# Robert Lasenby

## Contact Details

NameRobert Lasenby |
||

Affiliation |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (9) High Energy Astrophysical Phenomena (3) General Relativity and Quantum Cosmology (2) Cosmology and Nongalactic Astrophysics (1) |

## Publications Authored By Robert Lasenby

We derive new constraints on light vectors coupled to Standard Model (SM) fermions, when the corresponding SM current is broken by the chiral anomaly. Cancellation of the anomaly by heavy fermions results, in the low-energy theory, in Wess-Zumino type interactions between the new vector and the SM gauge bosons. These interactions are determined by the requirement that the heavy sector preserves the SM gauge groups, and lead to (energy / vector mass)^2 enhanced rates for processes involving the longitudinal mode of the new vector. Read More

The process of superradiance can extract angular momentum and energy from astrophysical black holes (BHs) to populate gravitationally-bound states with an exponentially large number of light bosons. We analytically calculate superradiant growth rates for vectors around rotating BHs in the regime where the vector Compton wavelength is much larger than the BH size. Spin-1 bound states have superradiance times as short as a second around stellar BHs, growing up to a thou- sand times faster than their spin-0 counterparts. Read More

Strong constraints on the coupling of new light particles to the Standard Model (SM) arise from their production in the hot cores of stars, and the effects of this on stellar cooling. For new light particles which have an effective in-medium mixing with the photon, plasma effects can result in parametrically different production rates to those obtained from a naive calculation. Taking these previously-neglected contributions into account, we make updated estimates for the stellar cooling bounds on light scalars and vectors with a variety of SM couplings. Read More

In the next few years Advanced LIGO (aLIGO) may see gravitational waves (GWs) from thousands of black hole (BH) mergers. This marks the beginning of a new precision tool for physics. Here we show how to search for new physics beyond the standard model using this tool, in particular the QCD axion in the mass range ma ~ 10^-14 to 10^-10 eV. Read More

We study Asymmetric Dark Matter (ADM) in the context of the minimal (Fraternal) Twin Higgs solution to the little hierarchy problem, with a twin sector with gauged $SU(3)' \times SU(2)'$, a twin Higgs, and only third generation twin fermions. Naturalness requires the QCD$^\prime$ scale $\Lambda'_{\rm QCD} \simeq 0.5 - 20 \ {\rm GeV}$, and $t'$ to be heavy. Read More

Dark matter (DM) without a matter asymmetry is studied in the context of Twin Higgs (TH) theories in which the LHC naturalness problem is addressed. These possess a twin sector related to the Standard Model (SM) by a (broken) $\mathbb{Z}_2$ symmetry, and interacting with the SM via a specific Higgs portal. We focus on the minimal realisation of the TH mechanism, the Fraternal Twin Higgs, with only a single generation of twin quarks and leptons, and $SU(3)'\times SU(2)'$ gauge group. Read More

We investigate the interactions of large composite dark matter (DM) states with the Standard Model (SM) sector. Elastic scattering with SM nuclei can be coherently enhanced by factors as large as A^2, where A is the number of constituents in the composite state (there exist models in which DM states of very large A > 10^8 may be realised). This enhancement, for a given direct detection event rate, weakens the expected signals at colliders by up to 1/A. Read More

We investigate the physics of dark matter models featuring composite bound states carrying a large conserved dark "nucleon" number. The properties of sufficiently large dark nuclei may obey simple scaling laws, and we find that this scaling can determine the number distribution of nuclei resulting from Big Bang Dark Nucleosynthesis. For plausible models of asymmetric dark matter, dark nuclei of large nucleon number, e. Read More

In the simplest models of asymmetric dark matter (ADM) annihilation signals are not expected, since the DM is non-self-conjugate and the relic density of anti-DM is negligible. We investigate a new class of models in which a symmetric DM component, in the `low-mass' 1-10 GeV regime favoured for linking the DM and baryon asymmetries, is repopulated through decays. We find that, in models without significant velocity dependence of the annihilation cross section, observational constraints generally force these decays to be (cosmologically) slow. Read More