Roger D. Blandford - KIPAC, Stanford University

Roger D. Blandford
Are you Roger D. Blandford?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Roger D. Blandford
Affiliation
KIPAC, Stanford University
City
Irvine
Country
United States

Pubs By Year

Pub Categories

 
High Energy Astrophysical Phenomena (18)
 
Astrophysics (17)
 
Cosmology and Nongalactic Astrophysics (12)
 
Instrumentation and Methods for Astrophysics (6)
 
Astrophysics of Galaxies (6)
 
General Relativity and Quantum Cosmology (4)
 
Physics - Plasma Physics (2)
 
Physics - Fluid Dynamics (1)
 
Earth and Planetary Astrophysics (1)
 
Solar and Stellar Astrophysics (1)

Publications Authored By Roger D. Blandford

2016Jul
Authors: Hitomi Collaboration, Felix A. Aharonian, Hiroki Akamatsu, Fumie Akimoto, Steven W. Allen, Lorella Angelini, Keith A. Arnaud, Marc Audard, Hisamitsu Awaki, Magnus Axelsson, Aya Bamba, Marshall W. Bautz, Roger D. Blandford, Laura W. Brenneman, Gregory V. Brown, Esra Bulbul, Edward M. Cackett, Maria Chernyakova, Meng P. Chiao, Paolo Coppi, Elisa Costantini, Jelle de Plaa, Jan-Willem den Herder, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan E. Eckart, Teruaki Enoto, Yuichiro Ezoe, Andrew C. Fabian, Carlo Ferrigno, Adam R. Foster, Ryuichi Fujimoto, Yasushi Fukazawa, Akihiro Furuzawa, Massimiliano Galeazzi, Luigi C. Gallo, Poshak Gandhi, Margherita Giustini, Andrea Goldwurm, Liyi Gu, Matteo Guainazzi, Yoshito Haba, Kouichi Hagino, Kenji Hamaguchi, Ilana Harrus, Isamu Hatsukade, Katsuhiro Hayashi, Takayuki Hayashi, Kiyoshi Hayashida, Junko Hiraga, Ann E. Hornschemeier, Akio Hoshino, John P. Hughes, Yuto Ichinohe, Ryo Iizuka, Hajime Inoue, Shota Inoue, Yoshiyuki Inoue, Kazunori Ishibashi, Manabu Ishida, Kumi Ishikawa, Yoshitaka Ishisaki, Masayuki Itoh, Naoko Iyomoto, Jelle S. Kaastra, Timothy Kallman, Tuneyoshi Kamae, Erin Kara, Jun Kataoka, Satoru Katsuda, Junichiro Katsuta, Madoka Kawaharada, Nobuyuki Kawai, Richard L. Kelley, Dmitry Khangulyan, Caroline A. Kilbourne, Ashley L. King, Takao Kitaguchi, Shunji Kitamoto, Tetsu Kitayama, Takayoshi Kohmura, Motohide Kokubun, Shu Koyama, Katsuji Koyama, Peter Kretschmar, Hans A. Krimm, Aya Kubota, Hideyo Kunieda, Philippe Laurent, Francois Lebrun, Shiu-Hang Lee, Maurice Leutenegger, Olivier Limousin, Michael Loewenstein, Knox S. Long, David Lumb, Grzegorz M. Madejski, Yoshitomo Maeda, Daniel Maier, Kazuo Makishima, Maxim Markevitch, Hironori Matsumoto, Kyoko Matsushita, Dan McCammon, Brian R. McNamara, Missagh Mehdipour, Eric D. Miller, Jon M. Miller, Shin Mineshige, Kazuhisa Mitsuda, Ikuyuki Mitsuishi, Takuya Miyazawa, Tsunefumi Mizuno, Hideyuki Mori, Koji Mori, Harvey Moseley, Koji Mukai, Hiroshi Murakami, Toshio Murakami, Richard F. Mushotzky, Takao Nakagawa, Hiroshi Nakajima, Takeshi Nakamori, Toshio Nakano, Shinya Nakashima, Kazuhiro Nakazawa, Kumiko Nobukawa, Masayoshi Nobukawa, Hirofumi Noda, Masaharu Nomachi, Steve L. O'Dell, Hirokazu Odaka, Takaya Ohashi, Masanori Ohno, Takashi Okajima, Naomi Ota, Masanobu Ozaki, Frits Paerels, Stephane Paltani, Arvind Parmar, Robert Petre, Ciro Pinto, Martin Pohl, F. Scott Porter, Katja Pottschmidt, Brian D. Ramsey, Christopher S. Reynolds, Helen R. Russell, Samar Safi-Harb, Shinya Saito, Kazuhiro Sakai, Hiroaki Sameshima, Toru Sasaki, Goro Sato, Kosuke Sato, Rie Sato, Makoto Sawada, Norbert Schartel, Peter J. Serlemitsos, Hiromi Seta, Megumi Shidatsu, Aurora Simionescu, Randall K. Smith, Yang Soong, Lukasz Stawarz, Yasuharu Sugawara, Satoshi Sugita, Andrew E. Szymkowiak, Hiroyasu Tajima, Hiromitsu Takahashi, Tadayuki Takahashi, Shin'ichiro Takeda, Yoh Takei, Toru Tamagawa, Keisuke Tamura, Takayuki Tamura, Takaaki Tanaka, Yasuo Tanaka, Yasuyuki Tanaka, Makoto Tashiro, Yuzuru Tawara, Yukikatsu Terada, Yuichi Terashima, Francesco Tombesi, Hiroshi Tomida, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Tsuru, Hiroyuki Uchida, Hideki Uchiyama, Yasunobu Uchiyama, Shutaro Ueda, Yoshihiro Ueda, Shiro Ueno, Shin'ichiro Uno, C. Meg Urry, Eugenio Ursino, Cor P. de Vries, Shin Watanabe, Norbert Werner, Daniel R. Wik, Dan R. Wilkins, Brian J. Williams, Shinya Yamada, Hiroya Yamaguchi, Kazutaka Yamaoka, Noriko Y. Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Tahir Yaqoob, Yoichi Yatsu, Daisuke Yonetoku, Atsumasa Yoshida, Irina Zhuravleva, Abderahmen Zoghbi

High-resolution X-ray spectroscopy with Hitomi was expected to resolve the origin of the faint unidentified E=3.5 keV emission line reported in several low-resolution studies of various massive systems, such as galaxies and clusters, including the Perseus cluster. We have analyzed the Hitomi first-light observation of the Perseus cluster. Read More

2016Jul
Authors: Hitomi Collaboration, Felix Aharonian, Hiroki Akamatsu, Fumie Akimoto, Steven W. Allen, Naohisa Anabuki, Lorella Angelini, Keith Arnaud, Marc Audard, Hisamitsu Awaki, Magnus Axelsson, Aya Bamba, Marshall Bautz, Roger Blandford, Laura Brenneman, Gregory V. Brown, Esra Bulbul, Edward Cackett, Maria Chernyakova, Meng Chiao, Paolo Coppi, Elisa Costantini, Jelle de Plaa, Jan-Willem den Herder, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan Eckart, Teruaki Enoto, Yuichiro Ezoe, Andrew Fabian, Carlo Ferrigno, Adam Foster, Ryuichi Fujimoto, Yasushi Fukazawa, Akihiro Furuzawa, Massimiliano Galeazzi, Luigi Gallo, Poshak Gandhi, Margherita Giustini, Andrea Goldwurm, Liyi Gu, Matteo Guainazzi, Yoshito Haba, Kouichi Hagino, Kenji Hamaguchi, Ilana Harrus, Isamu Hatsukade, Katsuhiro Hayashi, Takayuki Hayashi, Kiyoshi Hayashida, Junko Hiraga, Ann Hornschemeier, Akio Hoshino, John Hughes, Ryo Iizuka, Hajime Inoue, Yoshiyuki Inoue, Kazunori Ishibashi, Manabu Ishida, Kumi Ishikawa, Yoshitaka Ishisaki, Masayuki Itoh, Naoko Iyomoto, Jelle Kaastra, Timothy Kallman, Tuneyoshi Kamae, Erin Kara, Jun Kataoka, Satoru Katsuda, Junichiro Katsuta, Madoka Kawaharada, Nobuyuki Kawai, Richard Kelley, Dmitry Khangulyan, Caroline Kilbourne, Ashley King, Takao Kitaguchi, Shunji Kitamoto, Tetsu Kitayama, Takayoshi Kohmura, Motohide Kokubun, Shu Koyama, Katsuji Koyama, Peter Kretschmar, Hans Krimm, Aya Kubota, Hideyo Kunieda, Philippe Laurent, Francois Lebrun, Shiu-Hang Lee, Maurice Leutenegger, Olivier Limousin, Michael Loewenstein, Knox S. Long, David Lumb, Grzegorz Madejski, Yoshitomo Maeda, Daniel Maier, Kazuo Makishima, Maxim Markevitch, Hironori Matsumoto, Kyoko Matsushita, Dan McCammon, Brian McNamara, Missagh Mehdipour, Eric Miller, Jon Miller, Shin Mineshige, Kazuhisa Mitsuda, Ikuyuki Mitsuishi, Takuya Miyazawa, Tsunefumi Mizuno, Hideyuki Mori, Koji Mori, Harvey Moseley, Koji Mukai, Hiroshi Murakami, Toshio Murakami, Richard Mushotzky, Ryo Nagino, Takao Nakagawa, Hiroshi Nakajima, Takeshi Nakamori, Toshio Nakano, Shinya Nakashima, Kazuhiro Nakazawa, Masayoshi Nobukawa, Hirofumi Noda, Masaharu Nomachi, Steve O'Dell, Hirokazu Odaka, Takaya Ohashi, Masanori Ohno, Takashi Okajima, Naomi Ota, Masanobu Ozaki, Frits Paerels, Stephane Paltani, Arvind Parmar, Robert Petre, Ciro Pinto, Martin Pohl, F. Scott Porter, Katja Pottschmidt, Brian Ramsey, Christopher Reynolds, Helen Russell, Samar Safi-Harb, Shinya Saito, Kazuhiro Sakai, Hiroaki Sameshima, Goro Sato, Kosuke Sato, Rie Sato, Makoto Sawada, Norbert Schartel, Peter Serlemitsos, Hiromi Seta, Megumi Shidatsu, Aurora Simionescu, Randall Smith, Yang Soong, Lukasz Stawarz, Yasuharu Sugawara, Satoshi Sugita, Andrew Szymkowiak, Hiroyasu Tajima, Hiromitsu Takahashi, Tadayuki Takahashi, Shin'ichiro Takeda, Yoh Takei, Toru Tamagawa, Keisuke Tamura, Takayuki Tamura, Takaaki Tanaka, Yasuo Tanaka, Yasuyuki Tanaka, Makoto Tashiro, Yuzuru Tawara, Yukikatsu Terada, Yuichi Terashima, Francesco Tombesi, Hiroshi Tomida, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Tsuru, Hiroyuki Uchida, Hideki Uchiyama, Yasunobu Uchiyama, Shutaro Ueda, Yoshihiro Ueda, Shiro Ueno, Shin'ichiro Uno, Meg Urry, Eugenio Ursino, Cor de Vries, Shin Watanabe, Norbert Werner, Daniel Wik, Dan Wilkins, Brian Williams, Shinya Yamada, Hiroya Yamaguchi, Kazutaka Yamaok, Noriko Y. Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Tahir Yaqoob, Yoichi Yatsu, Daisuke Yonetoku, Atsumasa Yoshida, Takayuki Yuasa, Irina Zhuravleva, Abderahmen Zoghbi

Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive hot gas, which dominates in mass over stars in a cluster, is a crucial missing ingredient. Read More

2016Apr
Affiliations: 1KIPAC, Stanford University and SLAC, 2KIPAC, Stanford University and SLAC, 3KIPAC, Stanford University and SLAC, 4KIPAC, Stanford University and SLAC, 5KIPAC, Stanford University and SLAC

Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short time scales. These are likely due to rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on relaxation of unstable force-free magnetostatic equilibria. Read More

We present the results of particle-in-cell numerical pair plasma simulations of relativistic 2D magnetostatic equilibria known as the 'ABC' fields. In particular, we focus on the lowest-order unstable configuration consisting of two minima and two maxima of the magnetic vector potential. Breaking of the initial symmetry leads to exponential growth of the electric energy and to the formation of two current layers, which is consistent with the picture of 'X-point collapse' first described by Syrovatskii. Read More

We study the abundance of substructure in the matter density near galaxies using ALMA Science Verification observations of the strong lensing system SDP.81. We present a method to measure the abundance of subhalos around galaxies using interferometric observations of gravitational lenses. Read More

2015Nov
Authors: Fabio Acero, Markus Ackermann, Marco Ajello, Luca Baldini, Jean Ballet, Guido Barbiellini, Denis Bastieri, Ronaldo Bellazzini, E. Bissaldi, Roger Blandford, E. D. Bloom, Raffaella Bonino, Eugenio Bottacini, J. Bregeon, Philippe Bruel, Rolf Buehler, S. Buson, G. A. Caliandro, Rob A. Cameron, R Caputo, Micaela Caragiulo, Patrizia A. Caraveo, Jean Marc Casandjian, Elisabetta Cavazzuti, Claudia Cecchi, A. Chekhtman, J. Chiang, G. Chiaro, Stefano Ciprini, R. Claus, J. M. Cohen, Johann Cohen-Tanugi, L. R. Cominsky, B. Condon, Jan Conrad, S. Cutini, F. D'Ammando, A. Angelis, F. Palma, Rachele Desiante, S. W. Digel, L. Venere, Persis S Drell, Alex Drlica-Wagner, C. Favuzzi, E. C. Ferrara, Anna Franckowiak, Prof. Yasushi Fukazawa, Prof. Stefan Funk, P. Fusco, Fabio Gargano, Dario Gasparrini, Nicola Giglietto, Paolo Giommi, Francesco Giordano, Marcello Giroletti, Tom Glanzman, Gary Godfrey, G A. Gomez-Vargas, I. A. Grenier, M. -H. Grondin, L. Guillemot, Sylvain Guiriec, M Gustafsson, D. Hadasch, A. K. Harding, M. Hayashida, Elizabeth Hays, J. W. Hewitt, A. B. Hill, Deirdre Horan, X. Hou, Giulia Iafrate, Tobias Jogler, G. J'ohannesson, Anthony S. Johnson, T. Kamae, Hideaki Katagiri, Prof. Jun Kataoka, Junichiro Katsuta, Matthew Kerr, J. Knodlseder, Prof. Dale Kocevski, M. Kuss, Helene Laffon, J. Lande, S. Larsson, Luca Latronico, Marianne Lemoine-Goumard, J. Li, L. Li, Francesco Longo, Francesco Loparco, Michael N. Lovellette, Pasquale Lubrano, J. Magill, S. Maldera, Martino Marelli, Michael Mayer, M. N. Mazziotta, Peter F. Michelson, Warit Mitthumsiri, Tsunefumi Mizuno, Alexander A. Moiseev, Maria Elena Monzani, E. Moretti, Aldo Morselli, Igor V. Moskalenko, Prof. Simona Murgia, Prof. Rodrigo Nemmen, Eric Nuss, Takashi Ohsugi, Nicola Omodei, Monica Orienti, Elena Orlando, Jonathan F. Ormes, David Paneque, J. S. Perkins, Melissa Pesce-Rollins, Prof. Vahe' Petrosian, Frederic Piron, Giovanna Pivato, Troy Porter, S. Rain`o, Riccardo Rando, Massimiliano Razzano, Soebur Razzaque, Anita Reimer, Prof. Olaf Reimer, Matthieu Renaud, Thierry Reposeur, Mr. Romain Rousseau, P. M. Parkinson, J. Schmid, A. Schulz, C. Sgr`o, Eric J Siskind, Francesca Spada, Gloria Spandre, Paolo Spinelli, Andrew W. Strong, Daniel Suson, Hiro Tajima, Hiromitsu Takahashi, T. Tanaka, Jana B. Thayer, D. J. Thompson, L. Tibaldo, Omar Tibolla, Prof. Diego F. Torres, Gino Tosti, Eleonora Troja, Yasunobu Uchiyama, G. Vianello, B. Wells, Kent Wood, M. Wood, Manal Yassine, Stephan Zimmer

To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope. Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. Read More

2015Jun
Affiliations: 1KIPAC, Stanford University, 2KIPAC, Stanford University

Recent observations of the Crab Nebula (Rudy et al 2015) have maintained its reputation for high energy astrophysical enlightenment and its use as a testbed for theories of the behaviour of magnetized, relativistic plasma. In particular, new observations of the inner knot located 0.65" SE from the pulsar confirm that it is compact, elongated transversely to the symmetry axis and curved concave towards the pulsar. Read More

In order to understand the conditions which lead a highly magnetized, relativistic plasma to become unstable, and in such cases how the plasma evolves, we study a prototypical class of magnetostatic equilibria where the magnetic field satisfies $\nabla \times\mathbf B = \alpha \mathbf B$, where $\alpha$ is spatially uniform, on a periodic domain. Using numerical solutions we show that generic examples of such equilibria are unstable to ideal modes (including incompressible ones) which are marked by exponential growth in the linear phase. We characterize the unstable mode, showing how it can be understood in terms of merging magnetic and current structures, and explicitly demonstrate its instability using the energy principle. Read More

We examine the prospects of detecting demagnified images of gravitational lenses in observations of strongly lensed mm-wave molecular emission lines with ALMA. We model the lensing galaxies as a superposition of a dark matter component, a stellar component, and a central supermassive black hole and assess the detectability of the central images for a range of relevant parameters (e.g. Read More

2014Dec
Authors: Tadayuki Takahashi, Kazuhisa Mitsuda, Richard Kelley, Felix Aharonian, Hiroki Akamatsu, Fumie Akimoto, Steve Allen, Naohisa Anabuki, Lorella Angelini, Keith Arnaud, Makoto Asai, Marc Audard, Hisamitsu Awaki, Philipp Azzarello, Chris Baluta, Aya Bamba, Nobutaka Bando, Marshall Bautz, Thomas Bialas, Roger Blandford, Kevin Boyce, Laura Brenneman, Greg Brown, Edward Cackett, Edgar Canavan, Maria Chernyakova, Meng Chiao, Paolo Coppi, Elisa Costantini, Jelle de Plaa, Jan-Willem den Herder, Michael DiPirro, Chris Done, Tadayasu Dotani, John Doty, Ken Ebisawa, Megan Eckart, Teruaki Enoto, Yuichiro Ezoe, Andrew Fabian, Carlo Ferrigno, Adam Foster, Ryuichi Fujimoto, Yasushi Fukazawa, Stefan Funk, Akihiro Furuzawa, Massimiliano Galeazzi, Luigi Gallo, Poshak Gandhi, Kirk Gilmore, Matteo Guainazzi, Daniel Haas, Yoshito Haba, Kenji Hamaguchi, Atsushi Harayama, Isamu Hatsukade, Takayuki Hayashi, Katsuhiro Hayashi, Kiyoshi Hayashida, Junko Hiraga, Kazuyuki Hirose, Ann Hornschemeier, Akio Hoshino, John Hughes, Una Hwang, Ryo Iizuka, Yoshiyuki Inoue, Kazunori Ishibashi, Manabu Ishida, Kumi Ishikawa, Kosei Ishimura, Yoshitaka Ishisaki, Masayuki Ito, Naoko Iwata, Naoko Iyomoto, Chris Jewell, Jelle Kaastra, Timothy Kallman, Tuneyoshi Kamae, Jun Kataoka, Satoru Katsuda, Junichiro Katsuta, Madoka Kawaharada, Nobuyuki Kawai, Taro Kawano, Shigeo Kawasaki, Dmitry Khangulyan, Caroline Kilbourne, Mark Kimball, Masashi Kimura, Shunji Kitamoto, Tetsu Kitayama, Takayoshi Kohmura, Motohide Kokubun, Saori Konami, Tatsuro Kosaka, Alex Koujelev, Katsuji Koyama, Hans Krimm, Aya Kubota, Hideyo Kunieda, Stephanie LaMassa, Philippe Laurent, Franccois Lebrun, Maurice Leutenegger, Olivier Limousin, Michael Loewenstein, Knox Long, David Lumb, Grzegorz Madejski, Yoshitomo Maeda, Kazuo Makishima, Maxim Markevitch, Candace Masters, Hironori Matsumoto, Kyoko Matsushita, Dan McCammon, Daniel Mcguinness, Brian McNamara, Joseph Miko, Jon Miller, Eric Miller, Shin Mineshige, Kenji Minesugi, Ikuyuki Mitsuishi, Takuya Miyazawa, Tsunefumi Mizuno, Koji Mori, Hideyuki Mori, Franco Moroso, Theodore Muench, Koji Mukai, Hiroshi Murakami, Toshio Murakami, Richard Mushotzky, Housei Nagano, Ryo Nagino, Takao Nakagawa, Hiroshi Nakajima, Takeshi Nakamori, Shinya Nakashima, Kazuhiro Nakazawa, Yoshiharu Namba, Chikara Natsukari, Yusuke Nishioka, Masayoshi Nobukawa, Hirofumi Noda, Masaharu Nomachi, Steve O' Dell, Hirokazu Odaka, Hiroyuki Ogawa, Mina Ogawa, Keiji Ogi, Takaya Ohashi, Masanori Ohno, Masayuki Ohta, Takashi Okajima, Atsushi Okamoto, Tsuyoshi Okazaki, Naomi Ota, Masanobu Ozaki, Frits Paerels, St'ephane Paltani, Arvind Parmar, Robert Petre, Ciro Pinto, Martin Pohl, James Pontius, F. Scott Porter, Katja Pottschmidt, Brian Ramsey, Rubens Reis, Christopher Reynolds, Claudio Ricci, Helen Russell, Samar Safi-Harb, Shinya Saito, Shin-ichiro Sakai, Hiroaki Sameshima, Goro Sato, Yoichi Sato, Kosuke Sato, Rie Sato, Makoto Sawada, Peter Serlemitsos, Hiromi Seta, Yasuko Shibano, Maki Shida, Takanobu Shimada, Keisuke Shinozaki, Peter Shirron, Aurora Simionescu, Cynthia Simmons, Randall Smith, Gary Sneiderman, Yang Soong, Lukasz Stawarz, Yasuharu Sugawara, Hiroyuki Sugita, Satoshi Sugita, Andrew Szymkowiak, Hiroyasu Tajima, Hiromitsu Takahashi, Hiroaki Takahashi, Shin-ichiro Takeda, Yoh Takei, Toru Tamagawa, Takayuki Tamura, Keisuke Tamura, Takaaki Tanaka, Yasuo Tanaka, Yasuyuki Tanaka, Makoto Tashiro, Yuzuru Tawara, Yukikatsu Terada, Yuichi Terashima, Francesco Tombesi, Hiroshi Tomida, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Tsuru, Hiroyuki Uchida, Yasunobu Uchiyama, Hideki Uchiyama, Yoshihiro Ueda, Shutaro Ueda, Shiro Ueno, Shinichiro Uno, Meg Urry, Eugenio Ursino, Cor de Vries, Atsushi Wada, Shin Watanabe, Tomomi Watanabe, Norbert Werner, Nicholas White, Dan Wilkins, Takahiro Yamada, Shinya Yamada, Hiroya Yamaguchi, Kazutaka Yamaoka, Noriko Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Tahir Yaqoob, Yoichi Yatsu, Daisuke Yonetoku, Atsumasa Yoshida, Takayuki Yuasa, Irina Zhuravleva, Abderahmen Zoghbi, John ZuHone

The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of Delta E < 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. Read More

2014Sep
Affiliations: 1KIPAC, Stanford University, 2KIPAC, Stanford University, 3KIPAC, Stanford University

Physicists have pondered the origin of cosmic rays for over a hundred years. However the last few years have seen an upsurge in the observation, progress in the theory and a genuine increase in the importance attached to the topic due to its intimate connection to the indirect detection of evidence for dark matter. The intent of this talk is to set the stage for the meeting by reviewing some of the basic features of the entire cosmic ray spectrum from GeV to ZeV energy and some of the models that have been developed. Read More

The Crab nebula and its pulsar (referred to together as "Crab") have historically played a central role in astrophysics. True to their legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Read More

High precision cosmological distance measurements towards individual objects such as time delay gravitational lenses or type Ia supernovae are affected by weak lensing perturbations by galaxies and groups along the line of sight. In time delay gravitational lenses, "external convergence," kappa, can dominate the uncertainty in the inferred distances and hence cosmological parameters. In this paper we attempt to reconstruct kappa, due to line of sight structure, using a simple halo model. Read More

In order to use strong gravitational lens time delays to measure precise and accurate cosmological parameters the effects of mass along the line of sight must be taken into account. We present a method to achieve this by constraining the probability distribution function of the effective line of sight convergence k_ext. The method is based on matching the observed overdensity in the weighted number of galaxies to that found in mock catalogs with k_ext obtained by ray-tracing through structure formation simulations. Read More

2013Jan

The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 13 June 2012, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 -- 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low-background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than one-hundred-fold improvement in sensitivity over the collimated or coded-mask instruments that have operated in this bandpass. Read More

2012Nov
Affiliations: 1Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 2Center for Theoretical Science, Jadwin Hall, Princeton University, Princeton Center for Theoretical Science Fellow, 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University

Accreting black holes (BHs) produce intense radiation and powerful relativistic jets, which are affected by the BH's spin magnitude and direction. While thin disks might align with the BH spin axis via the Bardeen-Petterson effect, this does not apply to jet systems with thick disks. We used fully three-dimensional general relativistic magnetohydrodynamical simulations to study accreting BHs with various BH spin vectors and disk thicknesses with magnetic flux reaching saturation. Read More

2012Oct
Authors: Tadayuki Takahashi, Kazuhisa Mitsuda, Richard Kelley, Henri AartsFelix Aharonian, Hiroki Akamatsu, Fumie Akimoto, Steve Allen, Naohisa Anabuki, Lorella Angelini, Keith Arnaud, Makoto Asai, Marc Audard, Hisamitsu Awaki, Philipp Azzarello, Chris Baluta, Aya Bamba, Nobutaka Bando, Mark Bautz, Roger Blandford, Kevin Boyce, Greg Brown, Ed Cackett, Maria Chernyakova, Paolo Coppi, Elisa Costantini, Jelle de Plaa, Jan-Willem den Herder, Michael DiPirro, Chris Done, Tadayasu Dotani, John Doty, Ken Ebisawa, Megan Eckart, Teruaki Enoto, Yuichiro Ezoe, Andrew Fabian, Carlo Ferrigno, Adam Foster, Ryuichi Fujimoto, Yasushi Fukazawa, Stefan Funk, Akihiro Furuzawa, Massimiliano Galeazzi, Luigi Gallo, Poshak Gandhi, Keith Gendreau, Kirk Gilmore, Daniel Haas, Yoshito Haba, Kenji Hamaguchi, Isamu Hatsukade, Takayuki Hayashi, Kiyoshi Hayashida, Junko Hiraga, Kazuyuki Hirose, Ann Hornschemeier, Akio Hoshino, John Hughes, Una Hwang, Ryo Iizuka, Yoshiyuki Inoue, Kazunori Ishibashi, Manabu Ishida, Kosei Ishimura, Yoshitaka Ishisaki, Masayuki Ito, Naoko Iwata, Naoko Iyomoto, Jelle Kaastra, Timothy Kallman, Tuneyoshi Kamae, Jun Kataoka, Satoru Katsuda, Hajime Kawahara, Madoka Kawaharada, Nobuyuki Kawai, Shigeo Kawasaki, Dmitry Khangaluyan, Caroline Kilbourne, Masashi Kimura, Kenzo Kinugasa, Shunji Kitamoto, Tetsu Kitayama, Takayoshi Kohmura, Motohide Kokubun, Tatsuro Kosaka, Alex Koujelev, Katsuji Koyama, Hans Krimm, Aya Kubota, Hideyo Kunieda, Stephanie LaMassa, Philippe Laurent, Francois Lebrun, Maurice Leutenegger, Olivier Limousin, Michael Loewenstein, Knox Long, David Lumb, Grzegorz Madejski, Yoshitomo Maeda, Kazuo Makishima, Genevieve Marchand, Maxim Markevitch, Hironori Matsumoto, Kyoko Matsushita, Dan McCammon, Brian McNamara, Jon Miller, Eric Miller, Shin Mineshige, Kenji Minesugi, Ikuyuki Mitsuishi, Takuya Miyazawa, Tsunefumi Mizuno, Hideyuki Mori, Koji Mori, Koji Mukai, Toshio Murakami, Hiroshi Murakami, Richard Mushotzky, Housei Nagano, Ryo Nagino, Takao Nakagawa, Hiroshi Nakajima, Takeshi Nakamori, Kazuhiro Nakazawa, Yoshiharu Namba, Chikara Natsukari, Yusuke Nishioka, Masayoshi Nobukawa, Masaharu Nomachi, Steve O' Dell, Hirokazu Odaka, Hiroyuki Ogawa, Mina Ogawa, Keiji Ogi, Takaya Ohashi, Masanori Ohno, Masayuki Ohta, Takashi Okajima, Atsushi Okamoto, Tsuyoshi Okazaki, Naomi Ota, Masanobu Ozaki, Frits Paerels, Stephane Paltani, Arvind Parmar, Robert Petre, Martin Pohl, F. Scott Porter, Brian Ramsey, Rubens Reis, Christopher Reynolds, Helen Russell, Samar Safi-Harb, Shin-ichiro Sakai, Hiroaki Sameshima, Jeremy Sanders, Goro Sato, Rie Sato, Yoichi Sato, Kosuke Sato, Makoto Sawada, Peter Serlemitsos, Hiromi Seta, Yasuko Shibano, Maki Shida, Takanobu Shimada, Keisuke Shinozaki, Peter Shirron, Aurora Simionescu, Cynthia Simmons, Randall Smith, Gary Sneiderman, Yang Soong, Lukasz Stawarz, Yasuharu Sugawara, Hiroyuki Sugita, Satoshi Sugita, Andrew Szymkowiak, Hiroyasu Tajima, Hiromitsu Takahashi, Shin-ichiro Takeda, Yoh Takei, Toru Tamagawa, Takayuki Tamura, Keisuke Tamura, Takaaki Tanaka, Yasuo Tanaka, Makoto Tashiro, Yuzuru Tawara, Yukikatsu Terada, Yuichi Terashima, Francesco Tombesi, Hiroshi Tomida, Yoko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Tsuru, Hiroyuki Uchida, Yasunobu Uchiyama, Hideki Uchiyama, Yoshihiro Ueda, Shiro Ueno, Shinichiro Uno, Meg Urry, Eugenio Ursino, Cor de Vries, Atsushi Wada, Shin Watanabe, Norbert Werner, Nicholas White, Takahiro Yamada, Shinya Yamada, Hiroya Yamaguchi, Noriko Yamasaki, Shigeo Yamauchi, Makoto Yamauchi, Yoichi Yatsu, Daisuke Yonetoku, Atsumasa Yoshida, Takayuki Yuasa

The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. Read More

We present Hubble Space Telescope (HST) ACS and WFC3 observations of SDSS J1029+2623, a three-image quasar lens system produced by a foreground cluster at z=0.584. Our strong lensing analysis reveals 6 additional multiply imaged galaxies. Read More

2012Aug
Affiliations: 1KIPAC Stanford/SLAC, 2KIPAC Stanford/SLAC, 3KIPAC Stanford/SLAC, 4KIPAC Stanford/SLAC, 5KIPAC Stanford/SLAC, 6IfA Hawaii, 7KIPAC Stanford/SLAC, 8KIPAC Stanford/SLAC, 9IfA Hawaii, 10KIPAC Stanford/SLAC, 11KIPAC Stanford/SLAC, 12AIfA Bonn, 13KICP Chicago

This is the first in a series of papers in which we measure accurate weak-lensing masses for 51 of the most X-ray luminous galaxy clusters known at redshifts 0.15Read More

We present results from Chandra observations of the cluster lens SDSS J1029+2623 at z_l=0.58, which is a gravitationally lensed quasar with the largest known image separation. We clearly detect X-ray emission both from the lensing cluster and the three lensed quasar images. Read More

Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height $H$ to cylindrical radius $R$ ratio of $|H/R|\sim 0.2--1$) accretion flows around BHs with various dimensionless spins ($a/M$, with BH mass $M$) and with initially toroidally-dominated ($\phi$-directed) and poloidally-dominated ($R-z$ directed) magnetic fields. Read More

We estimate that there may be up to ~10^5 compact objects in the mass range 10^{-8} -10^{-2} solar mass per main sequence star that are unbound to a host star in the Galaxy. We refer to these objects as nomads; in the literature a subset of these are sometimes called free-floating or rogue planets. Our estimate for the number of Galactic nomads is consistent with a smooth extrapolation of the mass function of unbound objects above the Jupiter-mass scale, the stellar mass density limit, and the metallicity of the interstellar medium. Read More

We have calculated the equilibrium properties of a star in a circular, equatorial orbit about a Super-Massive Black Hole (SMBH), when the star fills and overflows its Roche lobe. The mass transfer time scale is anticipated to be long compared with the dynamical time and short compared with the thermal time of the star, so that the entropy as a function of the interior mass is conserved. We have studied how the stellar entropy, pressure, radius, mean density, and orbital angular momentum vary when the star is evolved adiabatically, for a representative set of stars. Read More

In this paper we consider Roche accretion in an Extreme Mass-Ratio Inspiral (EMRI) binary system formed by a star orbiting a massive black hole. The ultimate goal is to detect the mass and spin of the black hole and provide a test of general relativity in the strong-field regime from the resultant quasi-periodic signals. Before accretion starts, the stellar orbit is presumed to be circular and equatorial, and shrinks due to gravitational radiation. Read More

2010Oct
Authors: Tadayuki Takahashi, Kazuhisa Mitsuda, Richard Kelley, Felix Aharonian, Fumie Akimoto, Steve Allen, Naohisa Anabuki, Lorella Angelini, Keith Arnaud, Hisamitsu Awaki, Aya Bamba, Nobutaka Bando, Mark Bautz, Roger Blandford, Kevin Boyce, Greg Brown, Maria Chernyakova, Paolo Coppi, Elisa Costantini, Jean Cottam, John Crow, Jelle de Plaa, Cor de Vries, Jan-Willem den Herder, Michael DiPirro, Chris Done, Tadayasu Dotani, Ken Ebisawa, Teruaki Enoto, Yuichiro Ezoe, Andrew Fabian, Ryuichi Fujimoto, Yasushi Fukazawa, Stefan Funk, Akihiro Furuzawa, Massimiliano Galeazzi, Poshak Gandhi, Keith Gendreau, Kirk Gilmore, Yoshito Haba, Kenji Hamaguchi, Isamu Hatsukade, Kiyoshi Hayashida, Junko Hiraga, Kazuyuki Hirose, Ann Hornschemeier, John Hughes, Una Hwang, Ryo Iizuka, Kazunori Ishibashi, Manabu Ishida, Kosei Ishimura, Yoshitaka Ishisaki, Naoki Isobe, Masayuki Ito, Naoko Iwata, Jelle Kaastra, Timothy Kallman, Tuneyoshi Kamae, Hideaki Katagiri, Jun Kataoka, Satoru Katsuda, Madoka Kawaharada, Nobuyuki Kawai, Shigeo Kawasaki, Dmitry Khangaluyan, Caroline Kilbourne, Kenzo Kinugasa, Shunji Kitamoto, Tetsu Kitayama, Takayoshi Kohmura, Motohide Kokubun, Tatsuro Kosaka, Taro Kotani, Katsuji Koyama, Aya Kubota, Hideyo Kunieda, Philippe Laurent, Francois Lebrun, Olivier Limousin, Michael Loewenstein, Knox Long, Grzegorz Madejski, Yoshitomo Maeda, Kazuo Makishima, Maxim Markevitch, Hironori Matsumoto, Kyoko Matsushita, Dan McCammon, Jon Miller, Shin Mineshige, Kenji Minesugi, Takuya Miyazawa, Tsunefumi Mizuno, Koji Mori, Hideyuki Mori, Koji Mukai, Hiroshi Murakami, Toshio Murakami, Richard Mushotzky, Yujin Nakagawa, Takao Nakagawa, Hiroshi Nakajima, Takeshi Nakamori, Kazuhiro Nakazawa, Yoshiharu Namba, Masaharu Nomachi, Steve O' Dell, Hiroyuki Ogawa, Mina Ogawa, Keiji Ogi, Takaya Ohashi, Masanori Ohno, Masayuki Ohta, Takashi Okajima, Naomi Ota, Masanobu Ozaki, Frits Paerels, Stéphane Paltani, Arvind Parmer, Robert Petre, Martin Pohl, Scott Porter, Brian Ramsey, Christopher Reynolds, Shin-ichiro Sakai, Rita Sambruna, Goro Sato, Yoichi Sato, Peter Serlemitsos, Maki Shida, Takanobu Shimada, Keisuke Shinozaki, Peter Shirron, Randall Smith, Gary Sneiderman, Yang Soong, Lukasz Stawarz, Hiroyuki Sugita, Andrew Szymkowiak, Hiroyasu Tajima, Hiromitsu Takahashi, Yoh Takei, Toru Tamagawa, Takayuki Tamura, Keisuke Tamura, Takaaki Tanaka, Yasuo Tanaka, Yasuyuki Tanaka, Makoto Tashiro, Yuzuru Tawara, Yukikatsu Terada, Yuichi Terashima, Francesco Tombesi, Hiroshi Tomida, Miyako Tozuka, Yoko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Tsuru, Hiroyuki Uchida, Yasunobu Uchiyama, Hideki Uchiyama, Yoshihiro Ueda, Shinichiro Uno, Meg Urry, Shin Watanabe, Nicholas White, Takahiro Yamada, Hiroya Yamaguchi, Kazutaka Yamaoka, Noriko Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Yoichi Yatsu, Daisuke Yonetoku, Atsumasa Yoshida

The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe by performing high-resolution, high-throughput spectroscopy with moderate angular resolution. ASTRO-H covers very wide energy range from 0. Read More

ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (40-600 keV) at a background level 10 times better than the current instruments on orbit. SGD is complimentary to ASTRO-H's Hard X-ray Imager covering the energy range of 5-80 keV. Read More

It is shown that the radio and gamma-ray emission observed from newly-found "GeV-bright" supernova remnants (SNRs) can be explained by a model, in which a shocked cloud and shock-accelerated cosmic rays (CRs) frozen in it are simultaneously compressed by the supernova blastwave as a result of formation of a radiative cloud shock. Simple reacceleration of pre-existing CRs is generally sufficient to power the observed gamma-ray emission through the decays of neutral pions produced in hadronic interactions between high-energy protons (nuclei) and gas in the compressed-cloud layer. This model provides a natural account of the observed synchrotron radiation in SNRs W51C, W44 and IC 443 with flat radio spectral index, which can be ascribed to a combination of secondary and reaccelerated electrons and positrons. Read More

From high-resolution images of 23 Seyfert-1 galaxies at z=0.36 and z=0.57 obtained with the Near Infrared Camera and Multi-Object Spectrometer on board the Hubble Space Telescope (HST), we determine host-galaxy morphology, nuclear luminosity, total host-galaxy luminosity and spheroid luminosity. Read More

Faraday rotation measurements have provided an invaluable technique with which to measure the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Read More

Recent observations of cosmic ray electrons from several instruments have revealed various degrees of deviation in the measured electron energy distribution from a simple power-law, in a form of an excess around TeV energies. An even more prominent deviation has been observed in the fraction of cosmic ray positrons around 100 GeV energies. In this paper we show that the observed excesses in the electron spectrum may be easily re-produced without invoking any unusual sources other than the general diffuse Galactic components of cosmic rays. Read More

We have searched 4.5 square degrees of archival HST/ACS images for cosmic strings, identifying close pairs of similar, faint galaxies and selecting groups whose alignment is consistent with gravitational lensing by a long, straight string. We find no evidence for cosmic strings in five large-area HST treasury surveys (covering a total of 2. Read More

We present simulated results of quasi-periodic flares generated by the inelastic collisions of a star bound to a super-massive black hole (SMBH) and its attendant accretion disc. We show that the behavior of the quasi-periodicity is affected by the mass and spin of the black hole and the orbital elements of the stellar orbit. We also evaluate the possibility of extracting useful information on these parameters and verifying the character of the Kerr metric from such quasi-periodic signals. Read More

2008Dec
Affiliations: 1Department of Physics and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 2Department of Physics and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University
Category: Astrophysics

Rotating magnetized compact objects and their accretion discs can generate strong toroidal magnetic fields driving highly magnetized plasmas into relativistic jets. Of significant concern, however, has been that a strong toroidal field in the jet should be highly unstable to the non-axisymmetric helical kink (screw) $m=1$ mode leading to rapid disruption. In addition, a recent concern has been that the jet formation process itself may be unstable due to the accretion of non-dipolar magnetic fields. Read More

2008Aug
Affiliations: 1KIPAC, Stanford, 2KIPAC, Stanford
Category: Astrophysics

The Einstein radius plays a central role in lens studies as it characterises the strength of gravitational lensing. The distribution of Einstein radii near the upper cutoff should probe the largest mass concentrations in the universe. Adopting a triaxial halo model, we compute expected distributions of large Einstein radii. Read More

We present a stable procedure for defining and measuring the two point angular autocorrelation function, w, of faint (25 < V < 29), barely resolved and unresolved sources in the HST GOODS and UDF datasets. We construct catalogs that include close pairs and faint detections. We show for the first time that on subarcsecond scales, the correlation function exceeds unity. Read More

Lens modeling is the key to successful and meaningful automated strong galaxy-scale gravitational lens detection. We have implemented a lens-modeling "robot" that treats every bright red galaxy (BRG) in a large imaging survey as a potential gravitational lens system. Using a simple model optimized for "typical" galaxy-scale lenses, we generate four assessments of model quality that are used in an automated classification. Read More

This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05 - 0. Read More

2008Jan

We consider axisymmetric relativistic jets with a toroidal magnetic field and an ultrarelativistic equation of state, with the goal of studying the lateral structure of jets whose pressure is matched to the pressure of the medium through which they propagate. We find all self-similar steady-state solutions of the relativistic MHD equations for this setup. One of the solutions is the case of a parabolic jet being accelerated by the pressure gradient as it propagates through a medium with pressure declining as p(z)\propto z^{-2}. Read More

2007Nov
Affiliations: 1KIPAC, Stanford, 2AIfA, Bonn, 3AIfA, Bonn, 4KIPAC, Stanford, 5KIPAC, Stanford, 6KIPAC, Stanford, 7KIPAC, Stanford, 8KIPAC, Stanford, 9AIfA, Bonn, 10AIfA, Bonn, 11ESO, 12UC Santa Barbara, 13AIfA, Bonn, 14UC Santa Barbara, 15OAMP, Marseille
Category: Astrophysics

The galaxy cluster RX J1347-1145 is one of the most X-ray luminous and most massive clusters known. Its extreme mass makes it a prime target for studying issues addressing cluster formation and cosmology. In this paper we present new high-resolution HST/ACS and Chandra X-ray data. Read More

The relationship between the metric and nonrelativistic matter distribution depends on the theory of gravity and additional fields, providing a possible way of distinguishing competing theories. With the assumption that the geometry and kinematics of the homogeneous universe have been measured to sufficient accuracy, we present a procedure for understanding and testing the relationship between the cosmological matter distribution and metric perturbations (along with their respective evolution) using the ratio of the physical size of the perturbation to the size of the horizon as our small expansion parameter. We expand around Newtonian gravity on linear, subhorizon scales with coefficient functions in front of the expansion parameter. Read More

We combine Hubble Space Telescope images of a sample of 20 Seyfert galaxies at z=0.36 with spectroscopic information from the Keck Telescope to determine the black hole mass - spheroid luminosity relation (M-L), the Fundamental Plane (FP) of the host galaxies and the M-sigma relation. Assuming pure luminosity evolution, we find that the host spheroids had smaller luminosity and stellar velocity dispersion than today for a fixed M. Read More

Outflows can be loaded and accelerated to high speeds along rapidly rotating, open magnetic field lines by centrifugal forces. Whether such magnetocentrifugally driven winds are stable is a longstanding theoretical problem. As a step towards addressing this problem, we perform the first large-scale 3D MHD simulations that extend to a distance $\sim 10^2$ times beyond the launching region, starting from steady 2D (axisymmetric) solutions. Read More

We present and employ a new kinematical approach to cosmological `dark energy' studies. We construct models in terms of the dimensionless second and third derivatives of the scale factor a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q_0 and the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all LCDM models have j(t)=1 (constant), which facilitates simple tests for departures from the LCDM paradigm. Read More

We test the evolution of the correlation between black hole mass and bulge velocity dispersion (M$_{\rm BH}-\sigma$), using a carefully selected sample of 14 Seyfert 1 galaxies at $z=0.36\pm0.01$. Read More

The Deep Extragalactic Exploratory Probe (DEEP) is a multi-phase research program dedicated to the study of the formation and evolution of galaxies and of large scale structure in the distant Universe. This paper describes the first five-year phase, denoted DEEP1. A series of ten DEEP1 papers will discuss a range of scientific topics (e. Read More

Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ``piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Read More

We present the results of a series of time-dependent numerical simulations of cold, magnetocentrifugally launched winds from accretion disks. Our simulations span four and half decades of mass loading; in the context of a disk with a launching region from $0.1\AU$ to $1. Read More

The velocity dispersion of 7 Seyfert 1 galaxies at z~0.37 is measured using high signal-to-noise Keck spectra. Black hole (BH) mass estimates are obtained via an empirically calibrated photoionization method. Read More

2004Sep
Affiliations: 1UC Davis, 2UC Davis, 3UC Davis, 4UC Davis, 5SIRTF Science Center, 6Kapteyn Institute, 7UCLA, 8KIPAC, 9UPenn
Category: Astrophysics

Compact groups of galaxies recently have been discovered in association with several strong gravitational lens systems. These groups provide additional convergence to the lensing potential and thus affect the value of H_0 derived from the systems. Lens system time delays are now being measured with uncertainties of only a few percent or better. Read More