Rodrigo Fernandez - University of Toronto

Rodrigo Fernandez
Are you Rodrigo Fernandez?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Rodrigo Fernandez
Affiliation
University of Toronto
City
Toronto
Country
Canada

Pubs By Year

External Links

Pub Categories

 
High Energy Astrophysical Phenomena (22)
 
Solar and Stellar Astrophysics (16)
 
Nuclear Theory (12)
 
General Relativity and Quantum Cosmology (11)
 
Astrophysics (9)
 
Instrumentation and Methods for Astrophysics (2)

Publications Authored By Rodrigo Fernandez

We investigate the nucleosynthesis of heavy elements in the winds ejected by accretion disks formed in neutron star mergers. We compute the element formation in disk outflows from hypermassive neutron star (HMNS) remnants of variable lifetime, including the effect of angular momentum transport in the disk evolution. We employ long-term axisymmetric hydrodynamic disk simulations to model the ejecta, and compute r-process nucleosynthesis with tracer particles using a nuclear reaction network containing $\sim 8000$ species. Read More

We investigate the ejecta from black hole - neutron star mergers by modeling the formation and interaction of mass ejected in a tidal tail and a disk wind. The outflows are neutron-rich, giving rise to optical/infrared emission powered by the radioactive decay of $r$-process elements (a kilonova). Here we perform an end-to-end study of this phenomenon, where we start from the output of a fully-relativistic merger simulation, calculate the post-merger hydrodynamical evolution of the ejecta and disk winds including neutrino physics, determine the final nucleosynthetic yields using post-processing nuclear reaction network calculations, and compute the kilonova emission with a radiative transfer code. Read More

We consider $r$-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star -- black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important -- and in some cases dominant -- contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. Read More

The mergers of binaries containing neutron stars and stellar-mass black holes are the most promising sources for direct detection in gravitational waves by the interferometers Advanced LIGO and Virgo over the next few years. The concurrent detection of electromagnetic emission from these events would greatly enhance the scientific return of these discoveries. Here we review the state of the art in modeling the electromagnetic signal of neutron star binary mergers across different phases of the merger and multiple wavelengths. Read More

2015Oct
Affiliations: 1Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 2Jet Propulsion Laboratory, 3California Institute of Technology, Cahill Center for Astronomy and Astrophysics, 4Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 5Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 6Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 7Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 8Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 9Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 10Anton Pannekoek Institute for Astronomy, 11California Institute of Technology, Cahill Center for Astronomy and Astrophysics, 12California Institute of Technology, Cahill Center for Astronomy and Astrophysics, 13Jet Propulsion Laboratory, 14Jet Propulsion Laboratory, 15Rice University, Department of Physics and Astronomy, 16Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 17Georgia College, Department of Chemistry, Physics, and Astronomy, 18Jet Propulsion Laboratory, 19Jet Propulsion Laboratory, 20North-West University, Centre for Space Research, 21Technical University of Denmark, DTU Space, National Space Institute, 22Yale University, Department of Astronomy, 23Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 24University of Virginia, Department of Astronomy, 25MPI for Extraterrestrial Physics Garching, 26Durham University, Centre for Extragalactic Astronomy, Department of Physics, 27Jet Propulsion Laboratory, 28North Carolina State University, Department of Physics, 29Jet Propulsion Laboratory, 30Cambridge, Institute of Astronomy, UK, 31Penn State University, Department of Astronomy and Astrophysics, 32Jet Propulsion Laboratory, 33University of California, Berkeley, Department of Physics, 34ASI Science Data Center, Italy, 35California Institute of Technology, Cahill Center for Astronomy and Astrophysics, 36Cambridge, Institute of Astronomy, UK, 37Jet Propulsion Laboratory, 38Purdue University, Department of Physics and Astronomy, 39Texas Tech University, Physics Department, 40Nagoya University, Center for Experimental Studies, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, 41University of Maryland, Physics Department, 42RIKEN, 43Univ. of Michigan in Ann Arbor, Astronomy Dept, 44Harvard-Smithsonian Center for Astrophysics, 45Istituto di Astrofisica e Planetologia Spaziali, INAF, 46Department of Astronomy/Steward Observatory, 47Lawrence Livermore National Laboratory, 48Jet Propulsion Laboratory, 49Department of Astronomy/Steward Observatory, 50NASA Goddard Space Flight Center, 51Tohoku University, Astronomical Institute, 52NASA Goddard Space Flight Center

This paper describes the Polarization Spectroscopic Telescope Array (PolSTAR), a mission proposed to NASA's 2014 Small Explorer (SMEX) announcement of opportunity. PolSTAR measures the linear polarization of 3-50 keV (requirement; goal: 2.5-70 keV) X-rays probing the behavior of matter, radiation and the very fabric of spacetime under the extreme conditions close to the event horizons of black holes, as well as in and around magnetars and neutron stars. Read More

We develop analytic and numerical models of the properties of super-Eddington stellar winds, motivated by phases in stellar evolution when super-Eddington energy deposition (via, e.g., unstable fusion, wave heating, or a binary companion) heats a region near the stellar surface. Read More

2015Jul

We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. Read More

We investigate the effect of dimensionality on the transition to explosion in neutrino-driven core-collapse supernovae. Using parameterized hydrodynamic simulations of the stalled supernova shock in one-, two- (2D), and three spatial dimensions (3D), we systematically probe the extent to which hydrodynamic instabilities alone can tip the balance in favor of explosion. In particular, we focus on systems that are well into the regimes where the Standing Accretion Shock Instability (SASI) or neutrino-driven convection dominate the dynamics, and characterize the difference between them. Read More

We explore the evolution of the different ejecta components generated during the merger of a neutron star (NS) and a black hole (BH). Our focus is the interplay between material ejected dynamically during the merger, and the wind launched on a viscous timescale by the remnant accretion disk. These components are expected to contribute to an electromagnetic transient and to produce r-process elements, each with a different signature when considered separately. Read More

We study the radioactively-powered transients produced by accretion disk winds following a compact object merger. Starting with the outflows generated in two-dimensional hydrodynamical disk models, we use wavelength-dependent radiative transfer calculations to generate synthetic light curves and spectra. We show that the brightness and color of the resulting kilonova transients carry information about the merger physics. Read More

The accretion disk that forms after a neutron star merger is a source of neutron-rich ejecta. The ejected material contributes to a radioactively-powered electromagnetic transient, with properties that depend sensitively on the composition of the outflow. Here we investigate how the spin of the black hole remnant influences mass ejection on the thermal and viscous timescales. Read More

Mergers of binary neutron stars (NSs) usually result in the formation of a hypermassive neutron star (HMNS). Whether- and when this remnant collapses to a black hole (BH) depends primarily on the equation of state and on angular momentum transport processes, both of which are uncertain. Here we show that the lifetime of the merger remnant may be directly imprinted in the radioactively powered kilonova emission following the merger. Read More

In the collapsing core of massive stars, the standing accretion shock instability (SASI) can drive spiral modes that efficiently redistribute angular momentum. This process can impart a spin to the forming neutron star even when the progenitor star is non-rotating. Here we develop the first analytical description of the angular momentum redistribution driven by a spiral mode of the SASI. Read More

The success of the neutrino mechanism of core-collapse supernovae relies on the supporting action of two hydrodynamic instabilities: neutrino-driven convection and the Standing Accretion Shock Instability (SASI). Depending on the structure of the stellar progenitor, each of these instabilities can dominate the evolution of the gain region prior to the onset of explosion, with implications for the ensuing asymmetries. Here we examine the flow dynamics in the neighborhood of explosion by means of parametric two-dimensional, time-dependent hydrodynamic simulations for which the linear stability properties are well understood. Read More

Expulsion of neutron-rich matter following the merger of neutron star (NS) binaries is crucial to the radioactively-powered electromagnetic counterparts of these events and to their relevance as sources of r-process nucleosynthesis. Here we explore the long-term (viscous) evolution of remnant black hole accretion disks formed in such mergers by means of two-dimensional, time-dependent hydrodynamical simulations. The evolution of the electron fraction due to charged-current weak interactions is included, and neutrino self-irradiation is modeled as a lightbulb that accounts for the disk geometry and moderate optical depth effects. Read More

Type Ia supernovae (SNe Ia), thermonuclear explosions of carbon-oxygen white dwarfs (CO-WDs), are currently the best cosmological "standard candles", but the triggering mechanism of the explosion is unknown. It was recently shown that the rate of head-on collisions of typical field CO-WDs in triple systems may be comparable to the SNe Ia rate. Here we provide evidence supporting a scenario in which the majority of SNe Ia are the result of such head-on collisions of CO-WDs. Read More

We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux -- the Radiation-Driven Magneto-Acoustic Instability (RMI, a.k.a. Read More

We explore the evolution of radiatively inefficient accretion disks in which nuclear reactions are dynamically important (`Nuclear Dominated Accretion Flows', or NuDAFs). Examples of such disks are those generated by the merger of a white dwarf with a neutron star or black hole, or by the collapse of a rotating star. Here we present two-dimensional hydrodynamic simulations that systematically explore the effect of adding a single nuclear reaction to a viscous torus. Read More

We study the transition to runaway expansion of an initially stalled core-collapse supernova shock. The neutrino luminosity, mass accretion rate, and neutrinospheric radius are all treated as free parameters. In spherical symmetry, this transition is mediated by a global non-adiabatic instability that develops on the advection time and reaches non-linear amplitude. Read More

In the magnetar model, the quiescent non-thermal soft X-ray emission from Anomalous X-ray Pulsars and Soft-Gamma Repeaters is thought to arise from resonant comptonization of thermal photons by charges moving in a twisted magnetosphere. Robust inference of physical quantities from observations is difficult, because the process depends strongly on geometry and current understanding of the magnetosphere is not very deep. The polarization of soft X-ray photons is an independent source of information, and its magnetospheric imprint remains only partially explored. Read More

A stalled spherical accretion shock, such as that arising in core-collapse supernovae, is unstable to non-spherical perturbations. In three dimensions, this Standing Accretion Shock Instability (SASI) can develop spiral modes that spin-up the protoneutron star. Here we study these non-axisymmetric modes by combining linear stability analysis and three-dimensional, time-dependent hydrodynamic simulations with Zeus-MP, focusing on characterizing their spatial structure and angular momentum content. Read More

The thermal emission detected from the millisecond pulsar J0437-4715 is not explained by standard cooling models of neutron stars without a heating mechanism. We investigated three heating mechanisms controlled by the rotational braking of the pulsar: breaking of the solid crust, superfluid vortex creep, and non-equilibrium reactions ('rotochemical heating'). We find that the crust cracking mechanism does not produce detectable heating. Read More

2009Nov
Affiliations: 1Pontificia Universidad Católica de Chile, Santiago, Chile, 2Max-Planck-Institut für Astrophysik, Garching, Germany, 3University of Toronto, Toronto, Canada

A hypothetical time-variation of the gravitational constant $G$ would make neutron stars expand or contract, so the matter in their interiors would depart from beta equilibrium. This induces non-equilibrium weak reactions, which release energy that is invested partly in neutrino emission and partly in internal heating. Eventually, the star arrives at a stationary state in which the temperature remains nearly constant, as the forcing through the change of $G$ is balanced by the ongoing reactions. Read More

We investigate the effects of neutrino heating and alpha-particle recombination on the hydrodynamics of core-collapse supernovae. Our focus is on the non-linear dynamics of the shock wave that forms in the collapse, and the assembly of positive energy material below it. To this end, we perform time-dependent hydrodynamic simulations with FLASH2. Read More

We examine the stability of a standing shock wave within a spherical accretion flow onto a gravitating star, in the context of core-collapse supernova explosions. Our focus is on the effect of nuclear dissociation below the shock on the linear growth, and non-linear saturation, of non-radial oscillations of the shocked fluid. We combine two-dimensional, time-dependent hydrodynamic simulations using FLASH2. Read More

The equilibrium composition of neutron star matter is achieved through weak interactions (direct and inverse beta decays), which proceed on relatively long time scales. If the density of a matter element is perturbed, it will relax to the new chemical equilibrium through non-equilibrium reactions, which produce entropy that is partly released through neutrino emission, while a similar fraction heats the matter and is eventually radiated as thermal photons. We examined two possible mechanisms causing such density perturbations: 1) the reduction in centrifugal force caused by spin-down (particularly in millisecond pulsars), leading to "rotochemical heating", and 2) a hypothetical time-variation of the gravitational constant, as predicted by some theories of gravity and current cosmological models, leading to "gravitochemical heating". Read More

Although the surface of a magnetar is a source of bright thermal X-rays, its spectrum contains substantial non-thermal components. The X-ray emission is pulsed, with pulsed fractions that can be as high as ~ 70%. Several properties of magnetars indicate the presence of persistent, static currents flowing across the stellar surface and closing within the magnetosphere. Read More

2006Jun
Affiliations: 1Pontificia Universidad Catolica de Chile, 2Pontificia Universidad Catolica de Chile, 3University of Toronto

A hypothetical time-variation of the gravitational constant $G$ would cause neutron star matter to depart from beta equilibrium, due to the changing hydrostatic equilibrium. This forces non-equilibrium beta processes to occur, which release energy that is invested partly in neutrino emission and partly in heating the stellar interior. Eventually, the star arrives at a stationary state in which the temperature remains nearly constant, as the forcing through the change of $G$ is balanced by the ongoing reactions. Read More

The electrostatic potential that keeps approximate charge neutrality in neutron star matter is self-consistently introduced into the formalism for rotochemical heating presented in a previous paper by Fernandez and Reisenegger. Although the new formalism is more rigorous, we show that its observable consequences are indistinguishable from those of the previous one, leaving the conclusions of the previous paper unchanged. Read More

2006Jan
Affiliations: 1University of Toronto, 2University of Toronto, 3University of Toronto
Category: Astrophysics

(Abridged) The main sequence star beta Pictoris hosts the best studied circumstellar disk to date. Nonetheless, a long-standing puzzle has been around since the detection of metallic gas in the disk: radiation pressure from the star should blow the gas away, yet the observed motion is consistent with Keplerian rotation. In this work we search for braking mechanisms that can resolve this discrepancy. Read More

Rotochemical heating originates in a departure from beta equilibrium due to spin-down compression in a rotating neutron star. The main consequence is that the star eventually arrives at a quasi-equilibrium state, in which the thermal photon luminosity depends only on the current value of the spin-down power, which is directly measurable. Only in millisecond pulsars the spin-down power remains high long enough for this state to be reached with a substantial luminosity. Read More

We have measured the expansion velocities and proper motion of the ansae in NGC7009 using high dispersion echelle spectra and archive narrow band HST images. Assuming that the ansae are moving at equal and opposite velocities from the central star we obtain an average system radial velocity of -54 +-2 km/s, the eastern ansa approaching and the western ansa receding at Vr = 5.5 +-1 km/s relative to this value. Read More