# R. Thorne - Jesus College Oxford

## Contact Details

NameR. Thorne |
||

AffiliationJesus College Oxford |
||

CityOxford |
||

CountryUnited Kingdom |
||

## Pubs By Year |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (50) High Energy Physics - Experiment (14) Instrumentation and Methods for Astrophysics (1) Nuclear Experiment (1) Nuclear Theory (1) |

## Publications Authored By R. Thorne

We present the latest results of studies within the MMHT PDF framework. We discuss the impact of the most recent ATLAS 7 TeV jet data, demonstrating that while a good fit can be achieved for individual jet rapidity bins, it is not possible to achieve a good description of the data when all bins are fitted. We examine the role that the experimental correlated systematic uncertainties play in this, and demonstrate that by simply decorrelating no more than two sources of error between rapidity bins a remarkably improved description of the data can be achieved. Read More

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, R. Costa

^{69}, D. Curtin

^{70}, M. Dall'Osso

^{71}, A. David

^{72}, S. Dawson

^{73}, J. de Blas

^{74}, W. de Boer

^{75}, P. de Castro Manzano

^{76}, C. Degrande

^{77}, R. L. Delgado

^{78}, F. Demartin

^{79}, A. Denner

^{80}, B. Di Micco

^{81}, R. Di Nardo

^{82}, S. Dittmaier

^{83}, A. Dobado

^{84}, T. Dorigo

^{85}, F. A. Dreyer

^{86}, M. Dührssen

^{87}, C. Duhr

^{88}, F. Dulat

^{89}, K. Ecker

^{90}, K. Ellis

^{91}, U. Ellwanger

^{92}, C. Englert

^{93}, D. Espriu

^{94}, A. Falkowski

^{95}, L. Fayard

^{96}, R. Feger

^{97}, G. Ferrera

^{98}, A. Ferroglia

^{99}, N. Fidanza

^{100}, T. Figy

^{101}, M. Flechl

^{102}, D. Fontes

^{103}, S. Forte

^{104}, P. Francavilla

^{105}, E. Franco

^{106}, R. Frederix

^{107}, A. Freitas

^{108}, F. F. Freitas

^{109}, F. Frensch

^{110}, S. Frixione

^{111}, B. Fuks

^{112}, E. Furlan

^{113}, S. Gadatsch

^{114}, J. Gao

^{115}, Y. Gao

^{116}, M. V. Garzelli

^{117}, T. Gehrmann

^{118}, R. Gerosa

^{119}, M. Ghezzi

^{120}, D. Ghosh

^{121}, S. Gieseke

^{122}, D. Gillberg

^{123}, G. F. Giudice

^{124}, E. W. N. Glover

^{125}, F. Goertz

^{126}, D. Gonçalves

^{127}, J. Gonzalez-Fraile

^{128}, M. Gorbahn

^{129}, S. Gori

^{130}, C. A. Gottardo

^{131}, M. Gouzevitch

^{132}, P. Govoni

^{133}, D. Gray

^{134}, M. Grazzini

^{135}, N. Greiner

^{136}, A. Greljo

^{137}, J. Grigo

^{138}, A. V. Gritsan

^{139}, R. Gröber

^{140}, S. Guindon

^{141}, H. E. Haber

^{142}, C. Han

^{143}, T. Han

^{144}, R. Harlander

^{145}, M. A. Harrendorf

^{146}, H. B. Hartanto

^{147}, C. Hays

^{148}, S. Heinemeyer

^{149}, G. Heinrich

^{150}, M. Herrero

^{151}, F. Herzog

^{152}, B. Hespel

^{153}, V. Hirschi

^{154}, S. Hoeche

^{155}, S. Honeywell

^{156}, S. J. Huber

^{157}, C. Hugonie

^{158}, J. Huston

^{159}, A. Ilnicka

^{160}, G. Isidori

^{161}, B. Jäger

^{162}, M. Jaquier

^{163}, S. P. Jones

^{164}, A. Juste

^{165}, S. Kallweit

^{166}, A. Kaluza

^{167}, A. Kardos

^{168}, A. Karlberg

^{169}, Z. Kassabov

^{170}, N. Kauer

^{171}, D. I. Kazakov

^{172}, M. Kerner

^{173}, W. Kilian

^{174}, F. Kling

^{175}, K. Köneke

^{176}, R. Kogler

^{177}, R. Konoplich

^{178}, S. Kortner

^{179}, S. Kraml

^{180}, C. Krause

^{181}, F. Krauss

^{182}, M. Krawczyk

^{183}, A. Kulesza

^{184}, S. Kuttimalai

^{185}, R. Lane

^{186}, A. Lazopoulos

^{187}, G. Lee

^{188}, P. Lenzi

^{189}, I. M. Lewis

^{190}, Y. Li

^{191}, S. Liebler

^{192}, J. Lindert

^{193}, X. Liu

^{194}, Z. Liu

^{195}, F. J. Llanes-Estrada

^{196}, H. E. Logan

^{197}, D. Lopez-Val

^{198}, I. Low

^{199}, G. Luisoni

^{200}, P. Maierhöfer

^{201}, E. Maina

^{202}, B. Mansoulié

^{203}, H. Mantler

^{204}, M. Mantoani

^{205}, A. C. Marini

^{206}, V. I. Martinez Outschoorn

^{207}, S. Marzani

^{208}, D. Marzocca

^{209}, A. Massironi

^{210}, K. Mawatari

^{211}, J. Mazzitelli

^{212}, A. McCarn

^{213}, B. Mellado

^{214}, K. Melnikov

^{215}, S. B. Menari

^{216}, L. Merlo

^{217}, C. Meyer

^{218}, P. Milenovic

^{219}, K. Mimasu

^{220}, S. Mishima

^{221}, B. Mistlberger

^{222}, S. -O. Moch

^{223}, A. Mohammadi

^{224}, P. F. Monni

^{225}, G. Montagna

^{226}, M. Moreno Llácer

^{227}, N. Moretti

^{228}, S. Moretti

^{229}, L. Motyka

^{230}, A. Mück

^{231}, M. Mühlleitner

^{232}, S. Munir

^{233}, P. Musella

^{234}, P. Nadolsky

^{235}, D. Napoletano

^{236}, M. Nebot

^{237}, C. Neu

^{238}, M. Neubert

^{239}, R. Nevzorov

^{240}, O. Nicrosini

^{241}, J. Nielsen

^{242}, K. Nikolopoulos

^{243}, J. M. No

^{244}, C. O'Brien

^{245}, T. Ohl

^{246}, C. Oleari

^{247}, T. Orimoto

^{248}, D. Pagani

^{249}, C. E. Pandini

^{250}, A. Papaefstathiou

^{251}, A. S. Papanastasiou

^{252}, G. Passarino

^{253}, B. D. Pecjak

^{254}, M. Pelliccioni

^{255}, G. Perez

^{256}, L. Perrozzi

^{257}, F. Petriello

^{258}, G. Petrucciani

^{259}, E. Pianori

^{260}, F. Piccinini

^{261}, M. Pierini

^{262}, A. Pilkington

^{263}, S. Plätzer

^{264}, T. Plehn

^{265}, R. Podskubka

^{266}, C. T. Potter

^{267}, S. Pozzorini

^{268}, K. Prokofiev

^{269}, A. Pukhov

^{270}, I. Puljak

^{271}, M. Queitsch-Maitland

^{272}, J. Quevillon

^{273}, D. Rathlev

^{274}, M. Rauch

^{275}, E. Re

^{276}, M. N. Rebelo

^{277}, D. Rebuzzi

^{278}, L. Reina

^{279}, C. Reuschle

^{280}, J. Reuter

^{281}, M. Riembau

^{282}, F. Riva

^{283}, A. Rizzi

^{284}, T. Robens

^{285}, R. Röntsch

^{286}, J. Rojo

^{287}, J. C. Romão

^{288}, N. Rompotis

^{289}, J. Roskes

^{290}, R. Roth

^{291}, G. P. Salam

^{292}, R. Salerno

^{293}, M. O. P. Sampaio

^{294}, R. Santos

^{295}, V. Sanz

^{296}, J. J. Sanz-Cillero

^{297}, H. Sargsyan

^{298}, U. Sarica

^{299}, P. Schichtel

^{300}, J. Schlenk

^{301}, T. Schmidt

^{302}, C. Schmitt

^{303}, M. Schönherr

^{304}, U. Schubert

^{305}, M. Schulze

^{306}, S. Sekula

^{307}, M. Sekulla

^{308}, E. Shabalina

^{309}, H. S. Shao

^{310}, J. Shelton

^{311}, C. H. Shepherd-Themistocleous

^{312}, S. Y. Shim

^{313}, F. Siegert

^{314}, A. Signer

^{315}, J. P. Silva

^{316}, L. Silvestrini

^{317}, M. Sjodahl

^{318}, P. Slavich

^{319}, M. Slawinska

^{320}, L. Soffi

^{321}, M. Spannowsky

^{322}, C. Speckner

^{323}, D. M. Sperka

^{324}, M. Spira

^{325}, O. Stål

^{326}, F. Staub

^{327}, T. Stebel

^{328}, T. Stefaniak

^{329}, M. Steinhauser

^{330}, I. W. Stewart

^{331}, M. J. Strassler

^{332}, J. Streicher

^{333}, D. M. Strom

^{334}, S. Su

^{335}, X. Sun

^{336}, F. J. Tackmann

^{337}, K. Tackmann

^{338}, A. M. Teixeira

^{339}, R. Teixeira de Lima

^{340}, V. Theeuwes

^{341}, R. Thorne

^{342}, D. Tommasini

^{343}, P. Torrielli

^{344}, M. Tosi

^{345}, F. Tramontano

^{346}, Z. Trócsányi

^{347}, M. Trott

^{348}, I. Tsinikos

^{349}, M. Ubiali

^{350}, P. Vanlaer

^{351}, W. Verkerke

^{352}, A. Vicini

^{353}, L. Viliani

^{354}, E. Vryonidou

^{355}, D. Wackeroth

^{356}, C. E. M. Wagner

^{357}, J. Wang

^{358}, S. Wayand

^{359}, G. Weiglein

^{360}, C. Weiss

^{361}, M. Wiesemann

^{362}, C. Williams

^{363}, J. Winter

^{364}, D. Winterbottom

^{365}, R. Wolf

^{366}, M. Xiao

^{367}, L. L. Yang

^{368}, R. Yohay

^{369}, S. P. Y. Yuen

^{370}, G. Zanderighi

^{371}, M. Zaro

^{372}, D. Zeppenfeld

^{373}, R. Ziegler

^{374}, T. Zirke

^{375}, J. Zupan

^{376}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group,

^{375}The LHC Higgs Cross Section Working Group,

^{376}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We briefly discuss some of the developments since the publication of the MMHT14 parton distributions. In particular we explore the impact of recent LHC data for $W^\pm,Z$ and $t\bar{t}$ production, and perform a preliminary new analysis including these data. In this re-fit (which we tentatively call `MMHT16') there are few changes of significance in the central values of the PDFs, but some data reduce the uncertainties, mainly in the strange and valence quark distributions. Read More

This summary presents personal highlights from the Structure Functions and PDFs Working Group (WG1) at DIS 2016. Read More

We investigate the effect of including the HERA run I + II combined cross section data on the MMHT2014 PDFs. We present the fit quality within the context of the global fit and when only the HERA data are included. We examine the changes in both the central values and uncertainties in the PDFs. Read More

I present the results from the recent PDF4LHC study, and the resulting new recommendation for combining PDFs sets for LHC calculations. In order to put this into context I summarise continuing updates in PDFs. This includes improvements and recent updates of particular PDF sets due to theory improvements and a variety of new data sets, including most of the up-to-date LHC data. Read More

We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+$\alpha_s$ uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. Read More

We investigate the variation in the MMHT2014 PDFs when we allow the heavy quark masses $m_c$ and $m_b$ to vary away from their default values. We make PDF sets available in steps of $\Delta m_c =0.05~{\rm GeV}$ and $\Delta m_b =0. Read More

We investigate the effect of including the HERA run I + II combined cross section data on the MMHT2014 PDFs. We present the fit quality within the context of the global fit and when only the HERA data are included. We examine the changes in both the central values and uncertainties in the PDFs. Read More

**Authors:**Juan Rojo, Alberto Accardi, Richard D. Ball, Amanda Cooper-Sarkar, Albert de Roeck, Stephen Farry, James Ferrando, Stefano Forte, Jun Gao, Lucian Harland-Lang, Joey Huston, Alexander Glazov, Maxime Gouzevitch, Claire Gwenlan, Katerina Lipka, Mykhailo Lisovyi, Michelangelo Mangano, Pavel Nadolsky, Luca Perrozzi, Ringaile Placakyte, Voica Radescu, Gavin P. Salam, Robert Thorne

The accurate determination of the Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterisation and precision Standard Model measurements to New Physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. Read More

We investigate the uncertainty in the value of the strong coupling $\alpha_S(M_Z^2)$ when allowing it to be a free parameter in the recent MMHT global analyses of deep-inelastic and related hard scattering data that was undertaken to determine the parton distribution functions (PDFs) of the proton. The analysis uses the standard framework of leading twist fixed--order collinear factorisation in the ${\overline {\rm MS}}$ scheme. We study the constraints on the value of $\alpha_S(M_Z^2)$ coming from the individual data sets by repeating the NNLO and NLO global analyses at various fixed values of $\alpha_S(M_Z^2)$ about its optimum values, spanning the range $\alpha_S(M_Z^2)=0. Read More

We present LO, NLO and NNLO sets of parton distribution functions (PDFs) of the proton determined from global analyses of the available hard scattering data. These MMHT2014 PDFs supersede the `MSTW2008' parton sets, but are obtained within the same basic framework. We include a variety of new data sets, from the LHC, updated Tevatron data and the HERA combined H1 and ZEUS data on the total and charm structure functions. Read More

I present results on continuing updates in PDFs within the framework now called MMHT14 due to both theory improvements and the inclusion of new data sets, including most of the up-to-date LHC data. A new set of PDFs is essentially finalised, with no changes expected to the PDFs presented here. Read More

I present results on updates on PDFs which are obtained within the general framework which led to the MSTW2008 PDF sets. There are some theory and procedural improvements and a variety of new data sets, including many relevant up-to-date LHC data. A new set of PDFs is very close to being finalised, with no significant changes expected to the preliminary PDFs shown here. Read More

**Authors:**J. Butterworth

^{1}, G. Dissertori

^{2}, S. Dittmaier

^{3}, D. de Florian

^{4}, N. Glover

^{5}, K. Hamilton

^{6}, J. Huston

^{7}, M. Kado

^{8}, A. Korytov

^{9}, F. Krauss

^{10}, G. Soyez

^{11}, J. R. Andersen

^{12}, S. Badger

^{13}, L. Barzè

^{14}, J. Bellm

^{15}, F. U. Bernlochner

^{16}, A. Buckley

^{17}, J. Butterworth

^{18}, N. Chanon

^{19}, M. Chiesa

^{20}, A. Cooper-Sarkar

^{21}, L. Cieri

^{22}, G. Cullen

^{23}, H. van Deurzen

^{24}, G. Dissertori

^{25}, S. Dittmaier

^{26}, D. de Florian

^{27}, S. Forte

^{28}, R. Frederix

^{29}, B. Fuks

^{30}, J. Gao

^{31}, M. V. Garzelli

^{32}, T. Gehrmann

^{33}, E. Gerwick

^{34}, S. Gieseke

^{35}, D. Gillberg

^{36}, E. W. N. Glover

^{37}, N. Greiner

^{38}, K. Hamilton

^{39}, T. Hapola

^{40}, H. B. Hartanto

^{41}, G. Heinrich

^{42}, A. Huss

^{43}, J. Huston

^{44}, B. Jäger

^{45}, M. Kado

^{46}, A. Kardos

^{47}, U. Klein

^{48}, F. Krauss

^{49}, A. Kruse

^{50}, L. Lönnblad

^{51}, G. Luisoni

^{52}, Daniel Maître

^{53}, P. Mastrolia

^{54}, O. Mattelaer

^{55}, J. Mazzitelli

^{56}, E. Mirabella

^{57}, P. Monni

^{58}, G. Montagna

^{59}, M. Moretti

^{60}, P. Nadolsky

^{61}, P. Nason

^{62}, O. Nicrosini

^{63}, C. Oleari

^{64}, G. Ossola

^{65}, S. Padhi

^{66}, T. Peraro

^{67}, F. Piccinini

^{68}, S. Plätzer

^{69}, S. Prestel

^{70}, J. Pumplin

^{71}, K. Rabbertz

^{72}, Voica Radescu

^{73}, L. Reina

^{74}, C. Reuschle

^{75}, J. Rojo

^{76}, M. Schönherr

^{77}, J. M. Smillie

^{78}, J. F. von Soden-Fraunhofen

^{79}, G. Soyez

^{80}, R. Thorne, F. Tramontano, Z. Trocsanyi, D. Wackeroth, J. Winter, C-P. Yuan, V. Yundin, K. Zapp

**Affiliations:**

^{1}conveners,

^{2}conveners,

^{3}conveners,

^{4}conveners,

^{5}conveners,

^{6}conveners,

^{7}conveners,

^{8}conveners,

^{9}conveners,

^{10}conveners,

^{11}conveners,

^{12}conveners,

^{13}conveners,

^{14}conveners,

^{15}conveners,

^{16}conveners,

^{17}conveners,

^{18}conveners,

^{19}conveners,

^{20}conveners,

^{21}conveners,

^{22}conveners,

^{23}conveners,

^{24}conveners,

^{25}conveners,

^{26}conveners,

^{27}conveners,

^{28}conveners,

^{29}conveners,

^{30}conveners,

^{31}conveners,

^{32}conveners,

^{33}conveners,

^{34}conveners,

^{35}conveners,

^{36}conveners,

^{37}conveners,

^{38}conveners,

^{39}conveners,

^{40}conveners,

^{41}conveners,

^{42}conveners,

^{43}conveners,

^{44}conveners,

^{45}conveners,

^{46}conveners,

^{47}conveners,

^{48}conveners,

^{49}conveners,

^{50}conveners,

^{51}conveners,

^{52}conveners,

^{53}conveners,

^{54}conveners,

^{55}conveners,

^{56}conveners,

^{57}conveners,

^{58}conveners,

^{59}conveners,

^{60}conveners,

^{61}conveners,

^{62}conveners,

^{63}conveners,

^{64}conveners,

^{65}conveners,

^{66}conveners,

^{67}conveners,

^{68}conveners,

^{69}conveners,

^{70}conveners,

^{71}conveners,

^{72}conveners,

^{73}conveners,

^{74}conveners,

^{75}conveners,

^{76}conveners,

^{77}conveners,

^{78}conveners,

^{79}conveners,

^{80}conveners

**Category:**High Energy Physics - Phenomenology

This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2. Read More

I consider the effect on MSTW partons distribution functions (PDFs) due to changes in the choices of theoretical procedure used in the fit. I first consider using the 3-flavour fixed flavour number scheme instead of the standard general mass variable flavour number scheme used in the MSTW analysis. This results in the light quarks increasing at all relatively small $x$ values, the gluon distribution becoming smaller at high values of $x$ and larger at small $x$, the preferred value of the coupling constant $\alpha_S(M_Z^2)$ falling, particularly at NNLO, and the fit quality deteriorates. Read More

We consider the effect on LHC jet cross sections on partons distribution functions (PDFs), in particular the MSTW2008 set of PDFs. We first compare the published inclusive jet data to the predictions using MSTW2008, finding a very good description. We also use the parton distribution reweighting procedure to estimate the impact of these new data on the PDFs, finding that the combined ATLAS 2. Read More

**Authors:**The LHC Higgs Cross Section Working Group, S. Heinemeyer

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, J. R. Andersen, P. Artoisenet, E. A. Bagnaschi, A. Banfi, T. Becher, F. U. Bernlochner, S. Bolognesi, P. Bolzoni, R. Boughezal, D. Buarque, J. Campbell, F. Caola, M. Carena, F. Cascioli, N. Chanon, T. Cheng, S. Y. Choi, A. David, P. de Aquino, G. Degrassi, D. Del Re, A. Denner, H. van Deurzen, S. Diglio, B. Di Micco, R. Di Nardo, S. Dittmaier, M. Duhrssen, R. K. Ellis, G. Ferrera, N. Fidanza, M. Flechl, D. de Florian, S. Forte, R. Frederix, S. Frixione, S. Gangal, Y. Gao, M. V. Garzelli, D. Gillberg, P. Govoni, M. Grazzini, N. Greiner, J. Griffiths, A . V. Gritsan, C. Grojean, D. C. Hall, C. Hays, R. Harlander, R. Hernandez-Pinto, S. Hoche, J. Huston, T. Jubb, M. Kadastik, S. Kallweit, A. Kardos, L. Kashif, N. Kauer, H. Kim, R. Klees, M. Kramer, F. Krauss, A. Laureys, S. Laurila, S. Lehti, Q. Li, S. Liebler, X. Liu, H. E. Logan, G. Luisoni, M. Malberti, F. Maltoni, K. Mawatari, F. Maierhofer, H. Mantler, S. Martin, P. Mastrolia, O. Mattelaer, J. Mazzitelli, B. Mellado, K. Melnikov, P. Meridiani, D. J. Miller, E. Mirabella, S. O. Moch, P. Monni, N. Moretti, A. Muck, M. Muhlleitner, P. Musella, P. Nason, C. Neu, M. Neubert, C. Oleari, J. Olsen, G. Ossola, T. Peraro, K. Peters, F. Petriello, G. Piacquadio, C. T. Potter, S. Pozzorini, K. Prokofiev, I. Puljak, M. Rauch, D. Rebuzzi, L. Reina, R. Rietkerk, A. Rizzi, Y. Rotstein-Habarnau, G. P. Salam, G. Sborlini, F. Schissler, M. Schonherr, M. Schulze, M. Schumacher, F. Siegert, P. Slavich, J. M. Smillie, O. Stal, J. F. von Soden-Fraunhofen, M. Spira, I. W. Stewart, F. J. Tackmann, P. T. E. Taylor, D. Tommasini, J. Thompson, R. S. Thorne, P. Torrielli, F. Tramontano, N. V. Tran, Z. Trocsanyi, M. Ubiali, P. Vanlaer, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, C. Wagner, J. R. Walsh, J. Wang, G. Weiglein, A. Whitbeck, C. Williams, J. Yu, G. Zanderighi, M. Zanetti, M. Zaro, P. M. Zerwas, C. Zhang, T. J . E. Zirke, S. Zuberi

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

I consider the effect on partons distribution functions (PDFs) of changes in the theoretical procedure used in a PDF fit. I consider using the 3-flavour fixed flavour number scheme instead of the standard general mass variable flavour number scheme used in the MSTW analysis. This results in the light quarks increasing at most $x$ values, the gluon distribution becoming softer at high values of $x$ and larger at small $x$, and the coupling constant $\alpha_S(M_Z^2)$ falling, particularly at NNLO. Read More

We present a detailed comparison of the most recent sets of NNLO PDFs from the ABM, CT, HERAPDF, MSTW and NNPDF collaborations. We compare parton distributions at low and high scales and parton luminosities relevant for LHC phenomenology. We study the PDF dependence of LHC benchmark inclusive cross sections and differential distributions for electroweak boson and jet production in the cases in which the experimental covariance matrix is available. Read More

We investigate the effect of extending the standard MSTW parameterisation of input parton distribution functions (PDFs) using Chebyshev polynomials. We find evidence that four powers in the polynomial are sufficient for extremely high precision. Applying this to valence and sea quarks we find an improvement in the global fit, but a significant change only in the small-$x$ valence up-quark PDF, $u_V$. Read More

We investigate the Monte Carlo approach to propagation of experimental uncertainties within the context of the established "MSTW 2008" global analysis of parton distribution functions (PDFs) of the proton at next-to-leading order in the strong coupling. We show that the Monte Carlo approach using replicas of the original data gives PDF uncertainties in good agreement with the usual Hessian approach using the standard Delta(chi^2) = 1 criterion, then we explore potential parameterisation bias by increasing the number of free parameters, concluding that any parameterisation bias is likely to be small, with the exception of the valence-quark distributions at low momentum fractions x. We motivate the need for a larger tolerance, Delta(chi^2) > 1, by making fits to restricted data sets and idealised consistent or inconsistent pseudodata. Read More

I consider variations in the definitions, at next-to-leading order (NLO) and at next-to-next-to leading order (NNLO), of a General-Mass Variable Flavour Number Scheme (GM-VFNS) for heavy flavour structure functions. I also define a new "optimal" scheme choice improving the smoothness of the transition from one flavour number to the next. I investigate the variation of the structure function for a fixed set of parton distribution functions (PDFs) and also the change in the PDFs when a new MSTW2008-type global fit to data is performed for each GM-VFNS. Read More

**Authors:**LHC Higgs Cross Section Working Group, S. Dittmaier

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, S. Alekhin, J. Alwall, E. A. Bagnaschi, A. Banfi, J. Blumlein, S. Bolognesi, N. Chanon, T. Cheng, L. Cieri, A. M. Cooper-Sarkar, M. Cutajar, S. Dawson, G. Davies, N. De Filippis, G. Degrassi, A. Denner, D. D'Enterria, S. Diglio, B. Di Micco, R. Di Nardo, R. K. Ellis, A. Farilla, S. Farrington, M. Felcini, G. Ferrera, M. Flechl, D. de Florian, S. Forte, S. Ganjour, M. V. Garzelli, S. Gascon-Shotkin, S. Glazov, S. Goria, M. Grazzini, J. -Ph. Guillet, C. Hackstein, K. Hamilton, R. Harlander, M. Hauru, S. Heinemeyer, S. Hoche, J. Huston, C. Jackson, P. Jimenez-Delgado, M. D. Jorgensen, M. Kado, S. Kallweit, A. Kardos, N. Kauer, H. Kim, M. Kovac, M. Kramer, F. Krauss, C. -M. Kuo, S. Lehti, Q. Li, N. Lorenzo, F. Maltoni, B. Mellado, S. O. Moch, A. Muck, M. Muhlleitner, P. Nadolsky, P. Nason, C. Neu, A. Nikitenko, C. Oleari, J. Olsen, S. Palmer, S. Paganis, C. G. Papadopoulos, T . C. Petersen, F. Petriello, F. Petrucci, G. Piacquadio, E. Pilon, C. T. Potter, J. Price, I. Puljak, W. Quayle, V. Radescu, D. Rebuzzi, L. Reina, J. Rojo, D. Rosco, G. P. Salam, A. Sapronov, J. Schaarschmidt, M. Schonherr, M. Schumacher, F. Siegert, P. Slavich, M. Spira, I. W. Stewart, W. J. Stirling, F. Stockli, C. Sturm, F. J. Tackmann, R. S. Thorne, D. Tommasini, P. Torrielli, F. Tramontano, Z. Trocsanyi, M. Ubiali, S. Uccirati, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, M. Warsinsky, M. Weber, M. Wiesemann, G. Weiglein, J. Yu, G. Zanderighi

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

We respond to some criticism questioning the validity of the current Standard Model Higgs exclusion limits at the Tevatron, due to the significant dependence of the dominant production cross section from gluon-gluon fusion on the choice of parton distribution functions (PDFs) and the strong coupling (alpha_S). We demonstrate the ability of the Tevatron jet data to discriminate between different high-x gluon distributions, performing a detailed quantitative comparison to show that fits not explicitly including these data fail to give a good description. In this context we emphasise the importance of the consistent treatment of luminosity uncertainties. Read More

Structure functions are a measure of the partonic structure of hadrons, which is important for any process which involves colliding hadrons. They are a key ingredient for deriving partons distributions in nucleons. In recent years dramatic progress has been made in the understanding of the nucleon structure and the precision of its partonic content, due to vast theoretical progress, and the availability of new high precision measurements. Read More

We present a new calculation of the cross sections for charged current (CC)
and neutral current (NC) $\nu N$ and $\bar{\nu} N$ interactions in the neutrino
energy range $10^{4}

**Authors:**Sergey Alekhin, Simone Alioli, Richard D. Ball, Valerio Bertone, Johannes Blumlein, Michiel Botje, Jon Butterworth, Francesco Cerutti, Amanda Cooper-Sarkar, Albert de Roeck, Luigi Del Debbio, Joel Feltesse, Stefano Forte, Alexander Glazov, Alberto Guffanti, Claire Gwenlan, Joey Huston, Pedro Jimenez-Delgado, Hung-Liang Lai, Jose I. Latorre, Ronan McNulty, Pavel Nadolsky, Sven-Olaf Moch, Jon Pumplin, Voica Radescu, Juan Rojo, Torbjorn Sjostrand, W. J. Stirling, Daniel Stump, Robert S. Thorne, Maria Ubiali, Alessandro Vicini, Graeme Watt, C. -P. Yuan

This document is intended as a study of benchmark cross sections at the LHC (at 7 TeV) at NLO using modern parton distribution functions currently available from the 6 PDF fitting groups that have participated in this exercise. It also contains a succinct user guide to the computation of PDFs, uncertainties and correlations using available PDF sets. A companion note, also submitted to the archive, provides an interim summary of the current recommendations of the PDF4LHC working group for the use of parton distribution functions and of PDF uncertainties at the LHC, for cross section and cross section uncertainty calculations. Read More

This note provides an interim summary of the current recommendations of the PDF4LHC working group for the use of parton distribution functions (PDFs) and of PDF uncertainties at the LHC, for cross section and cross section uncertainty calculations. It also contains a succinct user guide to the computation of PDF uncertainties and correlations using available PDF sets. A companion note (the PDF4LHC Working Group Interim Report) summarizes predictions for benchmark cross sections at the LHC (7 TeV) at NLO using modern PDFs currently available from 6 PDF fitting groups. Read More

**Authors:**LHC Higgs Cross Section Working Group, S. Dittmaier

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, J. Baglio, P. Bolzoni, R. Boughezal, O. Brein, C. Collins-Tooth, S. Dawson, S. Dean, A. Denner, S. Farrington, M. Felcini, M. Flechl, D. de Florian, S. Forte, M. Grazzini, C. Hackstein, T. Hahn, R. Harlander, T. Hartonen, S. Heinemeyer, J. Huston, A. Kalinowski, M. Krämer, F. Krauss, J. S. Lee, S. Lehti, F. Maltoni, K. Mazumdar, S. -O. Moch, A. Mück, M. Mühlleitner, P. Nason, C. Neu, C. Oleari, J. Olsen, S. Palmer, F. Petriello, G. Piacquadio, A. Pilaftsis, C. T. Potter, I. Puljak, J. Qian, D. Rebuzzi, L. Reina, H. Rzehak, M. Schumacher, P. Slavich, M. Spira, F. Stöckli, R. S. Thorne, M. Vazquez Acosta, T. Vickey, A. Vicini, D. Wackeroth, M. Warsinsky, M. Weber, G. Weiglein, C. Weydert, J. Yu, M. Zaro, T. Zirke

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarizes the results of the first 10 months' activities of the LHC Higgs Cross Sections Working Group. The main goal of the working group was to present the status-of-art on Higgs Physics at the LHC integrating all new results that have appeared in the last few years. The Report is more than a mere collection of the proceedings of the general meetings. Read More

We study the sensitivity of our recent MSTW 2008 NLO and NNLO PDF analyses to the values of the charm- and bottom-quark masses, and we provide additional public PDF sets for a wide range of these heavy-quark masses. We quantify the impact of varying m_c and m_b on the cross sections for W, Z and Higgs production at the Tevatron and the LHC. We generate 3- and 4-flavour versions of the (5-flavour) MSTW 2008 PDFs by evolving the input PDFs and alpha_S determined from fits in the 5-flavour scheme, including the eigenvector PDF sets necessary for calculation of PDF uncertainties. Read More

I consider variations in the definition of a General-Mass Variable Flavour Number Scheme (GM-VFNS) for heavy flavour structure functions, both at next-to-leading order (NLO) and at next-to-next-to leading order (NNLO). I also define a new "optimal" scheme choice improving the smoothness of the transition from one flavour number to the next. At both NLO and NNLO I investigate the variation of the structure function for a fixed set of parton distribution functions (PDFs) and also the change in the distributions when a new MSTW-type global fit to data is performed for each GM-VFNS. Read More

We examine the effect of including the `combined' HERA structure function data in the MSTW global fit for parton distribution functions (PDFs). The combined neutral-current HERA data have a significant, if not dramatic, effect, of up to 2--3% at NLO for Z boson and Higgs production at the Tevatron and LHC, and a generally slightly smaller effect, particularly on LHC processes, at NNLO. This is an amount comparable, or less than, the typical PDF uncertainties, and hence we do not intend to release an imminent update to the MSTW 2008 fit. Read More

**Authors:**T. Binoth, G. Dissertori, J. Huston, R. Pittau, J. R. Andersen, J. Archibald, S. Badger, R. D. Ball, G. Bevilacqua, I. Bierenbaum, T. Binoth, F. Boudjema, R. Boughezal, A. Bredenstein, R. Britto, M. Campanelli, J. Campbell, L. Carminati, G. Chachamis, V. Ciulli, G. Cullen, M. Czakon, L. Del Debbio, A. Denner, G. Dissertori, S. Dittmaier, S. Forte, R. Frederix, S. Frixione, E. Gardi, M. V. Garzelli, S. Gascon-Shotkin, T. Gehrmann, A. Gehrmann-De Ridder, W. Giele, T. Gleisberg, E. W. N. Glover, N. Greiner, A. Guffanti, J. -Ph. Guillet, A. van Hameren, G. Heinrich, S. Hoeche, M. Huber, J. Huston, M. Jaquier, S. Kallweit, S. Karg, N. Kauer, F. Krauss, J. I. Latorre, A. Lazopoulos, P. Lenzi, G. Luisoni, R. Mackeprang, L. Magnea, D. Maitre, D. Majumder, I. Malamos, F. Maltoni, K. Mazumdar, P. Nadolsky, P. Nason, C. Oleari, F. Olness, C. G. Papadopoulos, G. Passarino, E. Pilon, R. Pittau, S. Pozzorini, T. Reiter, J. Reuter, M. Rodgers, G. Rodrigo, J. Rojo, G. Sanguinetti, F. -P. Schilling, M. Schumacher, S. Schumann, R. Schwienhorst, P. Skands, H. Stenzel, F. Stoeckli, R. Thorne, M. Ubiali, P. Uwer, A. Vicini, M. Warsinsky, G. Watt, J. Weng, I. Wigmore, S. Weinzierl, J. Winter, M. Worek, G. Zanderighi

**Category:**High Energy Physics - Phenomenology

This report summarizes the activities of the SM and NLO Multileg Working Group of the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 2009. Read More

We outline the historical development of MRST/MSTW parton distribution functions (PDFs), and clarify how they should be regarded when compared to the most up-to-date 2008 MSTW sets, noting which sets are now obsolete and the reasons why. Read More

We determine the uncertainty on the strong coupling alpha_S due to the experimental errors on the data fitted in global analysis of hard-scattering data, within the standard framework of leading-twist fixed-order collinear factorisation in the MSbar scheme, finding that alpha_S(M_Z^2) = 0.1202^{+0.0012}_{-0. Read More

**Authors:**H. Jung

^{1}, A. De Roeck

^{2}, Z. J. Ajaltouni

^{3}, S. Albino

^{4}, G. Altarelli

^{5}, F. Ambroglini

^{6}, J. Anderson

^{7}, G. Antchev

^{8}, M. Arneodo

^{9}, P. Aspell

^{10}, V. Avati

^{11}, M. Bahr

^{12}, A. Bacchetta

^{13}, M. G. Bagliesi

^{14}, R. D. Ball

^{15}, A. Banfi

^{16}, S. Baranov

^{17}, P. Bartalini

^{18}, J. Bartels

^{19}, F. Bechtel

^{20}, V. Berardi

^{21}, M. Berretti

^{22}, G. Beuf

^{23}, M. Biasini

^{24}, I. Bierenbaum

^{25}, J. Blumlein

^{26}, R. E. Blair

^{27}, C. Bombonati

^{28}, M. Boonekamp

^{29}, U. Bottigli

^{30}, S. Boutle

^{31}, M. Bozzo

^{32}, E. Brucken

^{33}, J. Bracinik

^{34}, A. Bruni

^{35}, G. E. Bruno

^{36}, A. Buckley

^{37}, A. Bunyatyan

^{38}, H. Burkhardt

^{39}, P. Bussey

^{40}, A. Buzzo

^{41}, M. Cacciari

^{42}, F. Cafagna

^{43}, M. Calicchio

^{44}, F. Caola

^{45}, M. G. Catanesi

^{46}, P. L. Catastini

^{47}, R. Cecchi

^{48}, F. A. Ceccopieri

^{49}, S. Cerci

^{50}, S. Chekanov

^{51}, R. Chierici

^{52}, M. Ciafaloni

^{53}, M. A. Ciocci

^{54}, V. Coco

^{55}, D. Colferai

^{56}, A. Cooper-Sarkar

^{57}, G. Corcella

^{58}, M. Czakon

^{59}, A. Dainese

^{60}, M. Dasgupta

^{61}, M. Deak

^{62}, M. Deile

^{63}, P. A. Delsart

^{64}, L. Del Debbio

^{65}, A. de Roeck

^{66}, C. Diaconu

^{67}, M. Diehl

^{68}, E. Dimovasili

^{69}, M. Dittmar

^{70}, I. M. Dremin

^{71}, K. Eggert

^{72}, R. Engel

^{73}, V. Eremin

^{74}, S. Erhan

^{75}, C. Ewerz

^{76}, L. Fano

^{77}, J. Feltesse

^{78}, G. Ferrera

^{79}, F. Ferro

^{80}, R. Field

^{81}, S. Forte

^{82}, F. Garcia

^{83}, A. Geiser

^{84}, F. Gelis

^{85}, S. Giani

^{86}, S. Gieseke

^{87}, M. A. Gigg

^{88}, A. Glazov

^{89}, K. Golec-Biernat

^{90}, K. Goulianos

^{91}, J. Grebenyuk

^{92}, V. Greco

^{93}, D. Grellscheid

^{94}, G. Grindhammer

^{95}, M. Grothe

^{96}, A. Guffanti

^{97}, C. Gwenlan

^{98}, V. Halyo

^{99}, K. Hamilton

^{100}, F. Hautmann

^{101}, J. Heino

^{102}, G. Heinrich

^{103}, T. Hilden

^{104}, K. Hiller

^{105}, J. Hollar

^{106}, X. Janssen

^{107}, S. Joseph

^{108}, A. W. Jung

^{109}, H. Jung

^{110}, V. Juranek, J. Kaspar, O. Kepka, V. A. Khoze, Ch. Kiesling, M. Klasen, S. Klein, B. A. Kniehl, A. Knutsson, J. Kopal, G. Kramer, F. Krauss, V. Kundrat, K. Kurvinen, K. Kutak, L. Lonnblad, S. Lami, G. Latino, J. I. Latorre, O. Latunde-Dada, R. Lauhakangas, V. Lendermann, P. Lenzi, G. Li, A. Likhoded, A. Lipatov, E. Lippmaa, M. Lokajicek, M. Lo Vetere, F. Lucas Rodriguez, G. Luisoni, E. Lytken, K. Muller, M. Macri, G. Magazzu, A. Majhi, S. Majhi, P. Marage, L. Marti, A. D. Martin, M. Meucci, D. A. Milstead, S. Minutoli, A. Nischke, A. Moares, S. Moch, L. Motyka, T. Namsoo, P. Newman, H. Niewiadomski, C. Nockles, E. Noschis, G. Notarnicola, J. Nystrand, E. Oliveri, F. Oljemark, K. Osterberg, R. Orava, M. Oriunno, S. Osman, S. Ostapchenko, P. Palazzi, E. Pedreschi, A. V. Pereira, H. Perrey, J. Petajajarvi, T. Petersen, A. Piccione, T. Pierog, J. L. Pinfold, O. I. Piskounova, S. Platzer, M. Quinto, Z. Rurikova, E. Radermacher, V. Radescu, E. Radicioni, F. Ravotti, G. Rella, P. Richardson, E. Robutti, G. Rodrigo, E. Rodrigues, M. Rogal, T. C. Rogers, J. Rojo, P. Roloff, L. Ropelewski, C. Rosemann, Ch. Royon, G. Ruggiero, A. Rummel, M. Ruspa, M. G. Ryskin, D. Salek, W. Slominski, H. Saarikko, A. Sabio Vera, T. Sako, G. P. Salam, V. A. Saleev, C. Sander, G. Sanguinetti, A. Santroni, Th. Schorner-Sadenius, R. Schicker, I. Schienbein, W. B. Schmidke, F. Schwennsen, A. Scribano, G. Sette, M. H. Seymour, A. Sherstnev, T. Sjostrand, W. Snoeys, G. Somogyi, L. Sonnenschein, G. Soyez, H. Spiesberger, F. Spinella, P. Squillacioti, A. M. Stasto, A. Starodumov, H. Stenzel, Ph. Stephens, A. Ster, D. Stocco, M. Strikman, C. Taylor, T. Teubner, R. S. Thorne, Z. Trocsanyi, M. Treccani, D. Treleani, L. Trentadue, A. Trummal, J. Tully, W. K. Tung, M. Turcato, N. Turini, M. Ubiali, A. Valkarova, A. van Hameren, P. Van Mechelen, J. A. M. Vermaseren, A. Vogt, B. F. L. Ward, G. Watt, B. R. Webber, Ch. Weiss, Ch. White, J. Whitmore, R. Wolf, J. Wu, A. Yagues-Molina, S. A. Yost, G. Zanderighi, N. Zotov, M. zur Nedden

**Affiliations:**

^{1}DESY, U. Antwerp,

^{2}CERN, U. Antwerp,

^{3}DESY, U. Antwerp,

^{4}DESY, U. Antwerp,

^{5}DESY, U. Antwerp,

^{6}DESY, U. Antwerp,

^{7}DESY, U. Antwerp,

^{8}DESY, U. Antwerp,

^{9}DESY, U. Antwerp,

^{10}DESY, U. Antwerp,

^{11}DESY, U. Antwerp,

^{12}DESY, U. Antwerp,

^{13}DESY, U. Antwerp,

^{14}DESY, U. Antwerp,

^{15}DESY, U. Antwerp,

^{16}DESY, U. Antwerp,

^{17}DESY, U. Antwerp,

^{18}DESY, U. Antwerp,

^{19}DESY, U. Antwerp,

^{20}DESY, U. Antwerp,

^{21}DESY, U. Antwerp,

^{22}DESY, U. Antwerp,

^{23}DESY, U. Antwerp,

^{24}DESY, U. Antwerp,

^{25}DESY, U. Antwerp,

^{26}DESY, U. Antwerp,

^{27}DESY, U. Antwerp,

^{28}DESY, U. Antwerp,

^{29}DESY, U. Antwerp,

^{30}DESY, U. Antwerp,

^{31}DESY, U. Antwerp,

^{32}DESY, U. Antwerp,

^{33}DESY, U. Antwerp,

^{34}DESY, U. Antwerp,

^{35}DESY, U. Antwerp,

^{36}DESY, U. Antwerp,

^{37}DESY, U. Antwerp,

^{38}DESY, U. Antwerp,

^{39}DESY, U. Antwerp,

^{40}DESY, U. Antwerp,

^{41}DESY, U. Antwerp,

^{42}DESY, U. Antwerp,

^{43}DESY, U. Antwerp,

^{44}DESY, U. Antwerp,

^{45}DESY, U. Antwerp,

^{46}DESY, U. Antwerp,

^{47}DESY, U. Antwerp,

^{48}DESY, U. Antwerp,

^{49}DESY, U. Antwerp,

^{50}DESY, U. Antwerp,

^{51}DESY, U. Antwerp,

^{52}DESY, U. Antwerp,

^{53}DESY, U. Antwerp,

^{54}DESY, U. Antwerp,

^{55}DESY, U. Antwerp,

^{56}DESY, U. Antwerp,

^{57}DESY, U. Antwerp,

^{58}DESY, U. Antwerp,

^{59}DESY, U. Antwerp,

^{60}DESY, U. Antwerp,

^{61}DESY, U. Antwerp,

^{62}DESY, U. Antwerp,

^{63}DESY, U. Antwerp,

^{64}DESY, U. Antwerp,

^{65}DESY, U. Antwerp,

^{66}DESY, U. Antwerp,

^{67}DESY, U. Antwerp,

^{68}DESY, U. Antwerp,

^{69}DESY, U. Antwerp,

^{70}DESY, U. Antwerp,

^{71}DESY, U. Antwerp,

^{72}DESY, U. Antwerp,

^{73}DESY, U. Antwerp,

^{74}DESY, U. Antwerp,

^{75}DESY, U. Antwerp,

^{76}DESY, U. Antwerp,

^{77}DESY, U. Antwerp,

^{78}DESY, U. Antwerp,

^{79}DESY, U. Antwerp,

^{80}DESY, U. Antwerp,

^{81}DESY, U. Antwerp,

^{82}DESY, U. Antwerp,

^{83}DESY, U. Antwerp,

^{84}DESY, U. Antwerp,

^{85}DESY, U. Antwerp,

^{86}DESY, U. Antwerp,

^{87}DESY, U. Antwerp,

^{88}DESY, U. Antwerp,

^{89}DESY, U. Antwerp,

^{90}DESY, U. Antwerp,

^{91}DESY, U. Antwerp,

^{92}DESY, U. Antwerp,

^{93}DESY, U. Antwerp,

^{94}DESY, U. Antwerp,

^{95}DESY, U. Antwerp,

^{96}DESY, U. Antwerp,

^{97}DESY, U. Antwerp,

^{98}DESY, U. Antwerp,

^{99}DESY, U. Antwerp,

^{100}DESY, U. Antwerp,

^{101}DESY, U. Antwerp,

^{102}DESY, U. Antwerp,

^{103}DESY, U. Antwerp,

^{104}DESY, U. Antwerp,

^{105}DESY, U. Antwerp,

^{106}DESY, U. Antwerp,

^{107}DESY, U. Antwerp,

^{108}DESY, U. Antwerp,

^{109}DESY, U. Antwerp,

^{110}DESY, U. Antwerp

**Category:**High Energy Physics - Phenomenology

2nd workshop on the implications of HERA for LHC physics. Working groups: Parton Density Functions Multi-jet final states and energy flows Heavy quarks (charm and beauty) Diffraction Cosmic Rays Monte Carlos and Tools Read More

I present a summary of the last in the series of HERA-LHC workshops, CERN, 26-30th May 2008. Read More

**Authors:**M. Dittmar

^{1}, S. Forte

^{2}, A. Glazov

^{3}, S. Moch

^{4}, G. Altarelli, J. Anderson, R. D. Ball, G. Beuf, M. Boonekamp, H. Burkhardt, F. Caola, M. Ciafaloni, D. Colferai, A. Cooper-Sarkar, A. de Roeck, L. Del Debbio, J. Feltesse, F. Gelis, J. Grebenyuk, A. Guffanti, V. Halyo, J. I. Latorre, V. Lendermann, Gang Li, L. Motyka, T. Petersen, A. Piccione, V. Radescu, M. Rogal, J. Rojo, C. Royon, G. P. Salam, D. Salek, A. M. Stasto, R. S. Thorne, M. Ubiali, J. A. M. Vermaseren, A. Vogt, G. Watt, C. D. White

**Affiliations:**

^{1}convenors,

^{2}convenors,

^{3}convenors,

^{4}convenors

**Category:**High Energy Physics - Phenomenology

We provide an assessment of the state of the art in various issues related to experimental measurements, phenomenological methods and theoretical results relevant for the determination of parton distribution functions (PDFs) and their uncertainties, with the specific aim of providing benchmarks of different existing approaches and results in view of their application to physics at the LHC. We discuss higher order corrections, we review and compare different approaches to small x resummation, and we assess the possible relevance of parton saturation in the determination of PDFS at HERA and its possible study in LHC processes. We provide various benchmarks of PDF fits, with the specific aim of studying issues of error propagation, non-gaussian uncertainties, choice of functional forms of PDFs, and combination of data from different experiments and different processes. Read More

We present updated leading-order, next-to-leading order and next-to-next-to-leading order parton distribution functions ("MSTW 2008") determined from global analysis of hard-scattering data within the standard framework of leading-twist fixed-order collinear factorisation in the MSbar scheme. These parton distributions supersede the previously available "MRST" sets and should be used for the first LHC data-taking and for the associated theoretical calculations. New data sets fitted include CCFR/NuTeV dimuon cross sections, which constrain the strange quark and antiquark distributions, and Tevatron Run II data on inclusive jet production, the lepton charge asymmetry from W decays and the Z rapidity distribution. Read More

We critically review heavy quark mass effects in DIS and their impact on global analyses. We lay out all elements of a properly defined general mass variable flavor number scheme (GM VFNS) that are shared by all modern formulations of the problem. We then explain the freedom in choosing specific implementations and spell out, in particular, the current formulations of the CTEQ and MSTW groups. Read More

We consider the impact that can be made on our understanding of parton distributions (PDFs) and QCD from early measurements at the LHCb experiment. The high rapidity values make the experiment uniquely suited to a detailed study of small-x parton distributions and hence will make a significant contribution towards the clarification of both experimental and theoretical uncertainties on PDFs and their applications. Read More

I investigate the theoretical uncertainties on the predictions for the longitudinal structure function. I compare the predictions using fixed-order perturbative QCD, higher twist corrections, small-x resummations and the dipole picture. I compare the various predictions to the recent HERA measurements and examine how the data still to be analysed may discriminate between the approaches. Read More

The goal of this study is to find a prescription for defining parton distributions (PDFs) which are most appropriate for use in those codes where only LO matrix elements (MEs) are used, as in many Monte Carlo generators. We describe a modification of LO PDFs, based on using alpha_S at NLO, a specific prescription of the coupling in the QCD evolution, and violation of the momentum sum rule. We compare results with the truth - the prediction using NLO for both MEs and PDFs, and the standard LO prediction, finding that the modified PDFs generally produce the best results. Read More

We discuss selected topics in the forthcoming MSTW 2008 determination of parton distributions by global analysis. The tolerance parameter controlling the uncertainties on the parton distributions is now determined by a new dynamic procedure for each eigenvector of the covariance matrix. New data sets fitted include Tevatron Run II data on inclusive jet production, the lepton charge asymmetry from W decays and the Z rapidity distribution. Read More

**Authors:**C. Buttar

^{1}, J. D'Hondt

^{2}, M. Kramer

^{3}, G. Salam

^{4}, M. Wobisch

^{5}, N. E. Adam

^{6}, V. Adler

^{7}, A. Arbuzov

^{8}, D. Bardin

^{9}, U. Baur

^{10}, A. A. Bhatti

^{11}, S. Bondarenko

^{12}, V. Buge

^{13}, J. M. Butterworth

^{14}, M. Cacciari

^{15}, M. Campanelli

^{16}, Q. -H. Cao

^{17}, C. M. Carloni Calame

^{18}, P. Christova

^{19}, D. D'Enterria

^{20}, J. D'Hondt

^{21}, S. Ferrag, K. Geerlings, V. Halyo, M. Heinrich, J. Huston, J. Jackson, B. Jantzen, L. Kalinovskaya, D. Kcira, B. Klein, A. Kulesza, P. Loch, G. Montagna, S. Moretti, D. Newbold, O. Nicrosini, H. Nilsen, A. A. Penin, F. Piccinini, S. Pozzorini, K. Rabbertz, J. Rojo Chacon, R. Sadykov, M. Schulze, C. Shepherd-Themistocleous, A. Sherstnev, P. Z. Skands, L. Sonnenschein, G. Soyez, R. S. Thorne, M. Tytgat, P. Van Mulders, M. Vazquez Acosta, A. Vicini, I. Villella, D. Wackeroth, C. -P. Yuan

**Affiliations:**

^{1}ed.,

^{2}ed.,

^{3}ed.,

^{4}ed.,

^{5}ed.,

^{6}ed.,

^{7}ed.,

^{8}ed.,

^{9}ed.,

^{10}ed.,

^{11}ed.,

^{12}ed.,

^{13}ed.,

^{14}ed.,

^{15}ed.,

^{16}ed.,

^{17}ed.,

^{18}ed.,

^{19}ed.,

^{20}ed.,

^{21}ed.

**Category:**High Energy Physics - Phenomenology

This report summarizes the activity on comparisons of existings tools for the standard model and on issues in jet physics by the SMHC working group during and subsequent to the Workshop "Physics at TeV Colliders", Les Houches, France, 11-29 June, 2007. Read More

I consider the uncertainties in parton distributions and the consequences for hadronic cross-sections. There is ever-increasing sophistication in the relationship between the uncertainties of the distributions and the errors on the experimental data used to extract them. However, I demonstrate that this uncertainty is frequently subsumed by that due to the choice of data used in fits, and more surprisingly by the precise details of the theoretical framework used. Read More

We present a study of the results obtained combining LO partonic matrix elements with either LO or NLO partons distributions. These are compared to the best prediction using NLO for both matrix elements and parton distributions. The aim is to determine which parton distributions are most appropriate to use in those cases where only LO matrix elements are available, e. Read More

We perform a global parton fit to DIS and related data, including next-to-leading logarithmic (NLL) BFKL resummations in both the massless and massive sectors. The resummed fit improves over a standard next-to-leading order (NLO) DGLAP fit, with a positive definite gluon at the input scale as opposed to the negative gluon seen at NLO. Furthermore, the predicted longitudinal structure function is free of perturbative instability at small x, and the reduced cross-section shows a turnover at high y (absent in the NLO fit) consistent with the HERA data. Read More

We present a study of the results obtained combining LO partonic matrix elements with different orders of partons distributions. These are compared to the best prediction using NLO for both matrix elements and parton distributions. The aim is to determine which parton distributions are most appropriate to use in those cases where only LO matrix elements are available, e. Read More