Renee Hlozek - Oxford

Renee Hlozek
Are you Renee Hlozek?

Claim your profile, edit publications, add additional information:

Contact Details

Renee Hlozek
United Kingdom

Pubs By Year

Pub Categories

Cosmology and Nongalactic Astrophysics (49)
High Energy Physics - Theory (5)
High Energy Physics - Phenomenology (5)
Instrumentation and Methods for Astrophysics (5)
General Relativity and Quantum Cosmology (4)
Statistics - Applications (3)
Physics - Data Analysis; Statistics and Probability (1)
Astrophysics of Galaxies (1)
Physics - Physics and Society (1)
High Energy Physics - Experiment (1)

Publications Authored By Renee Hlozek

We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope Polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarization data using quadratic estimators. We obtain results that are consistent with the expectation from the best-fit Planck LCDM model over a range of multipoles L=80-2100, with an amplitude of lensing A_lens = 1. Read More

Authors: Demitri Muna, Michael Alexander, Alice Allen, Richard Ashley, Daniel Asmus, Ruyman Azzollini, Michele Bannister, Rachael Beaton, Andrew Benson, G. Bruce Berriman, Maciej Bilicki, Peter Boyce, Joanna Bridge, Jan Cami, Eryn Cangi, Xian Chen, Nicholas Christiny, Christopher Clark, Michelle Collins, Johan Comparat, Neil Cook, Darren Croton, Isak Delberth Davids, Éric Depagne, John Donor, Leonardo A. dos Santos, Stephanie Douglas, Alan Du, Meredith Durbin, Dawn Erb, Daniel Faes, J. G. Fernández-Trincado, Anthony Foley, Sotiria Fotopoulou, Søren Frimann, Peter Frinchaboy, Rafael Garcia-Dias, Artur Gawryszczak, Elizabeth George, Sebastian Gonzalez, Karl Gordon, Nicholas Gorgone, Catherine Gosmeyer, Katie Grasha, Perry Greenfield, Rebekka Grellmann, James Guillochon, Mark Gurwell, Marcel Haas, Alex Hagen, Daryl Haggard, Tim Haines, Patrick Hall, Wojciech Hellwing, Edmund Christian Herenz, Samuel Hinton, Renee Hlozek, John Hoffman, Derek Holman, Benne Willem Holwerda, Anthony Horton, Cameron Hummels, Daniel Jacobs, Jens Juel Jensen, David Jones, Arna Karick, Luke Kelley, Matthew Kenworthy, Ben Kitchener, Dominik Klaes, Saul Kohn, Piotr Konorski, Coleman Krawczyk, Kyler Kuehn, Teet Kuutma, Michael T. Lam, Richard Lane, Jochen Liske, Diego Lopez-Camara, Katherine Mack, Sam Mangham, Qingqing Mao, David J. E. Marsh, Cecilia Mateu, Loïc Maurin, James McCormac, Ivelina Momcheva, Hektor Monteiro, Michael Mueller, Roberto Munoz, Rohan Naidu, Nicholas Nelson, Christian Nitschelm, Chris North, Juan Nunez-Iglesias, Sara Ogaz, Russell Owen, John Parejko, Vera Patrício, Joshua Pepper, Marshall Perrin, Timothy Pickering, Jennifer Piscionere, Richard Pogge, Radek Poleski, Alkistis Pourtsidou, Adrian M. Price-Whelan, Meredith L. Rawls, Shaun Read, Glen Rees, Hanno Rein, Thomas Rice, Signe Riemer-Sørensen, Naum Rusomarov, Sebastian F. Sanchez, Miguel Santander-García, Gal Sarid, William Schoenell, Aleks Scholz, Robert L. Schuhmann, William Schuster, Peter Scicluna, Marja Seidel, Lijing Shao, Pranav Sharma, Aleksandar Shulevski, David Shupe, Cristóbal Sifón, Brooke Simmons, Manodeep Sinha, Ian Skillen, Bjoern Soergel, Thomas Spriggs, Sundar Srinivasan, Abigail Stevens, Ole Streicher, Eric Suchyta, Joshua Tan, O. Grace Telford, Romain Thomas, Chiara Tonini, Grant Tremblay, Sarah Tuttle, Tanya Urrutia, Sam Vaughan, Miguel Verdugo, Alexander Wagner, Josh Walawender, Andrew Wetzel, Kyle Willett, Peter K. G. Williams, Guang Yang, Guangtun Zhu, Andrea Zonca

The Astropy Project ( is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Read More


This book lays out the scientific goals to be addressed by the next-generation ground-based cosmic microwave background experiment, CMB-S4, envisioned to consist of dedicated telescopes at the South Pole, the high Chilean Atacama plateau and possibly a northern hemisphere site, all equipped with new superconducting cameras. CMB-S4 will dramatically advance cosmological studies by crossing critical thresholds in the search for the B-mode polarization signature of primordial gravitational waves, in the determination of the number and masses of the neutrinos, in the search for evidence of new light relics, in constraining the nature of dark energy, and in testing general relativity on large scales. Read More

We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013-14 using two detector arrays at 149 GHz, from 548 deg$^2$ of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. Read More

Measurements of cosmic microwave background (CMB) anisotropies provide strong evidence for the existence of dark matter and dark energy. They can also test its composition, probing the energy density and particle mass of different dark-matter and dark-energy components. CMB data have already shown that ultra-light axions (ULAs) with mass in the range $10^{-32}~{\rm eV} \to 10^{-26}~{\rm eV}$ compose a fraction $< 0. Read More

We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using \Nbody\ simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. Read More

We correlate the positions of radio galaxies in the FIRST survey with the CMB lensing convergence estimated from the Atacama Cosmology Telescope over 470 square degrees to determine the bias of these galaxies. We remove optically cross-matched sources below redshift $z=0.2$ to preferentially select Active Galactic Nuclei (AGN). Read More

We present the first attempt to use a combination of CMB, LIGO, and PPTA data to constrain both the tilt and the running of primordial tensor power spectrum through constraints on the gravitational wave energy density generated in the early universe. Combining measurements at different cosmological scales highlights how complementary data can be used to test the predictions of early universe models including the inflationary consistency relation. Current data prefers a slightly positive tilt ($n_t = 0. Read More

We present a measurement of the gravitational lensing of the Cosmic Microwave Background (CMB) temperature and polarization fields obtained by cross-correlating the reconstructed convergence signal from the first season of ACTPol data at 146 GHz with Cosmic Infrared Background (CIB) fluctuations measured using the Planck satellite. Using an overlap area of 206 square degrees, we detect gravitational lensing of the CMB polarization by large-scale structure at a statistical significance of 4.5 sigma. Read More

We present evidence of the gravitational lensing of the cosmic microwave background by $10^{13}$ solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12,000 optically-selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles, and is favored over a null signal at 3. Read More

We present a measurement of the one-point probability distribution function (PDF) of the thermal Sunyaev-Zel'dovich (tSZ) decrement in the pixel temperature histogram of filtered 148 GHz sky maps from the Atacama Cosmology Telescope (ACT). The PDF includes the signal from all galaxy clusters in the map, including objects below the signal-to-noise threshold for individual detection, making it a particularly sensitive probe of the amplitude of matter density perturbations, $\sigma_8$. We use a combination of analytic halo model calculations and numerical simulations to compute the theoretical tSZ PDF and its covariance matrix, accounting for all noise sources and including relativistic corrections. Read More

Future arcminute resolution polarization data from ground-based Cosmic Microwave Background (CMB) observations can be used to estimate the contribution to the temperature power spectrum from the primary anisotropies and to uncover the signature of reionization near $\ell=1500$ in the small angular-scale temperature measurements. Our projections are based on combining expected small-scale E-mode polarization measurements from Advanced ACTPol in the range $300<\ell<3000$ with simulated temperature data from the full Planck mission in the low and intermediate $\ell$ region, $2<\ell<2000$. We show that the six basic cosmological parameters determined from this combination of data will predict the underlying primordial temperature spectrum at high multipoles to better than $1\%$ accuracy. Read More

We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of $1.3'$. Read More

The recent detection of B-modes by BICEP2 has non-trivial implications for axion dark matter implied by combining the tensor interpretation with isocurvature constraints from Planck. In this paper the measurement is taken as fact, and its implications considered, though further experimental verification is required. In the simplest inflation models $r=0. Read More

We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACTxPlanck cross-spectra. We use these cross-correlations to calibrate the ACT data at 148 and 218 GHz, to 0. Read More

The tension between the best fit parameters derived by the Planck team and a number of other astronomical measurements suggests either systematics in the astronomical measurements, systematics in the Planck data, the need for new physics, or a combination thereof. We re-analyze the Planck data and find that the $217\,\text{GHz}\times 217\,\text{GHz}$ detector set spectrum used in the Planck analysis is responsible for some of this tension. We use a map-based foreground cleaning procedure, relying on a combination of 353 GHz and 545 GHz maps to reduce residual foregrounds in the intermediate frequency maps used for cosmological inference. Read More

There are two redshifts in cosmology: $z_{obs}$, the observed redshift computed via spectral lines, and the model redshift, $z$, defined by the effective FLRW scale factor. In general these do not coincide. We place observational constraints on the allowed distortions of $z$ away from $z_{obs}$ - a possibility we dub redshift remapping. Read More

We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Read More

Ultra-light axions ($m_a\lesssim 10^{-18}$eV), motivated by string theory, can be a powerful probe of the energy scale of inflation. In contrast to heavier axions the isocurvature modes in the ultra-light axions can coexist with observable gravitational waves. Here it is shown that large scale structure constraints severely limit the parameter space for axion mass, density fraction and isocurvature amplitude. Read More

For future surveys, spectroscopic follow-up for all supernovae will be extremely difficult. However, one can use light curve fitters, to obtain the probability that an object is a Type Ia. One may consider applying a probability cut to the data, but we show that the resulting non-Ia contamination can lead to biases in the estimation of cosmological parameters. Read More

Recent data from the WMAP, ACT and SPT experiments provide precise measurements of the cosmic microwave background temperature power spectrum over a wide range of angular scales. The combination of these observations is well fit by the standard, spatially flat LCDM cosmological model, constraining six free parameters to within a few percent. The scalar spectral index, n_s = 0. Read More

We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Read More

Authors: Jonathan L. Sievers, Renée A. Hlozek, Michael R. Nolta, Viviana Acquaviva, Graeme E. Addison, Peter A. R. Ade, Paula Aguirre, Mandana Amiri, John William Appel, L. Felipe Barrientos, Elia S. Battistelli, Nick Battaglia, J. Richard Bond, Ben Brown, Bryce Burger, Erminia Calabrese, Jay Chervenak, Devin Crichton, Sudeep Das, Mark J. Devlin, Simon R. Dicker, W. Bertrand Doriese, Joanna Dunkley, Rolando Dünner, Thomas Essinger-Hileman, David Faber, Ryan P. Fisher, Joseph W. Fowler, Patricio Gallardo, Michael S. Gordon, Megan B. Gralla, Amir Hajian, Mark Halpern, Matthew Hasselfield, Carlos Hernández-Monteagudo, J. Colin Hill, Gene C. Hilton, Matt Hilton, Adam D. Hincks, Dave Holtz, Kevin M. Huffenberger, David H. Hughes, John P. Hughes, Leopoldo Infante, Kent D. Irwin, David R. Jacobson, Brittany Johnstone, Jean Baptiste Juin, Madhuri Kaul, Jeff Klein, Arthur Kosowsky, Judy M Lau, Michele Limon, Yen-Ting Lin, Thibaut Louis, Robert H. Lupton, Tobias A. Marriage, Danica Marsden, Krista Martocci, Phil Mauskopf, Michael McLaren, Felipe Menanteau, Kavilan Moodley, Harvey Moseley, Calvin B Netterfield, Michael D. Niemack, Lyman A. Page, William A. Page, Lucas Parker, Bruce Partridge, Reed Plimpton, Hernan Quintana, Erik D. Reese, Beth Reid, Felipe Rojas, Neelima Sehgal, Blake D. Sherwin, Benjamin L. Schmitt, David N. Spergel, Suzanne T. Staggs, Omelan Stryzak, Daniel S. Swetz, Eric R. Switzer, Robert Thornton, Hy Trac, Carole Tucker, Masao Uehara, Katerina Visnjic, Ryan Warne, Grant Wilson, Ed Wollack, Yue Zhao, Caroline Zunckel

We present constraints on cosmological and astrophysical parameters from high-resolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power ell^2 C_ell/2pi of the thermal SZ power spectrum at 148 GHz is measured to be 3. Read More

We present the cosmological analysis of 752 photometrically-classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our photometric-classification method is based on the SN typing technique of Sako et al. (2011), aided by host galaxy redshifts (0. Read More

We introduce Bayesian Estimation Applied to Multiple Species (BEAMS), an algorithm designed to deal with parameter estimation when using contaminated data. We present the algorithm and demonstrate how it works with the help of a Gaussian simulation. We then apply it to supernova data from the Sloan Digital Sky Survey (SDSS), showing how the resulting confidence contours of the cosmological parameters shrink significantly. Read More

We present a description of the data reduction and mapmaking pipeline used for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from 2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hours of data (11 TB for the 148 GHz band only), with a daily average of 10. Read More

We measure the cross-correlation of Atacama Cosmology Telescope CMB lensing convergence maps with quasar maps made from the Sloan Digital Sky Survey DR8 SDSS-XDQSO photometric catalog. The CMB lensing-quasar cross-power spectrum is detected for the first time at a significance of 3.8 sigma, which directly confirms that the quasar distribution traces the mass distribution at high redshifts z>1. Read More

New supernova surveys such as the Dark Energy Survey, Pan-STARRS and the LSST will produce an unprecedented number of photometric supernova candidates, most with no spectroscopic data. Avoiding biases in cosmological parameters due to the resulting inevitable contamination from non-Ia supernovae can be achieved with the BEAMS formalism, allowing for fully photometric supernova cosmology studies. Here we extend BEAMS to deal with the case in which the supernovae are correlated by systematic uncertainties. Read More

We present the measured Sunyaev-Zel'dovich (SZ) flux from 474 optically-selected MaxBCG clusters that fall within the Atacama Cosmology Telescope (ACT) Equatorial survey region. The ACT Equatorial region used in this analysis covers 510 square degrees and overlaps Stripe 82 of the Sloan Digital Sky Survey. We also present the measured SZ flux stacked on 52 X-ray-selected MCXC clusters that fall within the ACT Equatorial region and an ACT Southern survey region covering 455 square degrees. Read More

We present a detection of the unnormalized skewness induced by the thermal Sunyaev-Zel'dovich (tSZ) effect in filtered Atacama Cosmology Telescope (ACT) 148 GHz cosmic microwave background temperature maps. Contamination due to infrared and radio sources is minimized by template subtraction of resolved sources and by constructing a mask using outlying values in the 218 GHz (tSZ-null) ACT maps. We measure = -31 +- 6 \mu K^3 (measurement error only) or +- 14 \mu K^3 (including cosmic variance error) in the filtered ACT data, a 5-sigma detection. Read More

Using high-resolution microwave sky maps made by the Atacama Cosmology Telescope, we for the first time present strong evidence for motions of galaxy clusters and groups via microwave background temperature distortions due to the kinematic Sunyaev-Zel'dovich effect. Galaxy clusters are identified by their constituent luminous galaxies observed by the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. We measure the mean pairwise momentum of clusters, with a probability of the signal being due to random errors of 0. Read More

Supernova cosmology without spectroscopic confirmation is an exciting new frontier which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of supernovae with their probabilities derived from their multi-band lightcurves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10^4 supernovae, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric supernova cosmology. Read More

The original formulation of BEAMS - Bayesian Estimation Applied to Multiple Species - showed how to use a dataset contaminated by points of multiple underlying types to perform unbiased parameter estimation. An example is cosmological parameter estimation from a photometric supernova sample contaminated by unknown Type Ibc and II supernovae. Where other methods require data cuts to increase purity, BEAMS uses all of the data points in conjunction with their probabilities of being each type. Read More

We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545 and 857 GHz, over angular scales 100 < l < 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350 and 500 um; 1000 < l < 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l \propto l^-n with n = 1.25 +/- 0. Read More

We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT). The angular resolution of ACT provides sensitivity to scales beyond \ell = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k \simeq 0.2 Mpc^{-1}. Read More

We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2-degree angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0. Read More

We present measurements of the auto- and cross-frequency correlation power spectra of the cosmic (sub)millimeter background at: 250, 350, and 500 um (1200, 860, and 600 GHz) from observations made with the Balloon-borne Large Aperture Submillimeter Telescope, BLAST; and at 1380 and 2030 um (218 and 148 GHz) from observations made with the Atacama Cosmology Telescope, ACT. The overlapping observations cover 8.6 deg^2 in an area relatively free of Galactic dust near the south ecliptic pole (SEP). Read More

Future photometric supernova surveys will produce vastly more candidates than can be followed up spectroscopically, highlighting the need for effective classification methods based on lightcurves alone. Here we introduce boosting and kernel density estimation techniques which have minimal astrophysical input, and compare their performance on 20,000 simulated Dark Energy Survey lightcurves. We demonstrate that these methods are comparable to the best template fitting methods currently used, and in particular do not require the redshift of the host galaxy or candidate. Read More

We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. Read More

Measurements of the equation of state of dark energy from surveys of thousands of Type Ia Supernovae (SNe Ia) will be limited by spectroscopic follow-up and must therefore rely on photometric identification, increasing the chance that the sample is contaminated by Core Collapse Supernovae (CC SNe). Bayesian methods for supernova cosmology can remove contamination bias while maintaining high statistical precision but are sensitive to the choice of parameterization of the contaminating distance distribution. We use simulations to investigate the form of the contaminating distribution and its dependence on the absolute magnitudes, light curve shapes, colors, extinction, and redshifts of core collapse supernovae. Read More

We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the {\Lambda}CDM cosmological model. Read More

We present a new calibration method based on cross-correlations with WMAP and apply it to data from the Atacama Cosmology Telescope (ACT). ACT's observing strategy and map making procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 < ell < 1000, we determine the absolute calibration with an uncertainty of 2% in temperature. Read More