# S. Badger - Durham University, IPPP

## Contact Details

NameS. Badger |
||

AffiliationDurham University, IPPP |
||

CityDurham |
||

CountryUnited States |
||

## Pubs By Year |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (42) High Energy Physics - Theory (12) High Energy Physics - Experiment (5) |

## Publications Authored By S. Badger

We explain how one-loop amplitudes with massive fermions can be computed using only on-shell information. We first use the spinor-helicity formalism in six dimensions to perform generalised unitarity cuts in $d$ dimensions. We then show that divergent wavefunction cuts can be avoided, and the remaining ambiguities in the renormalised amplitudes can be fixed, by matching to universal infrared poles in $4-2\epsilon$ dimensions and ultraviolet poles in $6-2\epsilon$ dimensions. Read More

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, R. Costa

^{69}, D. Curtin

^{70}, M. Dall'Osso

^{71}, A. David

^{72}, S. Dawson

^{73}, J. de Blas

^{74}, W. de Boer

^{75}, P. de Castro Manzano

^{76}, C. Degrande

^{77}, R. L. Delgado

^{78}, F. Demartin

^{79}, A. Denner

^{80}, B. Di Micco

^{81}, R. Di Nardo

^{82}, S. Dittmaier

^{83}, A. Dobado

^{84}, T. Dorigo

^{85}, F. A. Dreyer

^{86}, M. Dührssen

^{87}, C. Duhr

^{88}, F. Dulat

^{89}, K. Ecker

^{90}, K. Ellis

^{91}, U. Ellwanger

^{92}, C. Englert

^{93}, D. Espriu

^{94}, A. Falkowski

^{95}, L. Fayard

^{96}, R. Feger

^{97}, G. Ferrera

^{98}, A. Ferroglia

^{99}, N. Fidanza

^{100}, T. Figy

^{101}, M. Flechl

^{102}, D. Fontes

^{103}, S. Forte

^{104}, P. Francavilla

^{105}, E. Franco

^{106}, R. Frederix

^{107}, A. Freitas

^{108}, F. F. Freitas

^{109}, F. Frensch

^{110}, S. Frixione

^{111}, B. Fuks

^{112}, E. Furlan

^{113}, S. Gadatsch

^{114}, J. Gao

^{115}, Y. Gao

^{116}, M. V. Garzelli

^{117}, T. Gehrmann

^{118}, R. Gerosa

^{119}, M. Ghezzi

^{120}, D. Ghosh

^{121}, S. Gieseke

^{122}, D. Gillberg

^{123}, G. F. Giudice

^{124}, E. W. N. Glover

^{125}, F. Goertz

^{126}, D. Gonçalves

^{127}, J. Gonzalez-Fraile

^{128}, M. Gorbahn

^{129}, S. Gori

^{130}, C. A. Gottardo

^{131}, M. Gouzevitch

^{132}, P. Govoni

^{133}, D. Gray

^{134}, M. Grazzini

^{135}, N. Greiner

^{136}, A. Greljo

^{137}, J. Grigo

^{138}, A. V. Gritsan

^{139}, R. Gröber

^{140}, S. Guindon

^{141}, H. E. Haber

^{142}, C. Han

^{143}, T. Han

^{144}, R. Harlander

^{145}, M. A. Harrendorf

^{146}, H. B. Hartanto

^{147}, C. Hays

^{148}, S. Heinemeyer

^{149}, G. Heinrich

^{150}, M. Herrero

^{151}, F. Herzog

^{152}, B. Hespel

^{153}, V. Hirschi

^{154}, S. Hoeche

^{155}, S. Honeywell

^{156}, S. J. Huber

^{157}, C. Hugonie

^{158}, J. Huston

^{159}, A. Ilnicka

^{160}, G. Isidori

^{161}, B. Jäger

^{162}, M. Jaquier

^{163}, S. P. Jones

^{164}, A. Juste

^{165}, S. Kallweit

^{166}, A. Kaluza

^{167}, A. Kardos

^{168}, A. Karlberg

^{169}, Z. Kassabov

^{170}, N. Kauer

^{171}, D. I. Kazakov

^{172}, M. Kerner

^{173}, W. Kilian

^{174}, F. Kling

^{175}, K. Köneke

^{176}, R. Kogler

^{177}, R. Konoplich

^{178}, S. Kortner

^{179}, S. Kraml

^{180}, C. Krause

^{181}, F. Krauss

^{182}, M. Krawczyk

^{183}, A. Kulesza

^{184}, S. Kuttimalai

^{185}, R. Lane

^{186}, A. Lazopoulos

^{187}, G. Lee

^{188}, P. Lenzi

^{189}, I. M. Lewis

^{190}, Y. Li

^{191}, S. Liebler

^{192}, J. Lindert

^{193}, X. Liu

^{194}, Z. Liu

^{195}, F. J. Llanes-Estrada

^{196}, H. E. Logan

^{197}, D. Lopez-Val

^{198}, I. Low

^{199}, G. Luisoni

^{200}, P. Maierhöfer

^{201}, E. Maina

^{202}, B. Mansoulié

^{203}, H. Mantler

^{204}, M. Mantoani

^{205}, A. C. Marini

^{206}, V. I. Martinez Outschoorn

^{207}, S. Marzani

^{208}, D. Marzocca

^{209}, A. Massironi

^{210}, K. Mawatari

^{211}, J. Mazzitelli

^{212}, A. McCarn

^{213}, B. Mellado

^{214}, K. Melnikov

^{215}, S. B. Menari

^{216}, L. Merlo

^{217}, C. Meyer

^{218}, P. Milenovic

^{219}, K. Mimasu

^{220}, S. Mishima

^{221}, B. Mistlberger

^{222}, S. -O. Moch

^{223}, A. Mohammadi

^{224}, P. F. Monni

^{225}, G. Montagna

^{226}, M. Moreno Llácer

^{227}, N. Moretti

^{228}, S. Moretti

^{229}, L. Motyka

^{230}, A. Mück

^{231}, M. Mühlleitner

^{232}, S. Munir

^{233}, P. Musella

^{234}, P. Nadolsky

^{235}, D. Napoletano

^{236}, M. Nebot

^{237}, C. Neu

^{238}, M. Neubert

^{239}, R. Nevzorov

^{240}, O. Nicrosini

^{241}, J. Nielsen

^{242}, K. Nikolopoulos

^{243}, J. M. No

^{244}, C. O'Brien

^{245}, T. Ohl

^{246}, C. Oleari

^{247}, T. Orimoto

^{248}, D. Pagani

^{249}, C. E. Pandini

^{250}, A. Papaefstathiou

^{251}, A. S. Papanastasiou

^{252}, G. Passarino

^{253}, B. D. Pecjak

^{254}, M. Pelliccioni

^{255}, G. Perez

^{256}, L. Perrozzi

^{257}, F. Petriello

^{258}, G. Petrucciani

^{259}, E. Pianori

^{260}, F. Piccinini

^{261}, M. Pierini

^{262}, A. Pilkington

^{263}, S. Plätzer

^{264}, T. Plehn

^{265}, R. Podskubka

^{266}, C. T. Potter

^{267}, S. Pozzorini

^{268}, K. Prokofiev

^{269}, A. Pukhov

^{270}, I. Puljak

^{271}, M. Queitsch-Maitland

^{272}, J. Quevillon

^{273}, D. Rathlev

^{274}, M. Rauch

^{275}, E. Re

^{276}, M. N. Rebelo

^{277}, D. Rebuzzi

^{278}, L. Reina

^{279}, C. Reuschle

^{280}, J. Reuter

^{281}, M. Riembau

^{282}, F. Riva

^{283}, A. Rizzi

^{284}, T. Robens

^{285}, R. Röntsch

^{286}, J. Rojo

^{287}, J. C. Romão

^{288}, N. Rompotis

^{289}, J. Roskes

^{290}, R. Roth

^{291}, G. P. Salam

^{292}, R. Salerno

^{293}, M. O. P. Sampaio

^{294}, R. Santos

^{295}, V. Sanz

^{296}, J. J. Sanz-Cillero

^{297}, H. Sargsyan

^{298}, U. Sarica

^{299}, P. Schichtel

^{300}, J. Schlenk

^{301}, T. Schmidt

^{302}, C. Schmitt

^{303}, M. Schönherr

^{304}, U. Schubert

^{305}, M. Schulze

^{306}, S. Sekula

^{307}, M. Sekulla

^{308}, E. Shabalina

^{309}, H. S. Shao

^{310}, J. Shelton

^{311}, C. H. Shepherd-Themistocleous

^{312}, S. Y. Shim

^{313}, F. Siegert

^{314}, A. Signer

^{315}, J. P. Silva

^{316}, L. Silvestrini

^{317}, M. Sjodahl

^{318}, P. Slavich

^{319}, M. Slawinska

^{320}, L. Soffi

^{321}, M. Spannowsky

^{322}, C. Speckner

^{323}, D. M. Sperka

^{324}, M. Spira

^{325}, O. Stål

^{326}, F. Staub

^{327}, T. Stebel

^{328}, T. Stefaniak

^{329}, M. Steinhauser

^{330}, I. W. Stewart

^{331}, M. J. Strassler

^{332}, J. Streicher

^{333}, D. M. Strom

^{334}, S. Su

^{335}, X. Sun

^{336}, F. J. Tackmann

^{337}, K. Tackmann

^{338}, A. M. Teixeira

^{339}, R. Teixeira de Lima

^{340}, V. Theeuwes

^{341}, R. Thorne

^{342}, D. Tommasini

^{343}, P. Torrielli

^{344}, M. Tosi

^{345}, F. Tramontano

^{346}, Z. Trócsányi

^{347}, M. Trott

^{348}, I. Tsinikos

^{349}, M. Ubiali

^{350}, P. Vanlaer

^{351}, W. Verkerke

^{352}, A. Vicini

^{353}, L. Viliani

^{354}, E. Vryonidou

^{355}, D. Wackeroth

^{356}, C. E. M. Wagner

^{357}, J. Wang

^{358}, S. Wayand

^{359}, G. Weiglein

^{360}, C. Weiss

^{361}, M. Wiesemann

^{362}, C. Williams

^{363}, J. Winter

^{364}, D. Winterbottom

^{365}, R. Wolf

^{366}, M. Xiao

^{367}, L. L. Yang

^{368}, R. Yohay

^{369}, S. P. Y. Yuen

^{370}, G. Zanderighi

^{371}, M. Zaro

^{372}, D. Zeppenfeld

^{373}, R. Ziegler

^{374}, T. Zirke

^{375}, J. Zupan

^{376}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group,

^{375}The LHC Higgs Cross Section Working Group,

^{376}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

**Authors:**M. L. Mangano, G. Zanderighi, J. A. Aguilar Saavedra, S. Alekhin, S. Badger, C. W. Bauer, T. Becher, V. Bertone, M. Bonvini, S. Boselli, E. Bothmann, R. Boughezal, M. Cacciari, C. M. Carloni Calame, F. Caola, J. M. Campbell, S. Carrazza, M. Chiesa, L. Cieri, F. Cimaglia, F. Febres Cordero, P. Ferrarese, D. D'Enterria, G. Ferrera, X. Garcia i Tormo, M. V. Garzelli, E. Germann, V. Hirschi, T. Han, H. Ita, B. Jäger, S. Kallweit, A. Karlberg, S. Kuttimalai, F. Krauss, A. J. Larkoski, J. Lindert, G. Luisoni, P. Maierhöfer, O. Mattelaer, H. Martinez, S. Moch, G. Montagna, M. Moretti, P. Nason, O. Nicrosini, C. Oleari, D. Pagani, A. Papaefstathiou, F. Petriello, F. Piccinini, M. Pierini, T. Pierog, S. Pozzorini, E. Re, T. Robens, J. Rojo, R. Ruiz, K. Sakurai, G. P. Salam, L. Salfelder, M. Schönherr, M. Schulze, S. Schumann, M. Selvaggi, A. Shivaji, A. Siodmok, P. Skands, P. Torrielli, F. Tramontano, I. Tsinikos, B. Tweedie, A. Vicini, S. Westhoff, M. Zaro, D. Zeppenfeld

This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches. Read More

In this talk we review the recent computation of the five- and six-gluon two-loop amplitudes in Yang-Mills theory using local integrands which make the infrared pole structure manifest. We make some remarks on the connection with BCJ relations and the all-multiplicity structure. Read More

We express the planar five- and six-gluon two-loop Yang-Mills amplitudes with all positive helicities in compact analytic form using D-dimensional local integrands that are free of spurious singularities. The integrand is fixed from on-shell tree amplitudes in six dimensions using D-dimensional generalised unitarity cuts. The resulting expressions are shown to have manifest infrared behaviour at the integrand level. Read More

**Authors:**S. Badger

^{1}, J. Bendavid

^{2}, V. Ciulli

^{3}, A. Denner

^{4}, R. Frederix

^{5}, M. Grazzini

^{6}, J. Huston

^{7}, M. Schönherr

^{8}, K. Tackmann

^{9}, J. Thaler

^{10}, C. Williams

^{11}, J. R. Andersen, K. Becker, M. Bell, J. Bellm, E. Bothmann, R. Boughezal, J. Butterworth, S. Carrazza, M. Chiesa, L. Cieri, M. Duehrssen-Debling, G. Falmagne, S. Forte, P. Francavilla, M. Freytsis, J. Gao, P. Gras, N. Greiner, D. Grellscheid, G. Heinrich, G. Hesketh, S. Höche, L. Hofer, T. -J. Hou, A. Huss, J. Isaacson, A. Jueid, S. Kallweit, D. Kar, Z. Kassabov, V. Konstantinides, F. Krauss, S. Kuttimalai, A. Lazapoulos, P. Lenzi, Y. Li, J. M. Lindert, X. Liu, G. Luisoni, L. Lönnblad, P. Maierhöfer, D. Maître, A. C. Marini, G. Montagna, M. Moretti, P. M. Nadolsky, G. Nail, D. Napoletano, O. Nicrosini, C. Oleari, D. Pagani, C. Pandini, L. Perrozzi, F. Petriello, F. Piccinini, S. Plätzer, I. Pogrebnyak, S. Pozzorini, S. Prestel, C. Reuschle, J. Rojo, L. Russo, P. Schichtel, S. Schumann, A. Siódmok, P. Skands, D. Soper, G. Soyez, P. Sun, F. J. Tackmann, E. Takasugi, S. Uccirati, U. Utku, L. Viliani, E. Vryonidou, B. T. Wang, B. Waugh, M. A. Weber, J. Winter, K. P. Xie, C. -P. Yuan, F. Yuan, K. Zapp, M. Zaro

**Affiliations:**

^{1}conveners,

^{2}conveners,

^{3}conveners,

^{4}conveners,

^{5}conveners,

^{6}conveners,

^{7}conveners,

^{8}conveners,

^{9}conveners,

^{10}conveners,

^{11}conveners

**Category:**High Energy Physics - Phenomenology

This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators. Read More

We review some of the modern approaches to scattering amplitude computations in QCD and their application to precision LHC phenomenology. We emphasise the usefulness of momentum twistor variables in parameterising general amplitudes. Read More

We compute the integrand of the full-colour, two-loop, five-gluon scattering amplitude in pure Yang-Mills theory with all helicities positive, using generalized unitarity cuts. Tree-level BCJ relations, satisfied by amplitudes appearing in the cuts, allow us to deduce all the necessary non-planar information for the full-colour amplitude from known planar data. We present our result in terms of irreducible numerators, with colour factors derived from the multi-peripheral colour decomposition. Read More

We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus four partons amplitudes. We present compact results for primitive helicity splitting amplitudes making use of super-symmetric decompositions. Read More

We review recent progress in D-dimensional integrand reduction algorithms for two loop amplitudes and give examples of their application to non-planar maximal cuts of the five-point all-plus helicity amplitude in QCD. Read More

**Authors:**J. Butterworth

^{1}, G. Dissertori

^{2}, S. Dittmaier

^{3}, D. de Florian

^{4}, N. Glover

^{5}, K. Hamilton

^{6}, J. Huston

^{7}, M. Kado

^{8}, A. Korytov

^{9}, F. Krauss

^{10}, G. Soyez

^{11}, J. R. Andersen

^{12}, S. Badger

^{13}, L. Barzè

^{14}, J. Bellm

^{15}, F. U. Bernlochner

^{16}, A. Buckley

^{17}, J. Butterworth

^{18}, N. Chanon

^{19}, M. Chiesa

^{20}, A. Cooper-Sarkar

^{21}, L. Cieri

^{22}, G. Cullen

^{23}, H. van Deurzen

^{24}, G. Dissertori

^{25}, S. Dittmaier

^{26}, D. de Florian

^{27}, S. Forte

^{28}, R. Frederix

^{29}, B. Fuks

^{30}, J. Gao

^{31}, M. V. Garzelli

^{32}, T. Gehrmann

^{33}, E. Gerwick

^{34}, S. Gieseke

^{35}, D. Gillberg

^{36}, E. W. N. Glover

^{37}, N. Greiner

^{38}, K. Hamilton

^{39}, T. Hapola

^{40}, H. B. Hartanto

^{41}, G. Heinrich

^{42}, A. Huss

^{43}, J. Huston

^{44}, B. Jäger

^{45}, M. Kado

^{46}, A. Kardos

^{47}, U. Klein

^{48}, F. Krauss

^{49}, A. Kruse

^{50}, L. Lönnblad

^{51}, G. Luisoni

^{52}, Daniel Maître

^{53}, P. Mastrolia

^{54}, O. Mattelaer

^{55}, J. Mazzitelli

^{56}, E. Mirabella

^{57}, P. Monni

^{58}, G. Montagna

^{59}, M. Moretti

^{60}, P. Nadolsky

^{61}, P. Nason

^{62}, O. Nicrosini

^{63}, C. Oleari

^{64}, G. Ossola

^{65}, S. Padhi

^{66}, T. Peraro

^{67}, F. Piccinini

^{68}, S. Plätzer

^{69}, S. Prestel

^{70}, J. Pumplin

^{71}, K. Rabbertz

^{72}, Voica Radescu

^{73}, L. Reina

^{74}, C. Reuschle

^{75}, J. Rojo

^{76}, M. Schönherr

^{77}, J. M. Smillie

^{78}, J. F. von Soden-Fraunhofen

^{79}, G. Soyez

^{80}, R. Thorne, F. Tramontano, Z. Trocsanyi, D. Wackeroth, J. Winter, C-P. Yuan, V. Yundin, K. Zapp

**Affiliations:**

^{1}conveners,

^{2}conveners,

^{3}conveners,

^{4}conveners,

^{5}conveners,

^{6}conveners,

^{7}conveners,

^{8}conveners,

^{9}conveners,

^{10}conveners,

^{11}conveners,

^{12}conveners,

^{13}conveners,

^{14}conveners,

^{15}conveners,

^{16}conveners,

^{17}conveners,

^{18}conveners,

^{19}conveners,

^{20}conveners,

^{21}conveners,

^{22}conveners,

^{23}conveners,

^{24}conveners,

^{25}conveners,

^{26}conveners,

^{27}conveners,

^{28}conveners,

^{29}conveners,

^{30}conveners,

^{31}conveners,

^{32}conveners,

^{33}conveners,

^{34}conveners,

^{35}conveners,

^{36}conveners,

^{37}conveners,

^{38}conveners,

^{39}conveners,

^{40}conveners,

^{41}conveners,

^{42}conveners,

^{43}conveners,

^{44}conveners,

^{45}conveners,

^{46}conveners,

^{47}conveners,

^{48}conveners,

^{49}conveners,

^{50}conveners,

^{51}conveners,

^{52}conveners,

^{53}conveners,

^{54}conveners,

^{55}conveners,

^{56}conveners,

^{57}conveners,

^{58}conveners,

^{59}conveners,

^{60}conveners,

^{61}conveners,

^{62}conveners,

^{63}conveners,

^{64}conveners,

^{65}conveners,

^{66}conveners,

^{67}conveners,

^{68}conveners,

^{69}conveners,

^{70}conveners,

^{71}conveners,

^{72}conveners,

^{73}conveners,

^{74}conveners,

^{75}conveners,

^{76}conveners,

^{77}conveners,

^{78}conveners,

^{79}conveners,

^{80}conveners

**Category:**High Energy Physics - Phenomenology

This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2. Read More

In these proceedings we report our progress in the development of the publicly available C++ library NJet for accurate calculations of high-multiplicity one-loop amplitudes. As a phenomenological application we present the first complete next-to-leading order (NLO) calculation of five jet cross section at hadron colliders. Read More

We present the computation of next-to-leading order (NLO) QCD corrections to di-photon production in association with two or three hard jets in pp collisions at a center-of-mass energy of 8 TeV. The inclusion of NLO corrections is shown to substantially reduce the theoretical uncertainties estimated from scale variations on total cross section predictions. We study a range of differential distributions relevant for phenomenological studies of photon pair production in association with jets at the LHC. Read More

We discuss recent progress in multi-loop integrand reduction methods. Motivated by the possibility of an automated construction of multi-loop amplitudes via generalized unitarity cuts we describe a procedure to obtain a general parameterisation of any multi-loop integrand in a renormalizable gauge theory. The method relies on computational algebraic geometry techniques such as Gr\"obner bases and primary decomposition of ideals. Read More

We compute the planar part of the two-loop five gluon amplitude with all helicities positive. To perform the calculation we develop a D-dimensional generalized unitarity procedure allowing us to reconstruct the amplitude by cutting into products of six-dimensional trees. We find a compact form for the integrand which only requires topologies with six or more propagators. Read More

We present theoretical predictions for five jet production in proton-proton collisions at next-to-leading order accuracy in QCD. Inclusive as well as differential observables are studied for collision energies of 7 and 8 TeV. In general the next-to-leading order corrections stabilize the theoretical predictions with respect to scale variations. Read More

**Authors:**S. Alioli, S. Badger, J. Bellm, B. Biedermann, F. Boudjema, G. Cullen, A. Denner, H. van Deurzen, S. Dittmaier, R. Frederix, S. Frixione, M. V. Garzelli, S. Gieseke, E. W. N. Glover, N. Greiner, G. Heinrich, V. Hirschi, S. Hoeche, J. Huston, H. Ita, N. Kauer, F. Krauss, G. Luisoni, D. Maitre, F. Maltoni, P. Nason, C. Oleari, R. Pittau, S. Plaetzer, S. Pozzorini, L. Reina, C. Reuschle, T. Robens, J. Schlenk, M. Schoenherr, F. Siegert, J. F. von Soden-Fraunhofen, F. Tackmann, F. Tramontano, P. Uwer, G. Salam, P. Skands, S. Weinzierl, J. Winter, V. Yundin, G. Zanderighi, M. Zaro

**Category:**High Energy Physics - Phenomenology

We present an update of the Binoth Les Houches Accord (BLHA) to standardise the interface between Monte Carlo programs and codes providing one-loop matrix elements. Read More

We study three and four jet production in hadronic collisions at next-to-leading order accuracy in massless QCD. We cross check results previously obtained by the BlackHat collaboration for the LHC with a centre-of-mass energy of sqrt(s)=7 TeV and present new results for the LHC operating at 8 TeV. We find large negative NLO corrections reducing the leading-order cross sections by about 40-50%. Read More

We present a C++ library for the numerical evaluation of one-loop virtual corrections to multi-jet production in massless QCD. The pure gluon primitive amplitudes are evaluated using NGluon. A generalized unitarity reduction algorithm is used to construct arbitrary multiplicity fermion-gluon primitive amplitudes. Read More

We consider the maximal cut of a three-loop four point function with massless kinematics. By applying Groebner bases and primary decomposition we develop a method which extracts all ten propagator master integral coefficients for an arbitrary triple-box configuration via generalized unitarity cuts. As an example we present analytic results for the three loop triple-box contribution to gluon-gluon scattering in Yang-Mills with adjoint fermions and scalars in terms of three master integrals. Read More

Recent advances in our understanding of tree-level QCD amplitudes in the massless limit exploiting an effective (maximal) supersymmetry have led to the complete analytic construction of tree-amplitudes with up to four external quark-anti-quark pairs. In this work we compare the numerical efficiency of evaluating these closed analytic formulae to a numerically efficient implementation of the Berends-Giele recursion. We compare calculation times for tree-amplitudes with parton numbers ranging from 4 to 25 with no, one, two and three external quark lines. Read More

We present a method for the computation of hepta-cuts of two loop scattering amplitudes. Four dimensional unitarity cuts are used to factorise the integrand onto the product of six tree-level amplitudes evaluated at complex momentum values. Using Gram matrix constraints we derive a general parameterisation of the integrand which can be computed using polynomial fitting techniques. Read More

We present a numerical implementation for virtual corrections to multi-jet production at Next-to-Leading order. Using the algorithm of generalised unitarity we compute primitive amplitudes from tree-level input. These basic ingredients are then used to compute full colour and helicity summed corrections. Read More

We present the publicly available program NGluon allowing the numerical evaluation of primitive amplitudes at one-loop order in massless QCD. The program allows the computation of one-loop amplitudes for an arbitrary number of gluons. The focus of the present article is the extension to one-loop amplitudes including an arbitrary number of massless quark pairs. Read More

We present compact analytic expressions for all one-loop helicity amplitudes contributing to ttbar production at hadron colliders. Using recently developed generalised unitarity methods and a traditional Feynman based approach we produce a fast and flexible implementation. Read More

We perform an analytic calculation of the one-loop amplitude for the W-boson mediated process 0 \to d u-bar Q Q-bar l-bar l, retaining the mass for the quark Q. The momentum of each of the massive quarks is expressed as the sum of two massless momenta and the corresponding heavy quark spinor is expressed as a sum of two massless spinors. Using a special choice for the heavy quark spinors we obtain analytic expressions for the one-loop amplitudes which are amenable to fast numerical evaluation. Read More

We present a computer library for the numerical evaluation of colour-ordered n-gluon amplitudes at one-loop order in pure Yang-Mills theory. The library uses the recently developed technique of generalised unitarity. Running in double precision the library yields reliable results for up to 14 gluons with only a small fraction of events requiring a re-evaluation using extended floating point arithmetic. Read More

We show some new applications of on-shell methods to calculate compact helicity amplitudes for t tbar production through gluon fusion. The rational and mass renormalisation contributions are extracted from two independent Feynman diagram based approaches. Read More

We construct a modified on-shell BCFW recursion relation to derive compact analytic representations of tree-level amplitudes in QED. As an application, we study the amplitudes of a fermion pair coupling to an arbitrary number of photons and give compact formulae for the NMHV and NNMHV case. We demonstrate that the new recursion relation reduces the growth in complexity with additional photons to be exponential rather than factorial. Read More

**Authors:**T. Binoth, G. Dissertori, J. Huston, R. Pittau, J. R. Andersen, J. Archibald, S. Badger, R. D. Ball, G. Bevilacqua, I. Bierenbaum, T. Binoth, F. Boudjema, R. Boughezal, A. Bredenstein, R. Britto, M. Campanelli, J. Campbell, L. Carminati, G. Chachamis, V. Ciulli, G. Cullen, M. Czakon, L. Del Debbio, A. Denner, G. Dissertori, S. Dittmaier, S. Forte, R. Frederix, S. Frixione, E. Gardi, M. V. Garzelli, S. Gascon-Shotkin, T. Gehrmann, A. Gehrmann-De Ridder, W. Giele, T. Gleisberg, E. W. N. Glover, N. Greiner, A. Guffanti, J. -Ph. Guillet, A. van Hameren, G. Heinrich, S. Hoeche, M. Huber, J. Huston, M. Jaquier, S. Kallweit, S. Karg, N. Kauer, F. Krauss, J. I. Latorre, A. Lazopoulos, P. Lenzi, G. Luisoni, R. Mackeprang, L. Magnea, D. Maitre, D. Majumder, I. Malamos, F. Maltoni, K. Mazumdar, P. Nadolsky, P. Nason, C. Oleari, F. Olness, C. G. Papadopoulos, G. Passarino, E. Pilon, R. Pittau, S. Pozzorini, T. Reiter, J. Reuter, M. Rodgers, G. Rodrigo, J. Rojo, G. Sanguinetti, F. -P. Schilling, M. Schumacher, S. Schumann, R. Schwienhorst, P. Skands, H. Stenzel, F. Stoeckli, R. Thorne, M. Ubiali, P. Uwer, A. Vicini, M. Warsinsky, G. Watt, J. Weng, I. Wigmore, S. Weinzierl, J. Winter, M. Worek, G. Zanderighi

**Category:**High Energy Physics - Phenomenology

This report summarizes the activities of the SM and NLO Multileg Working Group of the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 2009. Read More

We compute the one-loop amplitude for a Higgs boson, a quark-antiquark pair and a pair of gluons of negative helicity, i.e. for the next-to-maximally helicity violating (NMHV) case, A(H, qbar-, q+, g-, g-). Read More

We consider one-loop amplitudes of a Higgs boson coupled to gluons in the limit of a large top quark mass. We treat the Higgs as the real part of a complex field phi that couples to the self-dual field strengths and compute the one-loop corrections to the phi-NMHV amplitude, which contains one gluon of positive helicity whilst the remaining three have negative helicity. We use four-dimensional unitarity to construct the cut-containing contributions and a hybrid of Feynman diagram and recursive based techniques to determine the rational piece. Read More

We investigate generic properties of one-loop amplitudes in unordered gauge theories in four dimensions. For such theories the organisation of amplitudes in manifestly crossing symmetric expressions poses restrictions on their structure and results in remarkable cancellations. We show that one-loop multi-photon amplitudes in QED with at least eight external photons are given only by scalar box integral functions. Read More

**Affiliations:**

^{1}Saclay

**Category:**High Energy Physics - Phenomenology

We describe an application of generalised unitarity to the computation of one-loop amplitudes with massive external fermions. We present analytic results for the cut-constructible parts of the leading colour contributions to the all-plus helicity configuration of the $t\bar{t}gg$ amplitude. Using a special choice for the helicity basis of the massive fermions we are able to obtain extremely compact analytic expressions. Read More

We present a method for the direct extraction of rational contributions to one-loop scattering amplitudes, missed by standard four-dimensional unitarity techniques. We use generalised unitarity in $D=4-2\e$ dimensions to write the loop amplitudes in terms of products of massive tree amplitudes. We find that the rational terms in $4-2\e$ dimensions can be determined from quadruple, triple and double cuts without the need for independent pentagon contributions using a massive integral basis. Read More

**Affiliations:**

^{1}Saclay, SPhT,

^{2}IPPP, Durham U.,

^{3}Bohr Inst.

**Category:**High Energy Physics - Phenomenology

We illustrate the use of new on-shell methods, 4-dimensional unitarity cuts combined with on-shell recursions relations, by computing the A_4^{(1)}(phi,1^-,2^-,3^+,4^+) amplitude in the large top mass limit where the Higgs boson couples to gluons through an effective interaction. Read More

**Affiliations:**

^{1}Saclay, SPhT,

^{2}IPPP, Durham U.,

^{3}Bohr Inst.

**Category:**High Energy Physics - Phenomenology

We consider a Higgs boson coupled to gluons via the five-dimensional effective operator H Tr G_{munu}G^{munu} produced by considering the heavy top quark limit of the one-loop coupling of Higgs and gluons in the standard model. We treat H as the real part of a complex field phi that couples to the selfdual gluon field strengths and compute the one-loop corrections to amplitudes involving phi, two colour adjacent negative helicity gluons and an arbitrary number of positive helicity gluons - the so-called phi-MHV amplitudes. We use four-dimensional unitarity to construct the cut-containing contributions and the recently developed recursion relations to obtain the rational contribution for an arbitrary number of external gluons. Read More

We use twistor inspired rules to compute the one-loop amplitude for a Higgs boson coupling to any number of negative helicity gluons in the large top mass limit. Read More

**Affiliations:**

^{1}Durham U., IPPP,

^{2}Durham U., IPPP,

^{3}Durham U., IPPP

We apply the on-shell tree-level recursion relations of Britto, Cachazo, Feng and Witten to a variety of processes involving internal and external massive particles with spin. We show how to construct multi-vector boson currents where one or more off-shell vector bosons couples to a quark pair and number of gluons. We give compact results for single vector boson currents with up to six partons and double vector boson currents with up to four partons for all helicity combinations. Read More

**Affiliations:**

^{1}Durham U.,

^{2}Durham U.,

^{3}Durham U.,

^{4}Princeton, Inst. Advanced Study

We derive general tree-level recursion relations for amplitudes which include massive propagating particles. As an illustration, we apply these recursion relations to scattering amplitudes of gluons coupled to massive scalars. We provide new results for all amplitudes with a pair of scalars and n < 5 gluons. Read More

**Affiliations:**

^{1}Durham U., IPPP,

^{2}Durham U., IPPP,

^{3}Durham U., IPPP

We present MHV-rules for constructing perturbative amplitudes for a Higgs boson and an arbitrary number of partons. We give explicit expressions for amplitudes involving a Higgs and three negative helicity partons and any number of positive helicity partons - the NMHV amplitudes. We also present a recursive formulation of MHV rules that incorporates the Higgs, quarks and gluons. Read More

**Affiliations:**

^{1}Durham U., IPPP,

^{2}Durham U., IPPP

**Category:**High Energy Physics - Phenomenology

We present the universal two-loop splitting functions that describe the limits of two-loop $n$-point amplitudes of massless particles when two of the momenta are collinear. To derive the splitting amplitudes, we take the collinear limits of explicit two-loop four-point helicity amplitudes computed in the 't Hooft-Veltman scheme. The $g \to gg$ splitting amplitude has recently been computed using the unitarity sewing method and we find complete agreement with the results of Ref. Read More