R. Mahbubani

R. Mahbubani
Are you R. Mahbubani?

Claim your profile, edit publications, add additional information:

Contact Details

R. Mahbubani

Pubs By Year

Pub Categories

High Energy Physics - Phenomenology (17)
High Energy Physics - Theory (3)
Astrophysics (2)
High Energy Physics - Experiment (2)
High Energy Astrophysical Phenomena (1)
Cosmology and Nongalactic Astrophysics (1)

Publications Authored By R. Mahbubani

We investigate the sensitivity at current and future hadron colliders to a heavy electrically-charged particle with a proper decay length below a centimetre, whose decay products are invisible due to below-threshold energies and/or small couplings to the Standard Model. A cosmologically-motivated example of a framework that contains such a particle is the Minimal Supersymmetric Standard Model in the limit of pure Higgsinos. The current hadron-collider search strategy has no sensitivity to the upper range of pure Higgsino masses that are consistent with the thermal relic density, even at a future collider with 100 TeV centre-of-mass energy. Read More

We analyze the parametric structure of Twin Higgs (TH) theories and assess the gain in fine tuning which they enable compared to extensions of the Standard Model with colored top partners. Estimates show that, at least in the simplest realizations of the TH idea, the separation between the mass of new colored particles and the electroweak scale is controlled by the coupling strength of the underlying UV theory, and that a parametric gain is achieved only for strongly-coupled dynamics. Motivated by this consideration we focus on one of these simple realizations, namely composite TH theories, and study how well such constructions can reproduce electroweak precision data. Read More

We explore the sensitivity of the LHC at 14 TeV centre-of-mass energy (LHC14) to the single production and decay of top-antitop resonances in the four-top final state. We focus on the same-sign dilepton channel, and work within a simplified model with a vector boson coupling to the Standard Model only via its interactions with right-handed top quarks. We find it is possible to discover (exclude) such a vector boson with 300 fb$^{-1}$ of integrated luminosity up to a mass of 1. Read More

Experimental bounds on squarks of the first two generations assume their masses to be eightfold degenerate, and consequently constrain them to be heavier than ~ 1.4 TeV when the gluino is lighter than 2.5 TeV. Read More

We extend the range of possible applications of MT2 type analyses to decay chains with multiple invisible particles, as well as to asymmetric event topologies with different parent and/or different children particles. We advocate two possible approaches. In the first, we introduce suitably defined 3+1-dimensional analogues of the MT2 variable, which take into account all relevant on-shell kinematic constraints in a given event topology. Read More

We carry out a time-series analysis of the combined data from three experiments measuring the cosmic muon flux at the Gran Sasso laboratory, at a depth of 3800 m.w.e. Read More

We suggest trying to count the number of invisible particles produced in missing energy events at the LHC, arguing that multiple production of such particles provides evidence that they constitute stable Dark Matter and that counting them could yield further insights into the nature of Dark Matter. We propose a method to count invisible particles, based on fitting the shapes of certain transverse- or invariant-mass distributions, discuss various effects that may affect the measurement, and simulate the use of the method to count neutrinos in Standard Model processes and Dark Matter candidates in new physics processes. Read More

The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Read More

Many existing models of brane inflation suffer from a steep irreducible gravitational potential between the branes that causes inflation to end too early. Inspired by the fact that point masses in 2+1 D exert no gravitational force, we propose a novel unwarped and non-supersymmetric setup for inflation, consisting of 3-branes in two extra dimensions compactified on a sphere. The size of the sphere is stabilized by a combination of a bulk cosmological constant and a magnetic flux. Read More

We show that a top-prime quark as heavy as 600 GeV can be discovered at the Tevatron, provided it is resonantly pair-produced via a vector color octet. If the top-prime originates from a vectorlike quark, then the production of a single top-prime in association with a top may also be observable, even through its decay into a Higgs boson and a top. A color octet with mass of about 1 TeV, which decays into a top-prime pair, may account for the CDF excess of semileptonic (Wj)(Wj) events. Read More

We study methods of extracting new physics signals in final states with a top-quark pair plus large missing energy at the LHC. We consider two typical examples of such new physics: pair production of a fermionic top partner (a $T'$ in Little Higgs models for example) and of a scalar top partner (a $\tilde{t}$ in SUSY). With a commonly-adopted discrete symmetry under which non Standard Model particles are odd, the top partner is assumed to decay predominantly to a top quark plus a massive neutral stable particle $A^0$. Read More

We analyze collider signatures of massive color-octet bosons whose couplings to quarks are suppressed. Gauge invariance forces the octets to couple at tree level only in pairs to gluons, with a strength set by the QCD gauge coupling. For a spin-1 octet, the cross section for pair production at hadron colliders is larger than that for a quark of equal mass. Read More

We explore the properties of dark matter in theories with two universal extra dimensions, where the lightest Kaluza-Klein state is a spin-0 neutral particle, representing a six-dimensional photon polarized along the extra dimensions. Annihilation of this 'spinless photon' proceeds predominantly through Higgs boson exchange, and is largely independent of other Kaluza-Klein particles. The measured relic abundance sets an upper limit on the spinless photon mass of 500 GeV, which decreases to almost 200 GeV if the Higgs boson is light. Read More

We study the hadron collider phenomenology of (1,0) Kaluza-Klein modes along two universal extra dimensions compactified on the chiral square. Cascade decays of spinless adjoints proceed through tree-level 3-body decays involving leptons as well as one-loop 2-body decays involving photons. As a result, spectacular events with as many as six charged leptons, or one photon plus four charged leptons are expected to be observed at the LHC. Read More

Gauge coupling unification and the success of TeV-scale weakly interacting dark matter are usually taken as evidence of low energy supersymmetry (SUSY). However, if we assume that the tuning of the higgs can be explained in some unnatural way, from environmental considerations for example, SUSY is no longer a necessary component of any Beyond the Standard Model theory. In this paper we study the minimal model with a dark matter candidate and gauge coupling unification. Read More

We investigate the limits on the higgs mass in variations of Split Supersymmetry, where the boundary value of the Higgs quartic coupling at the SUSY breaking scale ($m_s$) is allowed to deviate from its value in the minimal model of Arkani-Hamed and Dimopoulos. We show that it is possible for $\lambda(m_s)$ to be negative and use vacuum stability to put a lower bound on this coupling, and hence on the mass of the physical higgs. We also use the requirement of perturbativity of all couplings up to the cutoff to determine an upper limit for the higgs mass in models which are further modified by additional matter content. Read More

In this paper we increase the MSSM tree level higgs mass bound to a value that is naturally larger than the LEP-II search constraint by adding to the superpotential a $\lambda S H_{u}H_{d}$ term, as in the NMSSM, and UV completing with new strong dynamics {\it before} $\lambda$ becomes non-perturbative. Unlike other models of this type the higgs fields remain elementary, alleviating the supersymmetric fine-tuning problem while maintaining unification in a natural way. Read More

Little Higgs theories, in which the Higgs particle is realized as the pseudo-Goldstone boson of an approximate global chiral symmetry have generated much interest as possible alternatives to weak scale supersymmetry. In this paper we analyze precision electroweak observables in the Minimal Moose model and find that in order to be consistent with current experimental bounds, the gauge structure of this theory needs to be modified. We then look for viable regions of parameter space in the modified theory by calculating the various contributions to the S and T parameters. Read More