E01-001 - Collaborations, 2HKS - JLab E05-115 and E01-001 - Collaborations, 3HKS - JLab E05-115 and E01-001 - Collaborations, 4HKS - JLab E05-115 and E01-001 - Collaborations, 5HKS - JLab E05-115 and E01-001 - Collaborations, 6HKS - JLab E05-115 and E01-001 - Collaborations, 7HKS - JLab E05-115 and E01-001 - Collaborations, 8HKS - JLab E05-115 and E01-001 - Collaborations, 9HKS - JLab E05-115 and E01-001 - Collaborations, 10HKS - JLab E05-115 and E01-001 - Collaborations, 11HKS - JLab E05-115 and E01-001 - Collaborations, 12HKS - JLab E05-115 and E01-001 - Collaborations, 13HKS - JLab E05-115 and E01-001 - Collaborations, 14HKS - JLab E05-115 and E01-001 - Collaborations, 15HKS - JLab E05-115 and E01-001 - Collaborations, 16HKS - JLab E05-115 and E01-001 - Collaborations, 17HKS - JLab E05-115 and E01-001 - Collaborations, 18HKS - JLab E05-115 and E01-001 - Collaborations, 19HKS - JLab E05-115 and E01-001 - Collaborations, 20HKS - JLab E05-115 and E01-001 - Collaborations, 21HKS - JLab E05-115 and E01-001 - Collaborations, 22HKS - JLab E05-115 and E01-001 - Collaborations, 23HKS - JLab E05-115 and E01-001 - Collaborations, 24HKS - JLab E05-115 and E01-001 - Collaborations, 25HKS - JLab E05-115 and E01-001 - Collaborations, 26HKS - JLab E05-115 and E01-001 - Collaborations, 27HKS - JLab E05-115 and E01-001 - Collaborations, 28HKS - JLab E05-115 and E01-001 - Collaborations, 29HKS - JLab E05-115 and E01-001 - Collaborations, 30HKS - JLab E05-115 and E01-001 - Collaborations, 31HKS - JLab E05-115 and E01-001 - Collaborations, 32HKS - JLab E05-115 and E01-001 - Collaborations, 33HKS - JLab E05-115 and E01-001 - Collaborations, 34HKS - JLab E05-115 and E01-001 - Collaborations, 35HKS - JLab E05-115 and E01-001 - Collaborations, 36HKS - JLab E05-115 and E01-001 - Collaborations, 37HKS - JLab E05-115 and E01-001 - Collaborations, 38HKS - JLab E05-115 and E01-001 - Collaborations, 39HKS - JLab E05-115 and E01-001 - Collaborations, 40HKS - JLab E05-115 and E01-001 - Collaborations, 41HKS - JLab E05-115 and E01-001 - Collaborations, 42HKS - JLab E05-115 and E01-001 - Collaborations, 43HKS - JLab E05-115 and E01-001 - Collaborations, 44HKS - JLab E05-115 and E01-001 - Collaborations, 45HKS - JLab E05-115 and E01-001 - Collaborations, 46HKS - JLab E05-115 and E01-001 - Collaborations, 47HKS - JLab E05-115 and E01-001 - Collaborations, 48HKS - JLab E05-115 and E01-001 - Collaborations, 49HKS - JLab E05-115 and E01-001 - Collaborations, 50HKS - JLab E05-115 and E01-001 - Collaborations, 51HKS - JLab E05-115 and E01-001 - Collaborations, 52HKS - JLab E05-115 and E01-001 - Collaborations, 53HKS - JLab E05-115 and E01-001 - Collaborations, 54HKS - JLab E05-115 and E01-001 - Collaborations, 55HKS - JLab E05-115 and E01-001 - Collaborations, 56HKS - JLab E05-115 and E01-001 - Collaborations, 57HKS - JLab E05-115 and E01-001 - Collaborations, 58HKS - JLab E05-115 and E01-001 - Collaborations, 59HKS - JLab E05-115 and E01-001 - Collaborations, 60HKS - JLab E05-115 and E01-001 - Collaborations, 61HKS - JLab E05-115 and E01-001 - Collaborations, 62HKS - JLab E05-115 and E01-001 - Collaborations, 63HKS - JLab E05-115 and E01-001 - Collaborations, 64HKS - JLab E05-115 and E01-001 - Collaborations, 65HKS - JLab E05-115 and E01-001 - Collaborations, 66HKS - JLab E05-115 and E01-001 - Collaborations, 67HKS - JLab E05-115 and E01-001 - Collaborations, 68HKS - JLab E05-115 and E01-001 - Collaborations, 69HKS - JLab E05-115 and E01-001 - Collaborations, 70HKS - JLab E05-115 and E01-001 - Collaborations, 71HKS - JLab E05-115 and E01-001 - Collaborations, 72HKS - JLab E05-115 and E01-001 - Collaborations, 73HKS - JLab E05-115 and E01-001 - Collaborations, 74HKS - JLab E05-115 and E01-001 - Collaborations, 75HKS - JLab E05-115 and E01-001 - Collaborations, 76HKS - JLab E05-115 and E01-001 - Collaborations, 77HKS - JLab E05-115 and E01-001 - Collaborations, 78HKS - JLab E05-115 and E01-001 - Collaborations, 79HKS - JLab E05-115 and E01-001 - Collaborations, 80HKS - JLab E05-115 and E01-001 - Collaborations, 81HKS - JLab E05-115 and E01-001 - Collaborations, 82HKS - JLab E05-115 and E01-001 - Collaborations, 83HKS - JLab E05-115 and E01-001 - Collaborations, 84HKS - JLab E05-115 and E01-001 - Collaborations, 85HKS - JLab E05-115 and E01-001 - Collaborations, 86HKS - JLab E05-115 and E01-001 - Collaborations, 87HKS - JLab E05-115 and E01-001 - Collaborations, 88HKS - JLab E05-115 and E01-001 - Collaborations, 89HKS - JLab E05-115 and E01-001 - Collaborations, 90HKS - JLab E05-115 and E01-001 - Collaborations, 91HKS - JLab E05-115 and E01-001 - Collaborations, 92HKS - JLab E05-115 and E01-001 - Collaborations, 93HKS - JLab E05-115 and E01-001 - Collaborations, 94HKS - JLab E05-115 and E01-001 - Collaborations, 95HKS - JLab E05-115 and E01-001 - Collaborations, 96HKS - JLab E05-115 and E01-001 - Collaborations, 97HKS - JLab E05-115 and E01-001 - Collaborations, 98HKS - JLab E05-115 and E01-001 - Collaborations, 99HKS - JLab E05-115 and E01-001 - Collaborations, 100HKS - JLab E05-115 and E01-001 - Collaborations, 101HKS - JLab E05-115 and E01-001 - Collaborations, 102HKS - JLab E05-115 and E01-001 - Collaborations, 103HKS - JLab E05-115 and E01-001 - Collaborations, 104HKS - JLab E05-115 and E01-001 - Collaborations, 105HKS - JLab E05-115 and E01-001 - Collaborations, 106HKS - JLab E05-115 and E01-001 - Collaborations, 107HKS - JLab E05-115 and E01-001 - Collaborations, 108HKS - JLab E05-115 and E01-001 - Collaborations, 109HKS - JLab E05-115 and E01-001 - Collaborations, 110HKS - JLab E05-115 and E01-001 - Collaborations, 111HKS - JLab E05-115 and E01-001 - Collaborations, 112HKS - JLab E05-115 and E01-001 - Collaborations, 113HKS - JLab E05-115 and E01-001 - Collaborations, 114HKS - JLab E05-115 and E01-001 - Collaborations, 115HKS - JLab E05-115 and E01-001 - Collaborations, 116HKS - JLab E05-115 and E01-001 - Collaborations, 117HKS - JLab E05-115 and E01-001 - Collaborations, 118HKS - JLab E05-115 and E01-001 - Collaborations, 119HKS - JLab E05-115 and E01-001 - Collaborations, 120HKS - JLab E05-115 and E01-001 - Collaborations, 121HKS - JLab E05-115 and E01-001 - Collaborations, 122HKS - JLab E05-115 and E01-001 - Collaborations, 123HKS - JLab E05-115 and E01-001 - Collaborations, 124HKS - JLab E05-115 and E01-001 - Collaborations, 125HKS - JLab E05-115 and E01-001 - Collaborations, 126HKS - JLab E05-115 and E01-001 - Collaborations, 127HKS - JLab E05-115 and E01-001 - Collaborations, 128HKS - JLab E05-115 and E01-001 - Collaborations, 129HKS - JLab E05-115 and E01-001 - Collaborations, 130HKS - JLab E05-115 and E01-001 - Collaborations, 131HKS - JLab E05-115 and E01-001 - Collaborations, 132HKS - JLab E05-115 and E01-001 - Collaborations, 133HKS - JLab E05-115 and E01-001 - Collaborations

Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "tilt method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. Read More

The lifetime of a Lambda particle embedded in a nucleus (hypernucleus) decreases from that of free Lambda decay due to the opening of the Lambda N to NN weak decay channel. However, it is generally believed that the lifetime of a hypernucleus attains a constant value (saturation) for medium to heavy hypernuclear masses, yet this hypothesis has been difficult to verify. The present paper reports a direct measurement of the lifetime of medium-heavy hypernuclei produced with a photon-beam from Fe, Cu, Ag, and Bi targets. Read More

2012Jul
Affiliations: 1HKS, 2HKS, 3HKS, 4HKS, 5HKS, 6HKS, 7HKS, 8HKS, 9HKS, 10HKS, 11HKS, 12HKS, 13HKS, 14HKS, 15HKS, 16HKS, 17HKS, 18HKS, 19HKS, 20HKS, 21HKS, 22HKS, 23HKS, 24HKS, 25HKS, 26HKS, 27HKS, 28HKS, 29HKS, 30HKS, 31HKS, 32HKS, 33HKS, 34HKS, 35HKS, 36HKS, 37HKS, 38HKS, 39HKS, 40HKS, 41HKS, 42HKS, 43HKS, 44HKS, 45HKS, 46HKS, 47HKS, 48HKS, 49HKS, 50HKS, 51HKS, 52HKS, 53HKS, 54HKS, 55HKS, 56HKS, 57HKS, 58HKS, 59HKS, 60HKS, 61HKS, 62HKS, 63HKS, 64HKS, 65HKS, 66HKS, 67HKS, 68HKS, 69HKS, 70HKS, 71HKS, 72HKS, 73HKS, 74HKS, 75HKS, 76HKS, 77HKS, 78HKS, 79HKS, 80HKS, 81HKS, 82HKS, 83HKS, 84HKS, 85HKS, 86HKS, 87HKS, 88HKS, 89HKS, 90HKS, 91HKS, 92HKS, 93HKS

An experiment with a newly developed high-resolution kaon spectrometer (HKS) and a scattered electron spectrometer with a novel configuration was performed in Hall C at Jefferson Lab (JLab). The ground state of a neutron-rich hypernucleus, He 7 Lambda, was observed for the first time with the (e,e'K+) reaction with an energy resolution of ~0.6 MeV. Read More

We present new data for the polarization observables of the final state proton in the $^{1}H(\vec{\gamma},\vec{p})\pi^{0}$ reaction. These data can be used to test predictions based on hadron helicity conservation (HHC) and perturbative QCD (pQCD). These data have both small statistical and systematic uncertainties, and were obtained with beam energies between 1. Read More

A large set of cross sections for semi-inclusive electroproduction of charged pions ($\pi^\pm$) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared $W^2$ > 4 GeV$^2$ and range in four-momentum transfer squared $2 < Q^2 < 4$ (GeV/c)$^2$, and cover a range in the Bjorken scaling variable 0.2 < x < 0. Read More

2010Dec

Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, $G_{E}/G_{M}$, obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange (TPEX) contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic $H(\vec{e},e'\vec{p})$ reaction for three different beam energies at a fixed squared momentum transfer $Q^2 = 2. Read More

2010May

Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6. Read More

2008Nov
Affiliations: 1nee Rohe, 2nee Rohe, 3nee Rohe, 4nee Rohe, 5nee Rohe, 6nee Rohe, 7nee Rohe, 8nee Rohe, 9nee Rohe, 10nee Rohe, 11nee Rohe, 12nee Rohe, 13nee Rohe, 14nee Rohe, 15nee Rohe, 16nee Rohe, 17nee Rohe, 18nee Rohe, 19nee Rohe, 20nee Rohe, 21nee Rohe, 22nee Rohe, 23nee Rohe, 24nee Rohe, 25nee Rohe, 26nee Rohe, 27nee Rohe, 28nee Rohe, 29nee Rohe, 30nee Rohe, 31nee Rohe, 32nee Rohe, 33nee Rohe, 34nee Rohe, 35nee Rohe, 36nee Rohe, 37nee Rohe, 38nee Rohe, 39nee Rohe, 40nee Rohe, 41nee Rohe, 42nee Rohe, 43nee Rohe, 44nee Rohe, 45nee Rohe, 46nee Rohe, 47nee Rohe, 48nee Rohe, 49nee Rohe, 50nee Rohe, 51nee Rohe, 52nee Rohe

We have extracted QCD matrix elements from our data on double polarized inelastic scattering of electrons on nuclei. We find the higher twist matrix element \tilde{d_2}, which arises strictly from quark- gluon interactions, to be unambiguously non zero. The data also reveal an isospin dependence of higher twist effects if we assume that the Burkhardt-Cottingham Sum rule is valid. Read More

A technique is presented for precision measurements of the area densities, density * T, of approximately 5% radiation length carbon and 208Pb targets used in an experiment at Jefferson Laboratory to measure the neutral pion radiative width. The precision obtained in the area density for the carbon target is +/- 0.050%, and that obtained for the lead target through an x-ray attenuation technique is +/- 0. Read More

We report on a detailed study of longitudinal strength in the nucleon resonance region, presenting new results from inclusive electron-proton cross sections measured at Jefferson Lab Hall C in the four-momentum transfer range 0.2 < Q^2 < 5.5 GeV^2. Read More

A pioneering experiment in Lambda hypernuclear spectroscopy, undertaken at the Thomas Jefferson National Accelerator Facility (Jlab), was recently reported. The experiment used the high- precision, continuous electron beam at Jlab, and a special arrangement of spectrometer magnets to measure the spectrum from {nat}C and 7Li targets using the (e,e' K+)reaction. The 12B hypernuclear spectrum was previously published. Read More

The first experimental results for coherent $\pi^0$-electroproduction on the deuteron, $e+d\to e+d +\pi^0$, at large momentum transfer, are reported. The experiment was performed at Jefferson Laboratory at an incident electron energy of 4.05 GeV. Read More