Rebecca G. Martin - STScI

Rebecca G. Martin
Are you Rebecca G. Martin?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Rebecca G. Martin
Affiliation
STScI
Location

Pubs By Year

Pub Categories

 
Earth and Planetary Astrophysics (19)
 
Solar and Stellar Astrophysics (14)
 
Astrophysics (6)
 
High Energy Astrophysical Phenomena (4)

Publications Authored By Rebecca G. Martin

We use three-dimensional hydrodynamical simulations to show that an initially mildly misaligned circumbinary accretion disk around an eccentric binary can evolve to an orientation that is perpendicular to the orbital plane of the binary (polar alignment). As the disk evolves to the perpendicular state, it undergoes nodal libration oscillations of the tilt angle and the longitude of the ascending node. Dissipation within the disk causes the oscillations to damp. Read More

We analyze the gravitational instability (GI) of a locally isothermal inclined disk around one component of a binary system. Such a disk can undergo global Kozai-Lidov (KL) cycles if the initial disk tilt is above the critical KL angle (of about 40 degrees). During these cycles, an initially circular disk exchanges its inclination for eccentricity, and vice versa. Read More

Pulsar timing observations have revealed planets around only a few pulsars. We suggest that the rarity of these planets is due mainly to two effects. First, we show that the most likely formation mechanism requires the destruction of a companion star. Read More

We first consider how the level of turbulence in a protoplanetary disk affects the formation locations for the observed close-in super-Earths in exosolar systems. We find that a protoplanetary disk that includes a dead zone (a region of low turbulence) has substantially more material in the inner parts of the disk, possibly allowing for in situ formation. For the dead zone to last the entire lifetime of the disk requires the active layer surface density to be sufficiently small, <100 g/cm^2. Read More

With hydrodynamical simulations we determine the conditions under which an initially coplanar planet-disc system that orbits a member of a misaligned binary star evolves to form a planet that undergoes Kozai-Lidov (KL) oscillations once the disc disperses. These oscillations may explain the large orbital eccentricities, as well as the large misalignments with respect to the spin of the central star, observed for some exoplanets. The planet is assumed to be massive enough to open a gap in the disc. Read More

We determine the evolution of a giant planet-disk system that orbits a member of a binary star system and is mildly inclined with respect to the binary orbital plane. The planet orbit and disk are initially mutually coplanar. We analyze the evolution of the planet and the disk by analytic means and hydrodynamic simulations. Read More

Previously we showed that a substantially misaligned viscous accretion disk with pressure that orbits around one component of a binary system can undergo global damped Kozai-Lidov (KL) oscillations. These oscillations produce periodic exchanges of the disk eccentricity with inclination. The disk KL mechanism is quite robust and operates over a wide range of binary and disk parameters. Read More

With the availability of considerably more data, we revisit the question of how special our Solar System is, compared to observed exoplanetary systems. To this goal, we employ a mathematical transformation that allows for a meaningful, statistical comparison. We find that the masses and densities of the giant planets in our Solar System are very typical, as is the age of the Solar System. Read More

Comets and chondrites show non-monotonic behaviour of their Deuterium to Hydrogen (D/H) ratio as a function of their formation location from the Sun. This is difficult to explain with a classical protoplanetary disk model that has a decreasing temperature structure with radius from the Sun. We want to understand if a protoplanetary disc with a dead zone, a region of zero or low turbulence, can explain the measured D/H values in comets and chondrites. Read More

Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai-Lidov oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. Read More

We extend previous studies of the tidal truncation of coplanar disks in binary systems to the more general case of noncoplanar disks. As in the prograde coplanar case, Lindblad resonances play a key role in tidal truncation. We analyze the tidal torque acting on a misaligned nearly circular disk in a circular orbit binary system. Read More

We use three dimensional hydrodynamical simulations to show that a highly misaligned accretion disk around one component of a binary system can exhibit global Kozai-Lidov cycles, where the inclination and eccentricity of the disk are interchanged periodically. This has important implications for accreting systems on all scales, for example, the formation of planets and satellites in circumstellar and circumplanetary disks, outbursts in X-ray binary systems and accretion on to supermassive black holes. Read More

Be/X-ray binary systems exhibit both periodic (Type I) X-ray outbursts and giant (Type II) outbursts, whose origin has remained elusive. We suggest that Type II X-ray outbursts occur when a highly misaligned decretion disk around the Be star becomes eccentric, allowing the compact object companion to capture a large amount of material at periastron. Using 3D smoothed particle hydrodynamics simulations we model the long term evolution of a representative Be/X-ray binary system. Read More

CO is thought to be a vital building block for prebiotic molecules that are necessary for life. Thus, understanding where CO existed in a solid phase within the solar nebula is important for understanding the origin of life. We model the evolution of the CO snow line in a protoplanetary disk. Read More

Protoplanetary disks are likely to be threaded by a weak net flux of vertical magnetic field that is a remnant of the much larger fluxes present in molecular cloud cores. If this flux is approximately conserved its dynamical importance will increase as mass is accreted, initially by stimulating magnetorotational disk turbulence and subsequently by enabling wind angular momentum loss. We use fits to numerical simulations of ambipolar dominated disk turbulence to construct simplified one dimensional evolution models for weakly magnetized protoplanetary disks. Read More

We consider the evolution of accretion discs that contain some turbulence within a disc dead zone, a region about the disc midplane of a disc that is not sufficiently ionised for the magneto-rotational instability (MRI) to drive turbulence. In particular, we determine whether additional sources of turbulence within a dead zone are capable of suppressing gravo-magneto (GM) disc outbursts that arise from a rapid transition from gravitationally produced to MRI produced turbulence. With viscous $\alpha$ disc models we consider two mechanisms that may drive turbulence within the dead zone. Read More

Circumbinary planets have been observed at orbital radii where binary perturbations may have significant effects on the gas disk structure, on planetesimal velocity dispersion, and on the coupling between turbulence and planetesimals. Here, we note that the impact of all of these effects on planet formation is qualitatively altered if the circumbinary disk structure is layered, with a non-turbulent midplane layer (dead zone) and strongly turbulent surface layers. For close binaries, we find that the dead zone typically extends from a radius close to the inner disk edge up to a radius of around 10-20 au from the centre of mass of the binary. Read More

We examine the evolution of the snow line in a protoplanetary disc that contains a dead zone (a region of zero or low turbulence). The snow line is within a self-gravitating part of the dead zone, and we obtain a fully analytic solution for its radius. Our formula could prove useful for future observational attempts to characterise the demographics of planets outside the snow line. Read More

Discs that contain dead zones are subject to the Gravo-Magneto (GM) instability that arises when the turbulence shifts from gravitational to magnetic. We have previously described this instability through a local analysis at some radius in the disc in terms of a limit cycle. A disc may be locally unstable over a radial interval. Read More

Suggestions have been made that asteroid belts may be important both for the existence of life and perhaps even for the evolution of complex life on a planet. Using numerical models for protoplanetary discs we calculate the location of the snow line, and we propose that asteroid belts are most likely to form in its vicinity. We then show that observations of warm dust in exo-solar systems, thought to be produced by collisions between asteroids in a belt, indicate that asteroid belts (when they exist), indeed coincide with the radial location and the temperature of the snow line. Read More

Regular satellites in the solar system are thought to form within circumplanetary discs. We consider a model of a layered circumplanetary disc that consists of a nonturbulent midplane layer and and strongly turbulent disc surface layers. The dead zone provides a favorable site for satellite formation. Read More

We model the evolution of the snow line in a protoplanetary disc. If the magneto-rotational instability (MRI) drives turbulence throughout the disc, there is a unique snow line outside of which the disc is icy. The snow line moves closer to the star as the infall accretion rate drops. Read More

We perform global time-dependent simulations of an accretion disc around a young stellar object with a dead zone (a region where the magneto-rotational instability cannot drive turbulence because the material is not sufficiently ionised). For infall accretion rates on to the disc of around 10^-7 Msun/yr, dead zones occur if the critical magnetic Reynolds number is larger than about 10^4. We model the collapse of a molecular gas cloud. Read More

Angular momentum is transported outwards through an accretion disc by magnetohydrodynamical (MHD) turbulence thus allowing material to accrete on to the central object. The magneto-rotational instability (MRI) requires a minimum ionisation fraction to drive turbulence in a disc. The inner parts of the disc around a young stellar object are sufficiently hot to be thermally ionised. Read More

Previous theoretical studies have found that repeating outbursts can occur in certain regions of an accretion disk, due to sudden transitions in time from gravitationally produced turbulence to magnetically produced turbulence. We analyze the disk evolution in a state diagram that plots the mass accretion rate versus disk surface density. We determine steady state accretion branches that involve gravitational and magnetic sources of turbulence. Read More

Rapidly rotating Be stars are observed as shell stars when the decretion disc is viewed edge on. Transitions between the two implies that the discs may be warped and precessing. Type II X-ray outbursts are thought to occur when the warped disc interacts with the fast stellar wind. Read More

We propose a new mechanism that produces an orbital period change during a nova outburst. When the ejected material carries away the specific angular momentum of the white dwarf, the orbital period increases. A magnetic field on the surface of the secondary star forces a fraction of the ejected material to corotate with the star, and hence the binary system. Read More

We analyse some properties of circumplanetary discs. Flow through such discs may provide most of the mass to gas giant planets, and such discs are likely sites for the formation of regular satellites. We model these discs as accretion discs subject to the tidal forces of the central star. Read More

The orbital period of the recurrent nova U Sco has been observed to decrease during the 1999 outburst. In an outburst mass is ejected from the surface of the white dwarf. The separation of the binary system widens and the orbital period increases. Read More

The low-mass X-ray binary microquasar GRO J1655-40 is observed to have a misalignment between the jets and the binary orbital plane. Since the current black hole spin axis is likely to be parallel to the jets, this implies a misalignment between the spin axis of the black hole and the binary orbital plane. It is likely the black holes formed with an asymmetric supernova which caused the orbital axis to misalign with the spin of the stars. Read More

We model the overall shape of an accretion disc in a semi-detached binary system in which mass is transfered on to a spinning black hole the spin axis of which is misaligned with the orbital rotation axis. We assume the disc is in a steady state. Its outer regions are subject to differential precession caused by tidal torques of the companion star. Read More

Be stars are rapidly spinning B stars surrounded by an outflowing disc of gas in Keplerian rotation. Be star/X-ray binary systems contain a Be star and a neutron star. They are found to have non-zero eccentricities and there is evidence that some systems have a misalignment between the spin axis of the star and the spin axis of the binary orbit. Read More

In the microquasar V4641 Sgr the spin of the black hole is thought to be misaligned with the binary orbital axis. The accretion disc aligns with the black hole spin by the Lense-Thirring effect near to the black hole and further out becomes aligned with the binary orbital axis. The inclination of the radio jets and the Fe$K\alpha$ line profile have both been used to determine the inclination of the inner accretion disc but the measurements are inconsistent. Read More

We consider the properties of the warped accretion disc in NGC 4258 which is delineated by maser emission. We use our analytical models to consider whether the disc could be warped by Lense-Thirring precession. We show that such models fit the shape of the disc well and we determine the goodness of fit for various combinations of the warp radius and the disc and black hole configurations. Read More

The microquasar GRO J1655-40 has a black hole with spin angular momentum apparently misaligned to the orbital plane of its companion star. We analytically model the system with a steady state disc warped by Lense-Thirring precession and find the timescale for the alignment of the black hole with the binary orbit. We make detailed stellar evolution models so as to estimate the accretion rate and the lifetime of the system in this state. Read More

We consider the shape of an accretion disc whose outer regions are misaligned with the spin axis of a central black hole and calculate the steady state form of the warped disc in the case where the viscosity and surface densities are power laws in the distance from the central black hole. We discuss the shape of the resulting disc in both the frame of the black hole and that of the outer disc. We note that some parts of the disc and also any companion star maybe shadowed from the central regions by the warp. Read More

Doubly-degenerate binary systems consisting of two white dwarfs both composed of carbon and oxygen and close enough that mass is transferred from the less massive to the more massive are possible progenitors of type Ia supernovae. If the mass transfer rate is slow enough that the accreting white dwarf can reach 1.38 solar masses then it can ignite carbon degenerately at its centre. Read More

Cataclysmic variables undergo periodic nova explosions during which a finite mass of material is expelled on a short timescale. The system widens and, as a result, the mass-transfer rate drops. This state of hibernation may account for the variety of cataclysmic variable types observed in systems of similar mass and period. Read More