Raquel Urtasun - TTIC

Raquel Urtasun
Are you Raquel Urtasun?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Raquel Urtasun
Affiliation
TTIC
Location

Pubs By Year

External Links

Pub Categories

 
Computer Science - Computer Vision and Pattern Recognition (22)
 
Computer Science - Learning (12)
 
Computer Science - Computation and Language (6)
 
Statistics - Machine Learning (3)
 
Computer Science - Artificial Intelligence (3)
 
Computer Science - Neural and Evolutionary Computing (1)
 
Computer Science - Robotics (1)
 
Computer Science - Sound (1)

Publications Authored By Raquel Urtasun

We propose an approach for semi-automatic annotation of object instances. While most current methods treat object segmentation as a pixel-labeling problem, we here cast it as a polygon prediction task, mimicking how most current datasets have been annotated. In particular, our approach takes as input an image crop and sequentially produces vertices of the polygon outlining the object. Read More

Despite the substantial progress in recent years, the image captioning techniques are still far from being perfect.Sentences produced by existing methods, e.g. Read More

We study characteristics of receptive fields of units in deep convolutional networks. The receptive field size is a crucial issue in many visual tasks, as the output must respond to large enough areas in the image to capture information about large objects. We introduce the notion of an effective receptive field, and show that it both has a Gaussian distribution and only occupies a fraction of the full theoretical receptive field. Read More

While most approaches to semantic reasoning have focused on improving performance, in this paper we argue that computational times are very important in order to enable real time applications such as autonomous driving. Towards this goal, we present an approach to joint classification, detection and semantic segmentation via a unified architecture where the encoder is shared amongst the three tasks. Our approach is very simple, can be trained end-to-end and performs extremely well in the challenging KITTI dataset, outperforming the state-of-the-art in the road segmentation task. Read More

In this paper we introduce the TorontoCity benchmark, which covers the full greater Toronto area (GTA) with 712.5 $km^2$ of land, 8439 $km$ of road and around 400,000 buildings. Our benchmark provides different perspectives of the world captured from airplanes, drones and cars driving around the city. Read More

Most contemporary approaches to instance segmentation use complex pipelines involving conditional random fields, recurrent neural networks, object proposals, or template matching schemes. In our paper, we present a simple yet powerful end-to-end convolutional neural network to tackle this task. Our approach combines intuitions from the classical watershed transform and modern deep learning to produce an energy map of the image where object instances are unambiguously represented as basins in the energy map. Read More

Normalization techniques have only recently begun to be exploited in supervised learning tasks. Batch normalization exploits mini-batch statistics to normalize the activations. This was shown to speed up training and result in better models. Read More

Encoder-decoder models have been widely used to solve sequence to sequence prediction tasks. However current approaches suffer from two shortcomings. First, the encoders compute a representation of each word taking into account only the history of the words it has read so far, yielding suboptimal representations. Read More

We present a novel framework for generating pop music. Our model is a hierarchical Recurrent Neural Network, where the layers and the structure of the hierarchy encode our prior knowledge about how pop music is composed. In particular, the bottom layers generate the melody, while the higher levels produce the drums and chords. Read More

The goal of this paper is to perform 3D object detection in the context of autonomous driving. Our method first aims at generating a set of high-quality 3D object proposals by exploiting stereo imagery. We formulate the problem as minimizing an energy function that encodes object size priors, placement of objects on the ground plane as well as several depth informed features that reason about free space, point cloud densities and distance to the ground. Read More

In this paper we present a robust, efficient and affordable approach to self-localization which does not require neither GPS nor knowledge about the appearance of the world. Towards this goal, we utilize freely available cartographic maps and derive a probabilistic model that exploits semantic cues in the form of sun direction, presence of an intersection, road type, speed limit as well as the ego-car trajectory in order to produce very reliable localization results. Our experimental evaluation shows that our approach can localize much faster (in terms of driving time) with less computation and more robustly than competing approaches, which ignore semantic information. Read More

In this work, we propose a novel way of efficiently localizing a soccer field from a single broadcast image of the game. Related work in this area relies on manually annotating a few key frames and extending the localization to similar images, or installing fixed specialized cameras in the stadium from which the layout of the field can be obtained. In contrast, we formulate this problem as a branch and bound inference in a Markov random field where an energy function is defined in terms of field cues such as grass, lines and circles. Read More

We tackle the problem of estimating optical flow from a monocular camera in the context of autonomous driving. We build on the observation that the scene is typically composed of a static background, as well as a relatively small number of traffic participants which move rigidly in 3D. We propose to estimate the traffic participants using instance-level segmentation. Read More

Our aim is to provide a pixel-wise instance-level labeling of a monocular image in the context of autonomous driving. We build on recent work [Zhang et al., ICCV15] that trained a convolutional neural net to predict instance labeling in local image patches, extracted exhaustively in a stride from an image. Read More

We introduce the MovieQA dataset which aims to evaluate automatic story comprehension from both video and text. The dataset consists of 14,944 questions about 408 movies with high semantic diversity. The questions range from simpler "Who" did "What" to "Whom", to "Why" and "How" certain events occurred. Read More

Hypernymy, textual entailment, and image captioning can be seen as special cases of a single visual-semantic hierarchy over words, sentences, and images. In this paper we advocate for explicitly modeling the partial order structure of this hierarchy. Towards this goal, we introduce a general method for learning ordered representations, and show how it can be applied to a variety of tasks involving images and language. Read More

Supervised training of deep neural nets typically relies on minimizing cross-entropy. However, in many domains, we are interested in performing well on metrics specific to the application. In this paper we propose a direct loss minimization approach to train deep neural networks, which provably minimizes the application-specific loss function. Read More

This work investigates how using reduced precision data in Convolutional Neural Networks (CNNs) affects network accuracy during classification. More specifically, this study considers networks where each layer may use different precision data. Our key result is the observation that the tolerance of CNNs to reduced precision data not only varies across networks, a well established observation, but also within networks. Read More

Books are a rich source of both fine-grained information, how a character, an object or a scene looks like, as well as high-level semantics, what someone is thinking, feeling and how these states evolve through a story. This paper aims to align books to their movie releases in order to provide rich descriptive explanations for visual content that go semantically far beyond the captions available in current datasets. To align movies and books we exploit a neural sentence embedding that is trained in an unsupervised way from a large corpus of books, as well as a video-text neural embedding for computing similarities between movie clips and sentences in the book. Read More

We describe an approach for unsupervised learning of a generic, distributed sentence encoder. Using the continuity of text from books, we train an encoder-decoder model that tries to reconstruct the surrounding sentences of an encoded passage. Sentences that share semantic and syntactic properties are thus mapped to similar vector representations. Read More

In this paper we tackle the problem of instance-level segmentation and depth ordering from a single monocular image. Towards this goal, we take advantage of convolutional neural nets and train them to directly predict instance-level segmentations where the instance ID encodes the depth ordering within image patches. To provide a coherent single explanation of an image we develop a Markov random field which takes as input the predictions of convolutional neural nets applied at overlapping patches of different resolutions, as well as the output of a connected component algorithm. Read More

Convolutional neural networks with many layers have recently been shown to achieve excellent results on many high-level tasks such as image classification, object detection and more recently also semantic segmentation. Particularly for semantic segmentation, a two-stage procedure is often employed. Hereby, convolutional networks are trained to provide good local pixel-wise features for the second step being traditionally a more global graphical model. Read More

This paper proposes a novel framework for generating lingual descriptions of indoor scenes. Whereas substantial efforts have been made to tackle this problem, previous approaches focusing primarily on generating a single sentence for each image, which is not sufficient for describing complex scenes. We attempt to go beyond this, by generating coherent descriptions with multiple sentences. Read More

In this paper, we propose an approach that exploits object segmentation in order to improve the accuracy of object detection. We frame the problem as inference in a Markov Random Field, in which each detection hypothesis scores object appearance as well as contextual information using Convolutional Neural Networks, and allows the hypothesis to choose and score a segment out of a large pool of accurate object segmentation proposals. This enables the detector to incorporate additional evidence when it is available and thus results in more accurate detections. Read More

One of the most popular approaches to multi-target tracking is tracking-by-detection. Current min-cost flow algorithms which solve the data association problem optimally have three main drawbacks: they are computationally expensive, they assume that the whole video is given as a batch, and they scale badly in memory and computation with the length of the video sequence. In this paper, we address each of these issues, resulting in a computationally and memory-bounded solution. Read More

Many problems in real-world applications involve predicting several random variables which are statistically related. Markov random fields (MRFs) are a great mathematical tool to encode such relationships. The goal of this paper is to combine MRFs with deep learning algorithms to estimate complex representations while taking into account the dependencies between the output random variables. Read More

Recent trends in image understanding have pushed for holistic scene understanding models that jointly reason about various tasks such as object detection, scene recognition, shape analysis, contextual reasoning, and local appearance based classifiers. In this work, we are interested in understanding the roles of these different tasks in improved scene understanding, in particular semantic segmentation, object detection and scene recognition. Towards this goal, we "plug-in" human subjects for each of the various components in a state-of-the-art conditional random field model. Read More

Detecting objects becomes difficult when we need to deal with large shape deformation, occlusion and low resolution. We propose a novel approach to i) handle large deformations and partial occlusions in animals (as examples of highly deformable objects), ii) describe them in terms of body parts, and iii) detect them when their body parts are hard to detect (e.g. Read More

In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Read More

In this paper we propose a unified framework for structured prediction with latent variables which includes hidden conditional random fields and latent structured support vector machines as special cases. We describe a local entropy approximation for this general formulation using duality, and derive an efficient message passing algorithm that is guaranteed to converge. We demonstrate its effectiveness in the tasks of image segmentation as well as 3D indoor scene understanding from single images, showing that our approach is superior to latent structured support vector machines and hidden conditional random fields. Read More

Traditional multi-view learning approaches suffer in the presence of view disagreement,i.e., when samples in each view do not belong to the same class due to view corruption, occlusion or other noise processes. Read More

In this paper we present a novel slanted-plane MRF model which reasons jointly about occlusion boundaries as well as depth. We formulate the problem as the one of inference in a hybrid MRF composed of both continuous (i.e. Read More

This manuscripts contains the proofs for "A Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction". Read More