R. Harnik - Fermilab

R. Harnik
Are you R. Harnik?

Claim your profile, edit publications, add additional information:

Contact Details

Name
R. Harnik
Affiliation
Fermilab
City
Warrenville
Country
United States

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (46)
 
High Energy Physics - Experiment (17)
 
High Energy Physics - Theory (10)
 
High Energy Astrophysical Phenomena (5)
 
Astrophysics (4)
 
Cosmology and Nongalactic Astrophysics (4)
 
General Relativity and Quantum Cosmology (3)
 
Nuclear Theory (1)
 
Solar and Stellar Astrophysics (1)

Publications Authored By R. Harnik

We explore a simple solution to the cosmological challenges of the original Mirror Twin Higgs (MTH) model that leads to interesting implications for experiment. We consider theories in which both the standard model and mirror neutrinos acquire masses through the familiar seesaw mechanism, but with a low right-handed neutrino mass scale of order a few GeV. In these $\nu$MTH models, the right-handed neutrinos leave the thermal bath while still relativistic. Read More

We investigate induced electroweak symmetry breaking (EWSB) in models in which the Higgs is a pseudo-Nambu-Goldstone boson (pNGB). In pNGB Higgs models, Higgs properties and precision electroweak measurements imply a hierarchy between the EWSB and global symmetry-breaking scales, $v_H \ll f_H$. When the pNGB potential is generated radiatively, this hierarchy requires fine-tuning to a degree of at least $\sim v_H^2/f_H^2$. Read More

High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. Read More

2015Jul
Authors: Daniel Abercrombie, Nural Akchurin, Ece Akilli, Juan Alcaraz Maestre, Brandon Allen, Barbara Alvarez Gonzalez, Jeremy Andrea, Alexandre Arbey, Georges Azuelos, Patrizia Azzi, Mihailo Backović, Yang Bai, Swagato Banerjee, James Beacham, Alexander Belyaev, Antonio Boveia, Amelia Jean Brennan, Oliver Buchmueller, Matthew R. Buckley, Giorgio Busoni, Michael Buttignol, Giacomo Cacciapaglia, Regina Caputo, Linda Carpenter, Nuno Filipe Castro, Guillelmo Gomez Ceballos, Yangyang Cheng, John Paul Chou, Arely Cortes Gonzalez, Chris Cowden, Francesco D'Eramo, Annapaola De Cosa, Michele De Gruttola, Albert De Roeck, Andrea De Simone, Aldo Deandrea, Zeynep Demiragli, Anthony DiFranzo, Caterina Doglioni, Tristan du Pree, Robin Erbacher, Johannes Erdmann, Cora Fischer, Henning Flaecher, Patrick J. Fox, Benjamin Fuks, Marie-Helene Genest, Bhawna Gomber, Andreas Goudelis, Johanna Gramling, John Gunion, Kristian Hahn, Ulrich Haisch, Roni Harnik, Philip C. Harris, Kerstin Hoepfner, Siew Yan Hoh, Dylan George Hsu, Shih-Chieh Hsu, Yutaro Iiyama, Valerio Ippolito, Thomas Jacques, Xiangyang Ju, Felix Kahlhoefer, Alexis Kalogeropoulos, Laser Seymour Kaplan, Lashkar Kashif, Valentin V. Khoze, Raman Khurana, Khristian Kotov, Dmytro Kovalskyi, Suchita Kulkarni, Shuichi Kunori, Viktor Kutzner, Hyun Min Lee, Sung-Won Lee, Seng Pei Liew, Tongyan Lin, Steven Lowette, Romain Madar, Sarah Malik, Fabio Maltoni, Mario Martinez Perez, Olivier Mattelaer, Kentarou Mawatari, Christopher McCabe, Théo Megy, Enrico Morgante, Stephen Mrenna, Siddharth M. Narayanan, Andy Nelson, Sérgio F. Novaes, Klaas Ole Padeken, Priscilla Pani, Michele Papucci, Manfred Paulini, Christoph Paus, Jacopo Pazzini, Björn Penning, Michael E. Peskin, Deborah Pinna, Massimiliano Procura, Shamona F. Qazi, Davide Racco, Emanuele Re, Antonio Riotto, Thomas G. Rizzo, Rainer Roehrig, David Salek, Arturo Sanchez Pineda, Subir Sarkar, Alexander Schmidt, Steven Randolph Schramm, William Shepherd, Gurpreet Singh, Livia Soffi, Norraphat Srimanobhas, Kevin Sung, Tim M. P. Tait, Timothee Theveneaux-Pelzer, Marc Thomas, Mia Tosi, Daniele Trocino, Sonaina Undleeb, Alessandro Vichi, Fuquan Wang, Lian-Tao Wang, Ren-Jie Wang, Nikola Whallon, Steven Worm, Mengqing Wu, Sau Lan Wu, Hongtao Yang, Yong Yang, Shin-Shan Yu, Bryan Zaldivar, Marco Zanetti, Zhiqing Zhang, Alberto Zucchetta

This document is the final report of the ATLAS-CMS Dark Matter Forum, a forum organized by the ATLAS and CMS collaborations with the participation of experts on theories of Dark Matter, to select a minimal basis set of dark matter simplified models that should support the design of the early LHC Run-2 searches. A prioritized, compact set of benchmark models is proposed, accompanied by studies of the parameter space of these models and a repository of generator implementations. This report also addresses how to apply the Effective Field Theory formalism for collider searches and present the results of such interpretations. Read More

2015Jun
Authors: Jalal Abdallah, Henrique Araujo, Alexandre Arbey, Adi Ashkenazi, Alexander Belyaev, Joshua Berger, Celine Boehm, Antonio Boveia, Amelia Brennan, Jim Brooke, Oliver Buchmueller, Matthew Buckley, Giorgio Busoni, Lorenzo Calibbi, Sushil Chauhan, Nadir Daci, Gavin Davies, Isabelle De Bruyn, Paul De Jong, Albert De Roeck, Kees de Vries, Daniele Del Re, Andrea De Simone, Andrea Di Simone, Caterina Doglioni, Matthew Dolan, Herbi K. Dreiner, John Ellis, Sarah Eno, Erez Etzion, Malcolm Fairbairn, Brian Feldstein, Henning Flaecher, Eric Feng, Patrick Fox, Marie-Hélène Genest, Loukas Gouskos, Johanna Gramling, Ulrich Haisch, Roni Harnik, Anthony Hibbs, Siewyan Hoh, Walter Hopkins, Valerio Ippolito, Thomas Jacques, Felix Kahlhoefer, Valentin V. Khoze, Russell Kirk, Andreas Korn, Khristian Kotov, Shuichi Kunori, Greg Landsberg, Sebastian Liem, Tongyan Lin, Steven Lowette, Robyn Lucas, Luca Malgeri, Sarah Malik, Christopher McCabe, Alaettin Serhan Mete, Enrico Morgante, Stephen Mrenna, Yu Nakahama, Dave Newbold, Karl Nordstrom, Priscilla Pani, Michele Papucci, Sophio Pataraia, Bjoern Penning, Deborah Pinna, Giacomo Polesello, Davide Racco, Emanuele Re, Antonio Walter Riotto, Thomas Rizzo, David Salek, Subir Sarkar, Steven Schramm, Patrick Skubic, Oren Slone, Juri Smirnov, Yotam Soreq, Timothy Sumner, Tim M. P. Tait, Marc Thomas, Ian Tomalin, Christopher Tunnell, Alessandro Vichi, Tomer Volansky, Neal Weiner, Stephen M. West, Monika Wielers, Steven Worm, Itay Yavin, Bryan Zaldivar, Ning Zhou, Kathryn Zurek

This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. Read More

The Higgs decay $h\to 4\ell$ has played an important role in discovering the Higgs and measuring its mass thanks to low background and excellent resolution. Current cuts in this channel have been optimized for Higgs discovery via the dominant tree level $ZZ$ contribution arising from electroweak symmetry breaking. Going forward, one of the primary objectives of this sensitive channel will be to probe other Higgs couplings and search for new physics on top of the tree level $ZZ$ `background'. Read More

We show that new physics can show up in dileptonic events through its radiative contributions to the dilepton invariant mass, leading to unique "monocline" features in $m_{\ell\ell}$, as well as the angular distribution of the leptons. We focus in particular on the case of dark matter with scalar messengers coupling it to the quarks and leptons. Consistent thermal models require the dark matter to have masses of 100's GeV and have $\gsim 1$ couplings to the Standard Model (SM), implying that radiative corrections to the SM Drell-Yan rate can be sizeable. Read More

Theories of physics beyond the Standard Model that address the hierarchy problem generally involve top partners, new particles that cancel the quadratic divergences associated with the Yukawa coupling of the Higgs to the top quark. With extensions of the Standard Model that involve new colored particles coming under strain from collider searches, scenarios in which the top partners carry no charge under the strong interactions have become increasingly compelling. Although elusive for direct searches, these theories predict modified couplings of the Higgs boson to the Standard Model particles. Read More

Simple models of weakly interacting massive particles (WIMPs) predict dark matter annihilations into pairs of electroweak gauge bosons, Higgses or tops, which through their subsequent cascade decays produce a spectrum of gamma rays. Intriguingly, an excess in gamma rays coming from near the Galactic center has been consistently observed in Fermi data. A recent analysis by the Fermi collaboration confirms these earlier results. Read More

We present a framework to generate the hierarchical flavor structure of Standard Model quarks and leptons from loops of superpartners. The simplest model consists of the minimal supersymmetric standard model with tree level Yukawa couplings for the third generation only and anarchic squark and slepton mass matrices. Agreement with constraints from low energy flavor observables, in particular Kaon mixing, is obtained for supersymmetric particles with masses at the PeV scale or above. Read More

We explore the sensitivity of the Higgs decay to four leptons, the so-called golden channel, to higher dimensional loop-induced couplings of the Higgs boson to $ZZ$, $Z\gamma$, and $\gamma\gamma$, allowing for general CP mixtures. The larger standard model tree level coupling $hZ^\mu Z_\mu$ is the dominant "background" for the loop induced couplings. However this large background interferes with the smaller loop induced couplings, enhancing the sensitivity. Read More

We study Higgs diphoton decays, in which both photons undergo nuclear conversion to electron- positron pairs. The kinematic distribution of the two electron-positron pairs may be used to probe the CP violating (CPV) coupling of the Higgs to photons, that may be produced by new physics. Detecting CPV in this manner requires interference between the spin-polarized helicity amplitudes for both conversions. Read More

This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study "Snowmass on the Mississippi", summarizing the current status and future experimental opportunities in muon and tau lepton studies and their sensitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries. Read More

2013Oct

This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Read More

We derive bounds on squark and slepton masses in mini-split supersymmetry scenario using low energy experiments. In this setup gauginos are at the TeV scale, while sfermions are heavier by a loop factor. We cover the most sensitive low energy probes including electric dipole moments (EDMs), meson oscillations and charged lepton flavor violation (LFV) transitions. Read More

We investigate the LHC and Higgs Factory prospects for measuring the CP phase in the Higgs-tau-tau coupling. Currently this phase can be anywhere between 0 degrees (CP even) and 90 degrees (CP odd). A new, ideal observable is identified from an analytic calculation for the $\tau^\pm \to \rho^\pm\nu \to \pi^\pm \pi^0 \nu$ channel. Read More

2012Sep
Affiliations: 1Fermilab, 2Fermilab and MPI for Nuclear Physics Heidelberg, 3U of Cincinnati

We study a class of nonstandard interactions of the newly discovered 125 GeV Higgs-like resonance that are especially interesting probes of new physics: flavor violating Higgs couplings to leptons and quarks. These interaction can arise in many frameworks of new physics at the electroweak scale such as two Higgs doublet models, extra dimensions, or models of compositeness. We rederive constraints on flavor violating Higgs couplings using data on rare decays, electric and magnetic dipole moments, and meson oscillations. Read More

2012May
Authors: J. L. Hewett, H. Weerts, R. Brock, J. N. Butler, B. C. K. Casey, J. Collar, A. de Gouvea, R. Essig, Y. Grossman, W. Haxton, J. A. Jaros, C. K. Jung, Z. T. Lu, K. Pitts, Z. Ligeti, J. R. Patterson, M. Ramsey-Musolf, J. L. Ritchie, A. Roodman, K. Scholberg, C. E. M. Wagner, G. P. Zeller, S. Aefsky, A. Afanasev, K. Agashe, C. Albright, J. Alonso, C. Ankenbrandt, M. Aoki, C. A. Arguelles, N. Arkani-Hamed, J. R. Armendariz, C. Armendariz-Picon, E. Arrieta Diaz, J. Asaadi, D. M. Asner, K. S. Babu, K. Bailey, O. Baker, B. Balantekin, B. Baller, M. Bass, B. Batell, J. Beacham, J. Behr, N. Berger, M. Bergevin, E. Berman, R. Bernstein, A. J. Bevan, M. Bishai, M. Blanke, S. Blessing, A. Blondel, T. Blum, G. Bock, A. Bodek, G. Bonvicini, F. Bossi, J. Boyce, R. Breedon, M. Breidenbach, S. J. Brice, R. A. Briere, S. Brodsky, C. Bromberg, A. Bross, T. E. Browder, D. A. Bryman, M. Buckley, R. Burnstein, E. Caden, P. Campana, R. Carlini, G. Carosi, C. Castromonte, R. Cenci, I. Chakaberia, M. C. Chen, C. H. Cheng, B. Choudhary, N. H. Christ, E. Christensen, M. E. Christy, T. E. Chupp, E. Church, D. B. Cline, T. E. Coan, P. Coloma, J. Comfort, L. Coney, J. Cooper, R. J. Cooper, R. Cowan, D. F. Cowen, D. Cronin-Hennessy, A. Datta, G. S. Davies, M. Demarteau, D. P. DeMille, A. Denig, R. Dermisek, A. Deshpande, M. S. Dewey, R. Dharmapalan, J. Dhooghe, M. R. Dietrich, M. Diwan, Z. Djurcic, S. Dobbs, M. Duraisamy, B. Dutta, H. Duyang, D. A. Dwyer, M. Eads, B. Echenard, S. R. Elliott, C. Escobar, J. Fajans, S. Farooq, C. Faroughy, J. E. Fast, B. Feinberg, J. Felde, G. Feldman, P. Fierlinger, P. Fileviez Perez, B. Filippone, P. Fisher, B. T. Flemming, K. T. Flood, R. Forty, M. J. Frank, A. Freyberger, A. Friedland, R. Gandhi, K. S. Ganezer, A. Garcia, F. G. Garcia, S. Gardner, L. Garrison, A. Gasparian, S. Geer, V. M. Gehman, T. Gershon, M. Gilchriese, C. Ginsberg, I. Gogoladze, M. Gonderinger, M. Goodman, H. Gould, M. Graham, P. W. Graham, R. Gran, J. Grange, G. Gratta, J. P. Green, H. Greenlee, R. C. Group, E. Guardincerri, V. Gudkov, R. Guenette, A. Haas, A. Hahn, T. Han, T. Handler, J. C. Hardy, R. Harnik, D. A. Harris, F. A. Harris, P. G. Harris, J. Hartnett, B. He, B. R. Heckel, K. M. Heeger, S. Henderson, D. Hertzog, R. Hill, E. A Hinds, D. G. Hitlin, R. J. Holt, N. Holtkamp, G. Horton-Smith, P. Huber, W. Huelsnitz, J. Imber, I. Irastorza, J. Jaeckel, I. Jaegle, C. James, A. Jawahery, D. Jensen, C. P. Jessop, B. Jones, H. Jostlein, T. Junk, A. L. Kagan, M. Kalita, Y. Kamyshkov, D. M. Kaplan, G. Karagiorgi, A. Karle, T. Katori, B. Kayser, R. Kephart, S. Kettell, Y. K. Kim, M. Kirby, K. Kirch, J. Klein, J. Kneller, A. Kobach, M. Kohl, J. Kopp, M. Kordosky, W. Korsch, I. Kourbanis, A. D. Krisch, P. Krizan, A. S. Kronfeld, S. Kulkarni, K. S. Kumar, Y. Kuno, T. Kutter, T. Lachenmaier, M. Lamm, J. Lancaster, M. Lancaster, C. Lane, K. Lang, P. Langacker, S. Lazarevic, T. Le, K. Lee, K. T. Lesko, Y. Li, M. Lindgren, A. Lindner, J. Link, D. Lissauer, L. S. Littenberg, B. Littlejohn, C. Y. Liu, W. Loinaz, W. Lorenzon, W. C. Louis, J. Lozier, L. Ludovici, L. Lueking, C. Lunardini, D. B. MacFarlane, P. A. N. Machado, P. B. Mackenzie, J. Maloney, W. J. Marciano, W. Marsh, M. Marshak, J. W. Martin, C. Mauger, K. S. McFarland, C. McGrew, G. McLaughlin, D. McKeen, R. McKeown, B. T. Meadows, R. Mehdiyev, D. Melconian, H. Merkel, M. Messier, J. P. Miller, G. Mills, U. K. Minamisono, S. R. Mishra, I. Mocioiu, S. Moed Sher, R. N. Mohapatra, B. Monreal, C. D. Moore, J. G. Morfin, J. Mousseau, L. A. Moustakas, G. Mueller, P. Mueller, M. Muether, H. P. Mumm, C. Munger, H. Murayama, P. Nath, O. Naviliat-Cuncin, J. K. Nelson, D. Neuffer, J. S. Nico, A. Norman, D. Nygren, Y. Obayashi, T. P. O'Connor, Y. Okada, J. Olsen, L. Orozco, J. L. Orrell, J. Osta, B. Pahlka, J. Paley, V. Papadimitriou, M. Papucci, S. Parke, R. H. Parker, Z. Parsa, K. Partyka, A. Patch, J. C. Pati, R. B. Patterson, Z. Pavlovic, G. Paz, G. N. Perdue, D. Perevalov, G. Perez, R. Petti, W. Pettus, A. Piepke, M. Pivovaroff, R. Plunkett, C. C. Polly, M. Pospelov, R. Povey, A. Prakesh, M. V. Purohit, S. Raby, J. L. Raaf, R. Rajendran, S. Rajendran, G. Rameika, R. Ramsey, A. Rashed, B. N. Ratcliff, B. Rebel, J. Redondo, P. Reimer, D. Reitzner, F. Ringer, A. Ringwald, S. Riordan, B. L. Roberts, D. A. Roberts, R. Robertson, F. Robicheaux, M. Rominsky, R. Roser, J. L. Rosner, C. Rott, P. Rubin, N. Saito, M. Sanchez, S. Sarkar, H. Schellman, B. Schmidt, M. Schmitt, D. W. Schmitz, J. Schneps, A. Schopper, P. Schuster, A. J. Schwartz, M. Schwarz, J. Seeman, Y. K. Semertzidis, K. K. Seth, Q. Shafi, P. Shanahan, R. Sharma, S. R. Sharpe, M. Shiozawa, V. Shiltsev, K. Sigurdson, P. Sikivie, J. Singh, D. Sivers, T. Skwarnicki, N. Smith, J. Sobczyk, H. Sobel, M. Soderberg, Y. H. Song, A. Soni, P. Souder, A. Sousa, J. Spitz, M. Stancari, G. C. Stavenga, J. H. Steffen, S. Stepanyan, D. Stoeckinger, S. Stone, J. Strait, M. Strassler, I. A. Sulai, R. Sundrum, R. Svoboda, B. Szczerbinska, A. Szelc, T. Takeuchi, P. Tanedo, S. Taneja, J. Tang, D. B. Tanner, R. Tayloe, I. Taylor, J. Thomas, C. Thorn, X. Tian, B. G. Tice, M. Tobar, N. Tolich, N. Toro, I. S. Towner, Y. Tsai, R. Tschirhart, C. D. Tunnell, M. Tzanov, A. Upadhye, J. Urheim, S. Vahsen, A. Vainshtein, E. Valencia, R. G. Van de Water, R. S. Van de Water, M. Velasco, J. Vogel, P. Vogel, W. Vogelsang, Y. W. Wah, D. Walker, N. Weiner, A. Weltman, R. Wendell, W. Wester, M. Wetstein, C. White, L. Whitehead, J. Whitmore, E. Widmann, G. Wiedemann, J. Wilkerson, G. Wilkinson, P. Wilson, R. J. Wilson, W. Winter, M. B. Wise, J. Wodin, S. Wojcicki, B. Wojtsekhowski, T. Wongjirad, E. Worcester, J. Wurtele, T. Xin, J. Xu, T. Yamanaka, Y. Yamazaki, I. Yavin, J. Yeck, M. Yeh, M. Yokoyama, J. Yoo, A. Young, E. Zimmerman, K. Zioutas, M. Zisman, J. Zupan, R. Zwaska

The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms. Read More

Dark matter (DM) has been searched for at colliders in a largely model independent fashion by looking for an excess number of events involving a single jet, or photon, and missing energy. We investigate the possibility of looking for excesses in more inclusive jet channels. Events with multiple jets contain more information and thus more handles to increase the signal to background ratio. Read More

2012Mar
Authors: The CDF Collaboration, T. Aaltonen, B. Álvarez González, S. Amerio, D. Amidei, A. Anastassov, A. Annovi, J. Antos, G. Apollinari, J. A. Appel, T. Arisawa, A. Artikov, J. Asaadi, W. Ashmanskas, B. Auerbach, A. Aurisano, F. Azfar, W. Badgett, T. Bae, Y. Bai, A. Barbaro-Galtieri, V. E. Barnes, B. A. Barnett, P. Barria, P. Bartos, M. Bauce, F. Bedeschi, S. Behari, G. Bellettini, J. Bellinger, D. Benjamin, A. Beretvas, A. Bhatti, D. Bisello, I. Bizjak, K. R. Bland, B. Blumenfeld, A. Bocci, A. Bodek, D. Bortoletto, J. Boudreau, A. Boveia, L. Brigliadori, C. Bromberg, E. Brucken, J. Budagov, H. S. Budd, K. Burkett, G. Busetto, P. Bussey, A. Buzatu, A. Calamba, C. Calancha, S. Camarda, M. Campanelli, M. Campbell, F. Canelli, B. Carls, D. Carlsmith, R. Carosi, S. Carrillo, S. Carron, B. Casal, M. Casarsa, A. Castro, P. Catastini, D. Cauz, V. Cavaliere, M. Cavalli-Sforza, A. Cerri, L. Cerrito, Y. C. Chen, M. Chertok, G. Chiarelli, G. Chlachidze, F. Chlebana, K. Cho, D. Chokheli, W. H. Chung, Y. S. Chung, M. A. Ciocci, A. Clark, C. Clarke, G. Compostella, M. E. Convery, J. Conway, M. Corbo, M. Cordelli, C. A. Cox, D. J. Cox, F. Crescioli, J. Cuevas, R. Culbertson, D. Dagenhart, N. d'Ascenzo, M. Datta, P. de Barbaro, M. Dell'Orso, L. Demortier, M. Deninno, F. Devoto, M. d'Errico, A. Di Canto, B. Di Ruzza, J. R. Dittmann, M. D'Onofrio, S. Donati, P. Dong, M. Dorigo, T. Dorigo, K. Ebina, A. Elagin, A. Eppig, R. Erbacher, S. Errede, N. Ershaidat, R. Eusebi, S. Farrington, M. Feindt, J. P. Fernandez, R. Field, G. Flanagan, R. Forrest, P. J. Fox, M. J. Frank, M. Franklin, J. C. Freeman, Y. Funakoshi, I. Furic, M. Gallinaro, J. E. Garcia, A. F. Garfinkel, P. Garosi, H. Gerberich, E. Gerchtein, S. Giagu, V. Giakoumopoulou, P. Giannetti, K. Gibson, C. M. Ginsburg, N. Giokaris, P. Giromini, G. Giurgiu, V. Glagolev, D. Glenzinski, M. Gold, D. Goldin, N. Goldschmidt, A. Golossanov, G. Gomez, G. Gomez-Ceballos, M. Goncharov, O. González, I. Gorelov, A. T. Goshaw, K. Goulianos, S. Grinstein, C. Grosso-Pilcher, R. C. Group, J. Guimaraes da Costa, S. R. Hahn, E. Halkiadakis, A. Hamaguchi, J. Y. Han, F. Happacher, K. Hara, D. Hare, M. Hare, R. Harnik, R. F. Harr, K. Hatakeyama, C. Hays, M. Heck, J. Heinrich, M. Herndon, S. Hewamanage, A. Hocker, W. Hopkins, D. Horn, S. Hou, R. E. Hughes, M. Hurwitz, U. Husemann, N. Hussain, M. Hussein, J. Huston, G. Introzzi, M. Iori, A. Ivanov, E. James, D. Jang, B. Jayatilaka, E. J. Jeon, S. Jindariani, M. Jones, K. K. Joo, S. Y. Jun, T. R. Junk, T. Kamon, P. E. Karchin, A. Kasmi, Y. Kato, W. Ketchum, J. Keung, V. Khotilovich, B. Kilminster, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kim, Y. J. Kim, N. Kimura, M. Kirby, S. Klimenko, K. Knoepfel, K. Kondo, D. J. Kong, J. Konigsberg, A. V. Kotwal, M. Kreps, J. Kroll, D. Krop, M. Kruse, V. Krutelyov, T. Kuhr, M. Kurata, S. Kwang, A. T. Laasanen, S. Lami, S. Lammel, M. Lancaster, R. L. Lander, K. Lannon, A. Lath, G. Latino, T. LeCompte, E. Lee, H. S. Lee, J. S. Lee, S. W. Lee, S. Leo, S. Leone, J. D. Lewis, A. Limosani, C. -J. Lin, M. Lindgren, E. Lipeles, A. Lister, D. O. Litvintsev, C. Liu, H. Liu, Q. Liu, T. Liu, S. Lockwitz, A. Loginov, D. Lucchesi, J. Lueck, P. Lujan, P. Lukens, G. Lungu, J. Lys, R. Lysak, R. Madrak, K. Maeshima, P. Maestro, S. Malik, G. Manca, A. Manousakis-Katsikakis, F. Margaroli, C. Marino, M. Martínez, P. Mastrandrea, K. Matera, M. E. Mattson, A. Mazzacane, P. Mazzanti, K. S. McFarland, P. McIntyre, R. McNulty, A. Mehta, P. Mehtala, C. Mesropian, T. Miao, D. Mietlicki, A. Mitra, H. Miyake, S. Moed, N. Moggi, M. N. Mondragon, C. S. Moon, R. Moore, M. J. Morello, J. Morlock, P. Movilla Fernandez, A. Mukherjee, Th. Muller, P. Murat, M. Mussini, J. Nachtman, Y. Nagai, J. Naganoma, I. Nakano, A. Napier, J. Nett, C. Neu, M. S. Neubauer, J. Nielsen, L. Nodulman, S. Y. Noh, O. Norniella, L. Oakes, S. H. Oh, Y. D. Oh, I. Oksuzian, T. Okusawa, R. Orava, L. Ortolan, S. Pagan Griso, C. Pagliarone, E. Palencia, V. Papadimitriou, A. A. Paramonov, J. Patrick, G. Pauletta, C. Paus, D. E. Pellett, A. Penzo, T. J. Phillips, G. Piacentino, E. Pianori, J. Pilot, K. Pitts, C. Plager, L. Pondrom, S. Poprocki, K. Potamianos, F. Prokoshin, A. Pranko, F. Ptohos, G. Punzi, A. Rahaman, V. Ramakrishnan, N. Ranjan, I. Redondo, P. Renton, M. Rescigno, T. Riddick, F. Rimondi, L. Ristori, A. Robson, T. Rodrigo, T. Rodriguez, E. Rogers, S. Rolli, R. Roser, F. Ruffini, A. Ruiz, J. Russ, V. Rusu, A. Safonov, W. K. Sakumoto, Y. Sakurai, L. Santi, K. Sato, V. Saveliev, A. Savoy-Navarro, P. Schlabach, A. Schmidt, E. E. Schmidt, T. Schwarz, L. Scodellaro, A. Scribano, F. Scuri, S. Seidel, Y. Seiya, A. Semenov, F. Sforza, S. Z. Shalhout, T. Shears, P. F. Shepard, M. Shimojima, M. Shochet, I. Shreyber-Tecker, A. Simonenko, P. Sinervo, K. Sliwa, J. R. Smith, F. D. Snider, A. Soha, V. Sorin, H. Song, P. Squillacioti, M. Stancari, R. St. Denis, B. Stelzer, O. Stelzer-Chilton, D. Stentz, J. Strologas, G. L. Strycker, Y. Sudo, A. Sukhanov, I. Suslov, K. Takemasa, Y. Takeuchi, J. Tang, M. Tecchio, P. K. Teng, J. Thom, J. Thome, G. A. Thompson, E. Thomson, D. Toback, S. Tokar, K. Tollefson, T. Tomura, D. Tonelli, S. Torre, D. Torretta, P. Totaro, M. Trovato, F. Ukegawa, S. Uozumi, A. Varganov, F. Vázquez, G. Velev, C. Vellidis, M. Vidal, I. Vila, R. Vilar, J. Vizán, M. Vogel, G. Volpi, P. Wagner, R. L. Wagner, T. Wakisaka, R. Wallny, S. M. Wang, A. Warburton, D. Waters, W. C. Wester III, D. Whiteson, A. B. Wicklund, E. Wicklund, S. Wilbur, F. Wick, H. H. Williams, J. S. Wilson, P. Wilson, B. L. Winer, P. Wittich, S. Wolbers, H. Wolfe, T. Wright, X. Wu, Z. Wu, K. Yamamoto, D. Yamato, T. Yang, U. K. Yang, Y. C. Yang, W. -M. Yao, G. P. Yeh, K. Yi, J. Yoh, K. Yorita, T. Yoshida, G. B. Yu, I. Yu, S. S. Yu, J. C. Yun, A. Zanetti, Y. Zeng, C. Zhou, S. Zucchelli

We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp-bar collisions at sqrt(s)=1.96 TeV corresponding to an integrated luminosity of 6. Read More

2012Feb

We investigate standard and non-standard solar neutrino signals in direct dark matter detection experiments. It is well known that even without new physics, scattering of solar neutrinos on nuclei or electrons is an irreducible background for direct dark matter searches, once these experiments each the ton scale. Here, we entertain the possibility that neutrino interactions are enhanced by new physics, such as new light force carriers (for instance a "dark photon") or neutrino magnetic moments. Read More

2011Sep

We use ATLAS and CMS searches in the mono-jet + missing energy and mono-photon + missing energy final state to set limits on the couplings of dark matter to quarks and gluons. Working in an effective field theory framework we compare several existing mono-jet analyses and find that searches with high p_T cuts are more sensitive to dark matter. We constrain the suppression scale of the effective dark matter-Standard Model interactions, and convert these limits into bounds on the cross sections relevant to direct and indirect detection. Read More

We consider the physics and collider phenomenology of quirks that transform nontrivially under QCD color, SU(2)_W as well as an SU(N)_{ic} infracolor group. Our main motivation is to show that the recent Wjj excess observed by CDF naturally arises in quirky models. The basic pattern is that several different quirky states can be produced, some of which beta-decay during or after spin-down, leaving the lightest electrically neutral quirks to hadronize into a meson that subsequently decays into gluon jets. Read More

Dark matter pair production at high energy colliders may leave observable signatures in the energy and momentum spectra of the objects recoiling against the dark matter. We use LEP data on mono-photon events with large missing energy to constrain the coupling of dark matter to electrons. Within a large class of models, our limits are complementary to and competitive with limits on dark matter annihilation and on WIMP-nucleon scattering from indirect and direct searches. Read More

Experiments designed to measure neutrino oscillations also provide major opportunities for discovering very weakly coupled states. In order to produce neutrinos, experiments such as LSND collide thousands of Coulombs of protons into fixed targets, while MINOS and MiniBooNE also focus and then dump beams of muons. The neutrino detectors beyond these beam dumps are therefore an excellent arena in which to look for long-lived pseudoscalars or for vector bosons that kinetically mix with the photon. Read More

Direct detection of dark matter (DM) requires an interaction of dark matter particles with nucleons. The same interaction can lead to dark matter pair production at a hadron collider, and with the addition of initial state radiation this may lead to mono-jet signals. Mono-jet searches at the Tevatron can thus place limits on DM direct detection rates. Read More

We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass ~few GeV and splittings ~5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Read More

It seems generic to have vacua with lower dimensionality than ours. We consider the possibility that the observable universe originated in a transition from one of these vacua. Such a universe has anisotropic spatial curvature. Read More

We initiate a quantitative exploration of the entire landscape. Predictions thus far have focused on subsets of landscape vacua that share most properties with our own. Using the entropic principle (the assumption that entropy production traces the formation of complex structures such as observers), we derive six predictions that apply to the whole landscape. Read More

In supersymmetric unified theories the dark matter particle can decay, just like the proton, through grand unified interactions with a lifetime of order of 10^{26} sec. Its decay products can be detected by several experiments -- including Fermi, HESS, PAMELA, ATIC, and IceCube -- opening our first direct window to physics at the TeV scale and simultaneously at the unification scale 10^{16} GeV. We consider possibilities for explaining the electron/positron spectra observed by HESS, PAMELA, and ATIC, and the resulting predictions for the gamma-ray, electron/positron, and neutrino spectra as will be measured, for example, by Fermi and IceCube. Read More

Traditional ideas for testing unification involve searching for the decay of the proton and its branching modes. We point out that several astrophysical experiments are now reaching sensitivities that allow them to explore supersymmetric unified theories. In these theories the electroweak-mass DM particle can decay, just like the proton, through dimension six operators with lifetime ~ 10^26 sec. Read More

A stable Dirac fermion with four-fermion interactions to leptons suppressed by a scale Lambda ~ 1 TeV is shown to provide a viable candidate for dark matter. The thermal relic abundance matches cosmology, while nuclear recoil direct detection bounds are automatically avoided in the absence of (large) couplings to quarks. The annihilation cross section in the early Universe is the same as the annihilation in our galactic neighborhood. Read More

LHC searches for new physics focus on combinations of hard physics objects. In this work we propose a qualitatively different soft signal for new physics at the LHC - the "anomalous underlying event". Every hard LHC event will be accompanied by a soft underlying event due to QCD and pile-up effects. Read More

We investigate the collider signals associated with scalar quirks ("squirks") in folded supersymmetric models. As opposed to regular superpartners in supersymmetric models these particles are uncolored, but are instead charged under a new confining group, leading to radically different collider signals. Due to the new strong dynamics, squirks that are pair produced do not hadronize separately, but rather form a highly excited bound state. Read More

We compute the expected value of the cosmological constant in our universe from the Causal Entropic Principle. Since observers must obey the laws of thermodynamics and causality, the principle asserts that physical parameters are most likely to be found in the range of values for which the total entropy production within a causally connected region is maximized. Despite the absence of more explicit anthropic criteria, the resulting probability distribution turns out to be in excellent agreement with observation. Read More

We present a new class of models that stabilize the weak scale against radiative corrections up to scales of order 5 TeV without large corrections to precision electroweak observables. In these `folded supersymmetric' theories the one loop quadratic divergences of the Standard Model Higgs field are cancelled by opposite spin partners, but the gauge quantum numbers of these new particles are in general different from those of the conventional superpartners. This class of models is built around the correspondence that exists in the large N limit between the correlation functions of supersymmetric theories and those of their non-supersymmetric orbifold daughters. Read More

A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical "Weakless Universe" is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. Read More

2005Dec
Affiliations: 1Arizona U., 2Arizona U., 3SLAC & Stanford U.

We present twin Higgs models based on the extension of the Standard Model to left-right symmetry that protect the weak scale against radiative corrections up to scales of order 5 TeV. In the ultra-violet the Higgs sector of these theories respects an approximate global symmetry, in addition to the discrete parity symmetry characteristic of left-right symmetric models. The Standard Model Higgs field emerges as the pseudo-Goldstone boson associated with the breaking of the global symmetry. Read More

We present `twin Higgs models', simple realizations of the Higgs as a pseudo-Goldstone boson that protect the weak scale from radiative corrections up to scales of order 5 - 10 TeV. In the ultra-violet these theories have a discrete symmetry which interchanges each Standard Model particle with a corresponding particle which transforms under a twin or mirror Standard Model gauge group. In addition, the Higgs sector respects an approximate global SU(4) symmetry. Read More

We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. Read More

Supersymmetric models have traditionally been assumed to be perturbative up to high scales due to the requirement of calculable unification. In this note I review the recently proposed `Fat Higgs' model which relaxes the requirement of perturbativity. In this framework, an NMSSM-like trilinear coupling becomes strong at some intermediate scale. Read More

The observed flavor structure of the standard model arises naturally in "split fermion" models which localize fermions at different places in an extra dimension. It has, until now, been assumed that the bulk masses for such fermions can be chosen to be flavor diagonal simultaneously at every point in the extra dimension, with all the flavor violation coming from the Yukawa couplings to the Higgs. We consider the more natural possibility in which the bulk masses cannot be simultaneously diagonalized, that is, that they are twisted in flavor space. Read More

We advocate the idea that proton decay may probe physics at the Planck scale instead of the GUT scale. This is possible because supersymmetric theories have dimension-5 operators that can induce proton decay at dangerous rates, even with R-parity conservation. These operators are expected to be suppressed by the same physics that explains the fermion masses and mixings. Read More

We present a calculable supersymmetric theory of a composite ``fat'' Higgs boson. Electroweak symmetry is broken dynamically through a new gauge interaction that becomes strong at an intermediate scale. The Higgs mass can easily be 200-450 GeV along with the superpartner masses, solving the supersymmetric little hierarchy problem. Read More

Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N_c) gauge theories with N_f flavors of quarks in the presence of a baryon chemical potential mu, and describe the global symmetry breaking patterns at low energy. Read More

2002Dec
Affiliations: 1UC Berkeley/LBL, 2UC Berkeley/LBL, 3UC Berkeley/LBL, 4SLAC

The large observed mixing angle in atmospheric neutrinos, coupled with Grand Unification, motivates the search for a large mixing between right-handed strange and bottom squarks. Such mixing does not appear in the standard CKM phenomenology, but may induce significant b to s transitions through gluino diagrams. Working in the mass eigenbasis, we show quantitatively that an order one effect on CP violation in B_d to phi+K_S is possible due to a large mixing between right-handed b and s squarks, while still satisfying constraints from b to s + gamma. Read More

Anomaly mediation of supersymmetry breaking solves the supersymmetric flavor problem thanks to its ultraviolet-insensitivity. However, it suffers from two problems: sleptons have negative masses-squared, and there are likely bulk moduli that spoil the framework. Here, we present the first fully ultraviolet-insensitive model of anomaly mediation with positive slepton masses-squared in a purely four-dimensional framework. Read More