R. Igarashi - for the ALPS collaboration

R. Igarashi
Are you R. Igarashi?

Claim your profile, edit publications, add additional information:

Contact Details

Name
R. Igarashi
Affiliation
for the ALPS collaboration
Location

Pubs By Year

External Links

Pub Categories

 
Nuclear Experiment (6)
 
Physics - Strongly Correlated Electrons (5)
 
Physics - Statistical Mechanics (2)
 
Physics - Computational Physics (2)
 
High Energy Physics - Experiment (1)

Publications Authored By R. Igarashi

The open source ALPS (Algorithms and Libraries for Physics Simulations) project provides a collection of physics libraries and applications, with a focus on simulations of lattice models and strongly correlated systems. The libraries provide a convenient set of well-documented and reusable components for developing condensed matter physics simulation code, and the applications strive to make commonly used and proven computational algorithms available to a non-expert community. In this paper we present an updated and refactored version of the core ALPS libraries geared at the computational physics software development community, rewritten with focus on documentation, ease of installation, and software maintainability. Read More

We present final results on the photon electroproduction ($\vec{e}p\rightarrow ep\gamma$) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed resulting in photon electroproduction cross sections at new kinematic settings, for a total of 588 experimental bins. Read More

New results are reported from a measurement of $\pi^0$ electroproduction near threshold using the $p(e,e^{\prime} p)\pi^0$ reaction. The experiment was designed to determine precisely the energy dependence of $s-$ and $p-$wave electromagnetic multipoles as a stringent test of the predictions of Chiral Perturbation Theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. Read More

The five-fold differential cross section for the 12C(e,e'p)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models and previous lower missing momentum data is shown. Read More

The second-order reduced density matrix method (the RDM method) has performed well in determining energies and properties of atomic and molecular systems, achieving coupled-cluster singles and doubles with perturbative triples (CC SD(T)) accuracy without using the wave-function. One question that arises is how well does the RDM method perform with the same conditions that result in CCSD(T) accuracy in the strong correlation limit. The simplest and a theoretically important model for strongly correlated electronic systems is the Hubbard model. Read More

We present release 2.0 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. The code development is centered on common XML and HDF5 data formats, libraries to simplify and speed up code development, common evaluation and plotting tools, and simulation programs. Read More

We revisit the one-dimensional attractive Hubbard model by using the Bethe-ansatz based density-functional theory and density-matrix renormalization method. The ground-state properties of this model are discussed in details for different fillings and different confining conditions in weak-to-intermediate coupling regime. We investigate the ground-state energy, energy gap, and pair-binding energy and compare them with those calculated from the canonical Bardeen-Cooper-Schrieffer approximation. Read More

The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, where a proton is knocked-out of the nucleus with high momentum transfer and high missing momentum, show that in 12C the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars. Read More

We investigate a 4-state ferromagnetic Potts model with a special type of geometrical frustration on a three dimensional diamond lattice by means of Wang-Landau Monte Carlo simulation motivated by a peculiar structural phase transition found in $\beta$-pyrochlore oxide KOs$_2$O$_6$. We find that this model undergoes unconventional first-order phase transition; half of the spins in the system order in a two dimensional hexagonal-sheet-like structure, while the remaining half stay disordered. The ordered sheets and the disordered sheets stack one after another. Read More

2008Jan
Affiliations: 1for the ALPS collaboration, 2for the ALPS collaboration, 3for the ALPS collaboration, 4for the ALPS collaboration, 5for the ALPS collaboration, 6for the ALPS collaboration, 7for the ALPS collaboration, 8for the ALPS collaboration, 9for the ALPS collaboration, 10for the ALPS collaboration, 11for the ALPS collaboration, 12for the ALPS collaboration, 13for the ALPS collaboration, 14for the ALPS collaboration, 15for the ALPS collaboration, 16for the ALPS collaboration, 17for the ALPS collaboration, 18for the ALPS collaboration, 19for the ALPS collaboration, 20for the ALPS collaboration, 21for the ALPS collaboration, 22for the ALPS collaboration, 23for the ALPS collaboration, 24for the ALPS collaboration, 25for the ALPS collaboration, 26for the ALPS collaboration, 27for the ALPS collaboration, 28for the ALPS collaboration

We present release 1.3 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. Development is centered on common XML and binary data formats, on libraries to simplify and speed up code development, and on full-featured simulation programs. Read More

Cross sections for quasi-free Compton scattering from the deuteron were measured for incident energies of 236--260 MeV at the laboratory angle -135 degrees. The recoil nucleons were detected in a liquid-scintillator array situated at 20 degrees. The measured differential cross sections were used, with the calculations of Levchuk et al. Read More

Cross sections for elastic Compton scattering from the deuteron were measured over the laboratory angles 35-150 deg. Tagged photons in the laboratory energy range 84-105 MeV were scattered from liquid deuterium and detected in the large-volume Boston University NaI (BUNI) spectrometer. Using the calculations of Levchuk and L'vov, along with the measured differential cross sections, the isospin-averaged nucleon polarizabilities in the deuteron were estimated. Read More