# Ryan Babbush

## Contact Details

NameRyan Babbush |
||

Affiliation |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesQuantum Physics (17) Physics - Chemical Physics (7) Physics - Soft Condensed Matter (2) Computer Science - Learning (2) Mathematics - Mathematical Physics (1) Physics - Statistical Mechanics (1) Mathematical Physics (1) |

## Publications Authored By Ryan Babbush

The variational quantum eigensolver (VQE) algorithm combines the ability of quantum computers to efficiently compute expectations values with a classical optimization routine in order to approximate ground state energies of quantum systems. In this paper, we study the application of VQE to the simulation of molecular energies using the unitary coupled cluster (UCC) ansatz. We introduce new strategies to reduce the circuit depth for the implementation of UCC and improve the optimization of the wavefunction based on efficient classical approximations of the cluster amplitudes. Read More

We present a quantum algorithm for simulating the dynamics of a first-quantized Hamiltonian in real space based on the truncated Taylor series algorithm. We avoid the possibility for singularities by applying various cutoffs to the system and using a high-order finite difference approximation to the kinetic energy operator. We find that our algorithm can simulate $\eta$ interacting particles using a number of calculations of the pairwise interactions that scales, for a fixed spatial grid spacing, as $\tilde{O}(\eta^4)$, versus the $\tilde{O}(\eta^5)$ time required by previous methods (assuming the number of orbitals is proportional to $\eta$), and scales super-polynomially better with the error tolerance than algorithms based on the Lie-Trotter-Suzuki product formula. Read More

A critical question for the field of quantum computing in the near future is whether quantum devices without error correction can perform a well-defined computational task beyond the capabilities of state-of-the-art classical computers, achieving so-called quantum supremacy. We study the task of sampling from the output distributions of (pseudo-)random quantum circuits, a natural task for benchmarking quantum computers. Crucially, sampling this distribution classically requires a direct numerical simulation of the circuit, with computational cost exponential in the number of qubits. Read More

Quantum annealing (QA) has been proposed as a quantum enhanced optimization heuristic exploiting tunneling. Here, we demonstrate how finite range tunneling can provide considerable computational advantage. For a crafted problem designed to have tall and narrow energy barriers separating local minima, the D-Wave 2X quantum annealer achieves significant runtime advantages relative to Simulated Annealing (SA). Read More

Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as "the quantum variational eigensolver" was developed with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Read More

We introduce novel algorithms for the quantum simulation of molecular systems which are asymptotically more efficient than those based on the Trotter-Suzuki decomposition. We present the first application of a recently developed technique for simulating Hamiltonian evolution using a truncated Taylor series to obtain logarithmic scaling with the inverse of the desired precision, an exponential improvement over all prior methods. The two algorithms developed in this work rely on a second quantized encoding of the wavefunction in which the state of an $N$ spin-orbital system is encoded in ${\cal O}(N)$ qubits. Read More

We present a quantum algorithm for the simulation of molecular systems that is asymptotically more efficient than all previous algorithms in the literature in terms of the main problem parameters. As in the first paper of this series (arXiv:1506.01020), we employ a recently developed technique for simulating Hamiltonian evolution using a truncated Taylor series to obtain logarithmic scaling with the inverse of the desired precision. Read More

Although the simulation of quantum chemistry is one of the most anticipated applications of quantum computing, the scaling of known upper bounds on the complexity of these algorithms is daunting. Prior work has bounded errors due to Trotterization in terms of the norm of the error operator and analyzed scaling with respect to the number of spin-orbitals. However, we find that these error bounds can be loose by up to sixteen orders of magnitude for some molecules. Read More

Accurate prediction of chemical and material properties from first principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route towards highly accurate solutions with polynomial cost, however this solution still carries a large overhead. In this perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. Read More

We introduce a method for the problem of learning the structure of a Bayesian network using the quantum adiabatic algorithm. We do so by introducing an efficient reformulation of a standard posterior-probability scoring function on graphs as a pseudo-Boolean function, which is equivalent to a system of 2-body Ising spins, as well as suitable penalty terms for enforcing the constraints necessary for the reformulation; our proposed method requires $\mathcal O(n^2)$ qubits for $n$ Bayesian network variables. Furthermore, we prove lower bounds on the necessary weighting of these penalty terms. Read More

Quantum annealing is a heuristic quantum algorithm which exploits quantum resources to minimize an objective function embedded as the energy levels of a programmable physical system. To take advantage of a potential quantum advantage, one needs to be able to map the problem of interest to the native hardware with reasonably low overhead. Because experimental considerations constrain our objective function to take the form of a low degree PUBO (polynomial unconstrained binary optimization), we employ non-convex loss functions which are polynomial functions of the margin. Read More

\emph{Ab initio} computation of molecular properties is one of the most promising applications of quantum computing. While this problem is widely believed to be intractable for classical computers, efficient quantum algorithms exist which have the potential to vastly accelerate research throughput in fields ranging from material science to drug discovery. Using a solid-state quantum register realized in a nitrogen-vacancy (NV) defect in diamond, we compute the bond dissociation curve of the minimal basis helium hydride cation, HeH$^+$. Read More

We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-local qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-local, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Read More

Application of the adiabatic model of quantum computation requires efficient encoding of the solution to computational problems into the lowest eigenstate of a Hamiltonian that supports universal adiabatic quantum computation. Experimental systems are typically limited to restricted forms of 2-body interactions. Therefore, universal adiabatic quantum computation requires a method for approximating quantum many-body Hamiltonians up to arbitrary spectral error using at most 2-body interactions. Read More

We develop a resource efficient method by which the ground-state of an arbitrary k-local, optimization Hamiltonian can be encoded as the ground-state of a (k-1)-local optimization Hamiltonian. This result is important because adiabatic quantum algorithms are often most easily formulated using many-body interactions but experimentally available interactions are generally 2-body. In this context, the efficiency of a reduction gadget is measured by the number of ancilla qubits required as well as the amount of control precision needed to implement the resulting Hamiltonian. Read More

Feynman and Hibbs were the first to variationally determine an effective potential whose associated classical canonical ensemble approximates the exact quantum partition function. We examine the existence of a map between the local potential and an effective classical potential which matches the exact quantum equilibrium density and partition function. The usefulness of such a mapping rests in its ability to readily improve Born-Oppenheimer potentials for use with classical sampling. Read More

Optimization problems associated with the interaction of linked particles are at the heart of polymer science, protein folding and other important problems in the physical sciences. In this review we explain how to recast these problems as constraint satisfaction problems such as linear programming, maximum satisfiability, and pseudo-boolean optimization. By encoding problems this way, one can leverage substantial insight and powerful solvers from the computer science community which studies constraint programming for diverse applications such as logistics, scheduling, artificial intelligence, and circuit design. Read More