# R. Frederix - conveners

## Publications Authored By R. Frederix

The determination of the CP nature of the Higgs coupling to top quarks is addressed in this paper, using $t{\bar t} h$ events produced in $\sqrt{s} = 13$ TeV proton-proton collisions at the LHC. Dileptonic final states are employed, with two oppositely charged leptons and four jets, corresponding to the decays $t\rightarrow bW^+ \rightarrow b \ell^+\nu_\ell$, $\bar{t}\rightarrow \bar{b}W^- \rightarrow \bar{b} \ell^-\bar{\nu}_\ell$ and $h\rightarrow b\bar{b}$. Pure scalar ($h=H$), pure pseudo-scalar ($h=A$) and CP-violating Higgs boson signal events, generated with MadGraph5_aMC@NLO, are fully reconstructed through a kinematic fit. Read More

We study the production of jets in hadronic collisions, by computing all contributions proportional to $\alpha_S^n\alpha^m$, with $n+m=2$ and $n+m=3$. These correspond to leading and next-to-leading order results, respectively, for single-inclusive and dijet observables in a perturbative expansion that includes both QCD and electroweak effects. We discuss issues relevant to the definition of hadronic jets in the context of electroweak corrections, and present sample phenomenological predictions for the 13-TeV LHC. Read More

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, R. Costa

^{69}, D. Curtin

^{70}, M. Dall'Osso

^{71}, A. David

^{72}, S. Dawson

^{73}, J. de Blas

^{74}, W. de Boer

^{75}, P. de Castro Manzano

^{76}, C. Degrande

^{77}, R. L. Delgado

^{78}, F. Demartin

^{79}, A. Denner

^{80}, B. Di Micco

^{81}, R. Di Nardo

^{82}, S. Dittmaier

^{83}, A. Dobado

^{84}, T. Dorigo

^{85}, F. A. Dreyer

^{86}, M. Dührssen

^{87}, C. Duhr

^{88}, F. Dulat

^{89}, K. Ecker

^{90}, K. Ellis

^{91}, U. Ellwanger

^{92}, C. Englert

^{93}, D. Espriu

^{94}, A. Falkowski

^{95}, L. Fayard

^{96}, R. Feger

^{97}, G. Ferrera

^{98}, A. Ferroglia

^{99}, N. Fidanza

^{100}, T. Figy

^{101}, M. Flechl

^{102}, D. Fontes

^{103}, S. Forte

^{104}, P. Francavilla

^{105}, E. Franco

^{106}, R. Frederix

^{107}, A. Freitas

^{108}, F. F. Freitas

^{109}, F. Frensch

^{110}, S. Frixione

^{111}, B. Fuks

^{112}, E. Furlan

^{113}, S. Gadatsch

^{114}, J. Gao

^{115}, Y. Gao

^{116}, M. V. Garzelli

^{117}, T. Gehrmann

^{118}, R. Gerosa

^{119}, M. Ghezzi

^{120}, D. Ghosh

^{121}, S. Gieseke

^{122}, D. Gillberg

^{123}, G. F. Giudice

^{124}, E. W. N. Glover

^{125}, F. Goertz

^{126}, D. Gonçalves

^{127}, J. Gonzalez-Fraile

^{128}, M. Gorbahn

^{129}, S. Gori

^{130}, C. A. Gottardo

^{131}, M. Gouzevitch

^{132}, P. Govoni

^{133}, D. Gray

^{134}, M. Grazzini

^{135}, N. Greiner

^{136}, A. Greljo

^{137}, J. Grigo

^{138}, A. V. Gritsan

^{139}, R. Gröber

^{140}, S. Guindon

^{141}, H. E. Haber

^{142}, C. Han

^{143}, T. Han

^{144}, R. Harlander

^{145}, M. A. Harrendorf

^{146}, H. B. Hartanto

^{147}, C. Hays

^{148}, S. Heinemeyer

^{149}, G. Heinrich

^{150}, M. Herrero

^{151}, F. Herzog

^{152}, B. Hespel

^{153}, V. Hirschi

^{154}, S. Hoeche

^{155}, S. Honeywell

^{156}, S. J. Huber

^{157}, C. Hugonie

^{158}, J. Huston

^{159}, A. Ilnicka

^{160}, G. Isidori

^{161}, B. Jäger

^{162}, M. Jaquier

^{163}, S. P. Jones

^{164}, A. Juste

^{165}, S. Kallweit

^{166}, A. Kaluza

^{167}, A. Kardos

^{168}, A. Karlberg

^{169}, Z. Kassabov

^{170}, N. Kauer

^{171}, D. I. Kazakov

^{172}, M. Kerner

^{173}, W. Kilian

^{174}, F. Kling

^{175}, K. Köneke

^{176}, R. Kogler

^{177}, R. Konoplich

^{178}, S. Kortner

^{179}, S. Kraml

^{180}, C. Krause

^{181}, F. Krauss

^{182}, M. Krawczyk

^{183}, A. Kulesza

^{184}, S. Kuttimalai

^{185}, R. Lane

^{186}, A. Lazopoulos

^{187}, G. Lee

^{188}, P. Lenzi

^{189}, I. M. Lewis

^{190}, Y. Li

^{191}, S. Liebler

^{192}, J. Lindert

^{193}, X. Liu

^{194}, Z. Liu

^{195}, F. J. Llanes-Estrada

^{196}, H. E. Logan

^{197}, D. Lopez-Val

^{198}, I. Low

^{199}, G. Luisoni

^{200}, P. Maierhöfer

^{201}, E. Maina

^{202}, B. Mansoulié

^{203}, H. Mantler

^{204}, M. Mantoani

^{205}, A. C. Marini

^{206}, V. I. Martinez Outschoorn

^{207}, S. Marzani

^{208}, D. Marzocca

^{209}, A. Massironi

^{210}, K. Mawatari

^{211}, J. Mazzitelli

^{212}, A. McCarn

^{213}, B. Mellado

^{214}, K. Melnikov

^{215}, S. B. Menari

^{216}, L. Merlo

^{217}, C. Meyer

^{218}, P. Milenovic

^{219}, K. Mimasu

^{220}, S. Mishima

^{221}, B. Mistlberger

^{222}, S. -O. Moch

^{223}, A. Mohammadi

^{224}, P. F. Monni

^{225}, G. Montagna

^{226}, M. Moreno Llácer

^{227}, N. Moretti

^{228}, S. Moretti

^{229}, L. Motyka

^{230}, A. Mück

^{231}, M. Mühlleitner

^{232}, S. Munir

^{233}, P. Musella

^{234}, P. Nadolsky

^{235}, D. Napoletano

^{236}, M. Nebot

^{237}, C. Neu

^{238}, M. Neubert

^{239}, R. Nevzorov

^{240}, O. Nicrosini

^{241}, J. Nielsen

^{242}, K. Nikolopoulos

^{243}, J. M. No

^{244}, C. O'Brien

^{245}, T. Ohl

^{246}, C. Oleari

^{247}, T. Orimoto

^{248}, D. Pagani

^{249}, C. E. Pandini

^{250}, A. Papaefstathiou

^{251}, A. S. Papanastasiou

^{252}, G. Passarino

^{253}, B. D. Pecjak

^{254}, M. Pelliccioni

^{255}, G. Perez

^{256}, L. Perrozzi

^{257}, F. Petriello

^{258}, G. Petrucciani

^{259}, E. Pianori

^{260}, F. Piccinini

^{261}, M. Pierini

^{262}, A. Pilkington

^{263}, S. Plätzer

^{264}, T. Plehn

^{265}, R. Podskubka

^{266}, C. T. Potter

^{267}, S. Pozzorini

^{268}, K. Prokofiev

^{269}, A. Pukhov

^{270}, I. Puljak

^{271}, M. Queitsch-Maitland

^{272}, J. Quevillon

^{273}, D. Rathlev

^{274}, M. Rauch

^{275}, E. Re

^{276}, M. N. Rebelo

^{277}, D. Rebuzzi

^{278}, L. Reina

^{279}, C. Reuschle

^{280}, J. Reuter

^{281}, M. Riembau

^{282}, F. Riva

^{283}, A. Rizzi

^{284}, T. Robens

^{285}, R. Röntsch

^{286}, J. Rojo

^{287}, J. C. Romão

^{288}, N. Rompotis

^{289}, J. Roskes

^{290}, R. Roth

^{291}, G. P. Salam

^{292}, R. Salerno

^{293}, M. O. P. Sampaio

^{294}, R. Santos

^{295}, V. Sanz

^{296}, J. J. Sanz-Cillero

^{297}, H. Sargsyan

^{298}, U. Sarica

^{299}, P. Schichtel

^{300}, J. Schlenk

^{301}, T. Schmidt

^{302}, C. Schmitt

^{303}, M. Schönherr

^{304}, U. Schubert

^{305}, M. Schulze

^{306}, S. Sekula

^{307}, M. Sekulla

^{308}, E. Shabalina

^{309}, H. S. Shao

^{310}, J. Shelton

^{311}, C. H. Shepherd-Themistocleous

^{312}, S. Y. Shim

^{313}, F. Siegert

^{314}, A. Signer

^{315}, J. P. Silva

^{316}, L. Silvestrini

^{317}, M. Sjodahl

^{318}, P. Slavich

^{319}, M. Slawinska

^{320}, L. Soffi

^{321}, M. Spannowsky

^{322}, C. Speckner

^{323}, D. M. Sperka

^{324}, M. Spira

^{325}, O. Stål

^{326}, F. Staub

^{327}, T. Stebel

^{328}, T. Stefaniak

^{329}, M. Steinhauser

^{330}, I. W. Stewart

^{331}, M. J. Strassler

^{332}, J. Streicher

^{333}, D. M. Strom

^{334}, S. Su

^{335}, X. Sun

^{336}, F. J. Tackmann

^{337}, K. Tackmann

^{338}, A. M. Teixeira

^{339}, R. Teixeira de Lima

^{340}, V. Theeuwes

^{341}, R. Thorne

^{342}, D. Tommasini

^{343}, P. Torrielli

^{344}, M. Tosi

^{345}, F. Tramontano

^{346}, Z. Trócsányi

^{347}, M. Trott

^{348}, I. Tsinikos

^{349}, M. Ubiali

^{350}, P. Vanlaer

^{351}, W. Verkerke

^{352}, A. Vicini

^{353}, L. Viliani

^{354}, E. Vryonidou

^{355}, D. Wackeroth

^{356}, C. E. M. Wagner

^{357}, J. Wang

^{358}, S. Wayand

^{359}, G. Weiglein

^{360}, C. Weiss

^{361}, M. Wiesemann

^{362}, C. Williams

^{363}, J. Winter

^{364}, D. Winterbottom

^{365}, R. Wolf

^{366}, M. Xiao

^{367}, L. L. Yang

^{368}, R. Yohay

^{369}, S. P. Y. Yuen

^{370}, G. Zanderighi

^{371}, M. Zaro

^{372}, D. Zeppenfeld

^{373}, R. Ziegler

^{374}, T. Zirke

^{375}, J. Zupan

^{376}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group,

^{375}The LHC Higgs Cross Section Working Group,

^{376}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We present predictions for the total cross section for the production of a charged Higgs boson in a generic type-II two-Higgs-doublet model in the intermediate-mass range ($m_{H^{\pm}}\sim m_t$) at the LHC. Results are obtained at next-to-leading order (NLO) accuracy in QCD perturbation theory, by studying the full process $pp\to H^\pm W^\mp b \bar b$ in the complex-(top)-mass scheme with massive bottom quarks. Compared to lowest-order predictions, NLO corrections have a sizable impact: they increase the cross section by roughly 50% and reduce uncertainties due to scale variations by more than a factor of two. Read More

**Authors:**S. Badger

^{1}, J. Bendavid

^{2}, V. Ciulli

^{3}, A. Denner

^{4}, R. Frederix

^{5}, M. Grazzini

^{6}, J. Huston

^{7}, M. Schönherr

^{8}, K. Tackmann

^{9}, J. Thaler

^{10}, C. Williams

^{11}, J. R. Andersen, K. Becker, M. Bell, J. Bellm, E. Bothmann, R. Boughezal, J. Butterworth, S. Carrazza, M. Chiesa, L. Cieri, M. Duehrssen-Debling, G. Falmagne, S. Forte, P. Francavilla, M. Freytsis, J. Gao, P. Gras, N. Greiner, D. Grellscheid, G. Heinrich, G. Hesketh, S. Höche, L. Hofer, T. -J. Hou, A. Huss, J. Isaacson, A. Jueid, S. Kallweit, D. Kar, Z. Kassabov, V. Konstantinides, F. Krauss, S. Kuttimalai, A. Lazapoulos, P. Lenzi, Y. Li, J. M. Lindert, X. Liu, G. Luisoni, L. Lönnblad, P. Maierhöfer, D. Maître, A. C. Marini, G. Montagna, M. Moretti, P. M. Nadolsky, G. Nail, D. Napoletano, O. Nicrosini, C. Oleari, D. Pagani, C. Pandini, L. Perrozzi, F. Petriello, F. Piccinini, S. Plätzer, I. Pogrebnyak, S. Pozzorini, S. Prestel, C. Reuschle, J. Rojo, L. Russo, P. Schichtel, S. Schumann, A. Siódmok, P. Skands, D. Soper, G. Soyez, P. Sun, F. J. Tackmann, E. Takasugi, S. Uccirati, U. Utku, L. Viliani, E. Vryonidou, B. T. Wang, B. Waugh, M. A. Weber, J. Winter, K. P. Xie, C. -P. Yuan, F. Yuan, K. Zapp, M. Zaro

**Affiliations:**

^{1}conveners,

^{2}conveners,

^{3}conveners,

^{4}conveners,

^{5}conveners,

^{6}conveners,

^{7}conveners,

^{8}conveners,

^{9}conveners,

^{10}conveners,

^{11}conveners

**Category:**High Energy Physics - Phenomenology

This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators. Read More

We study the production of a Standard Model Higgs boson in the gluon-fusion channel at the 13 TeV LHC. Our results are accurate to the next-to-leading order in QCD, bar for the lack of some two-loop amplitudes, for up to two extra jets and are matched to the PYTHIA8 Monte Carlo. We address the impact, at the level of inclusive rates and of differential distributions, of the merging of samples characterised by different final-state multiplicities, and of the effects induced by top and bottom masses through heavy-quark loop diagrams. Read More

We study the hadroproduction of a $Wb$ pair in association with a light jet, focusing on the dominant $t$-channel contribution and including exactly at the matrix-element level all non-resonant and off-shell effects induced by the finite top-quark width. Our simulations are accurate to the next-to-leading order in QCD, and are matched to the HERWIG6 and PYTHIA8 parton showers through the MC@NLO method. We present phenomenological results relevant to the 8 TeV LHC, and carry out a thorough comparison to the case of on-shell $t$-channel single-top production. Read More

We consider improving POWHEG+MINLO simulations, so as to also render them NLO accurate in the description of observables receiving contributions from events with lower parton multiplicity than present in their underlying NLO calculation. On a conceptual level we follow the strategy of the so-called MINLO' programs. Whereas the existing MINLO' framework requires explicit analytic input from higher order resummation, here we derive an effective numerical approximation to these ingredients, by imposing unitarity. Read More

We consider the production of a single $Z$ or $W$ boson in association with jets at the LHC. We compute the corresponding cross sections by matching NLO QCD predictions with the Herwig++ and Pythia8 parton showers, and by merging all of the underlying matrix elements with up to two light partons at the Born level. We compare our results with several 7-TeV measurements by the ATLAS and CMS collaborations, and overall we find a good agreement between theory and data. Read More

We present an interface between the multipurpose NLO Monte Carlo tool MadGraph5_aMC@NLO and the automated one-loop amplitude generator GoSam. As a first application of this novel framework, we compute the NLO corrections to $pp \to t\bar{t}H$ and $pp \to t\bar{t}\gamma\gamma$ matched to a parton shower. In the phenomenological analyses of these processes, we focus our attention on observables which are sensitive to the polarisation of the top quarks. Read More

The associated production of a Higgs boson and a top-quark pair, $t{\bar t} H$, in proton-proton collisions is addressed in this paper for a center of mass energy of 13TeV at the LHC. Dileptonic final states of $t{\bar t}H$ events with two oppositely charged leptons and four jets from the decays $t\rightarrow bW^+ \rightarrow b \ell^+\nu_\ell$, $\bar{t}\rightarrow \bar{b}W^- \rightarrow \bar{b} \ell^-\bar{\nu}_\ell$ and $h\rightarrow b\bar{b}$, are used. Signal events, generated with MadGraph5_aMC@NLO, are fully reconstructed by applying a kinematic fit. Read More

In electroweak-boson production processes with a jet veto, higher-order corrections are enhanced by logarithms of the veto scale over the invariant mass of the boson system. In this paper, we resum these Sudakov logarithms at next-to-next-to-leading logarithmic (NNLL) accuracy and match our predictions to next-to-leading order (NLO) fixed-order results. We perform the calculation in an automated way, for arbitrary electroweak final states and in the presence of kinematic cuts on the leptons produced in the decays of the electroweak bosons. Read More

We study the production of a Higgs boson in association with bottom quarks in hadronic collisions, and present phenomenological predictions relevant to the 13 TeV LHC. Our results are accurate to the next-to-leading order in QCD, and matched to parton showers through the MC@NLO method; thus, they are fully differential and based on unweighted events, which we shower by using both Herwig++ and Pythia8. We perform the computation in both the four-flavour and the five-flavour schemes, whose results we compare extensively at the level of exclusive observables. Read More

W bosons produced at high transverse momentum in hadron collisions can have polarization along the direction perpendicular to the production plane, which is odd under na$\ddot{\i}$ve-T-reversal where both the three-momenta and angular momenta are reversed. Perturbative QCD predicts non-zero polarization at the one-loop level, which can be measured as parity-odd components in the angular distribution of charged leptons from the decay of W bosons. We perform a detector-level simulation with the generator MadGraph5_aMC@NLO, and demonstrate that the asymmetry can be observed at the 8 TeV LHC with 20 fb$^{-1}$ of data. Read More

We present the interface between MadGraph5_aMC@NLO, a self-contained program that calculates cross sections up to next-to-leading order accuracy in an automated manner, and APPLgrid, a code that parametrises such cross sections in the form of look-up tables which can be used for the fast computations needed in the context of PDF fits. The main characteristic of this interface, which we dub aMCfast, is its being fully automated as well, which removes the need to extract manually the process-specific information for additional physics processes, as is the case with other matrix element calculators, and renders it straightforward to include any new process in the PDF fits. We demonstrate this by studying several cases which are easily measured at the LHC, have a good constraining power on PDFs, and some of which were previously unavailable in the form of a fast interface. Read More

**Authors:**J. Butterworth

^{1}, G. Dissertori

^{2}, S. Dittmaier

^{3}, D. de Florian

^{4}, N. Glover

^{5}, K. Hamilton

^{6}, J. Huston

^{7}, M. Kado

^{8}, A. Korytov

^{9}, F. Krauss

^{10}, G. Soyez

^{11}, J. R. Andersen

^{12}, S. Badger

^{13}, L. Barzè

^{14}, J. Bellm

^{15}, F. U. Bernlochner

^{16}, A. Buckley

^{17}, J. Butterworth

^{18}, N. Chanon

^{19}, M. Chiesa

^{20}, A. Cooper-Sarkar

^{21}, L. Cieri

^{22}, G. Cullen

^{23}, H. van Deurzen

^{24}, G. Dissertori

^{25}, S. Dittmaier

^{26}, D. de Florian

^{27}, S. Forte

^{28}, R. Frederix

^{29}, B. Fuks

^{30}, J. Gao

^{31}, M. V. Garzelli

^{32}, T. Gehrmann

^{33}, E. Gerwick

^{34}, S. Gieseke

^{35}, D. Gillberg

^{36}, E. W. N. Glover

^{37}, N. Greiner

^{38}, K. Hamilton

^{39}, T. Hapola

^{40}, H. B. Hartanto

^{41}, G. Heinrich

^{42}, A. Huss

^{43}, J. Huston

^{44}, B. Jäger

^{45}, M. Kado

^{46}, A. Kardos

^{47}, U. Klein

^{48}, F. Krauss

^{49}, A. Kruse

^{50}, L. Lönnblad

^{51}, G. Luisoni

^{52}, Daniel Maître

^{53}, P. Mastrolia

^{54}, O. Mattelaer

^{55}, J. Mazzitelli

^{56}, E. Mirabella

^{57}, P. Monni

^{58}, G. Montagna

^{59}, M. Moretti

^{60}, P. Nadolsky

^{61}, P. Nason

^{62}, O. Nicrosini

^{63}, C. Oleari

^{64}, G. Ossola

^{65}, S. Padhi

^{66}, T. Peraro

^{67}, F. Piccinini

^{68}, S. Plätzer

^{69}, S. Prestel

^{70}, J. Pumplin

^{71}, K. Rabbertz

^{72}, Voica Radescu

^{73}, L. Reina

^{74}, C. Reuschle

^{75}, J. Rojo

^{76}, M. Schönherr

^{77}, J. M. Smillie

^{78}, J. F. von Soden-Fraunhofen

^{79}, G. Soyez

^{80}, R. Thorne, F. Tramontano, Z. Trocsanyi, D. Wackeroth, J. Winter, C-P. Yuan, V. Yundin, K. Zapp

**Affiliations:**

^{1}conveners,

^{2}conveners,

^{3}conveners,

^{4}conveners,

^{5}conveners,

^{6}conveners,

^{7}conveners,

^{8}conveners,

^{9}conveners,

^{10}conveners,

^{11}conveners,

^{12}conveners,

^{13}conveners,

^{14}conveners,

^{15}conveners,

^{16}conveners,

^{17}conveners,

^{18}conveners,

^{19}conveners,

^{20}conveners,

^{21}conveners,

^{22}conveners,

^{23}conveners,

^{24}conveners,

^{25}conveners,

^{26}conveners,

^{27}conveners,

^{28}conveners,

^{29}conveners,

^{30}conveners,

^{31}conveners,

^{32}conveners,

^{33}conveners,

^{34}conveners,

^{35}conveners,

^{36}conveners,

^{37}conveners,

^{38}conveners,

^{39}conveners,

^{40}conveners,

^{41}conveners,

^{42}conveners,

^{43}conveners,

^{44}conveners,

^{45}conveners,

^{46}conveners,

^{47}conveners,

^{48}conveners,

^{49}conveners,

^{50}conveners,

^{51}conveners,

^{52}conveners,

^{53}conveners,

^{54}conveners,

^{55}conveners,

^{56}conveners,

^{57}conveners,

^{58}conveners,

^{59}conveners,

^{60}conveners,

^{61}conveners,

^{62}conveners,

^{63}conveners,

^{64}conveners,

^{65}conveners,

^{66}conveners,

^{67}conveners,

^{68}conveners,

^{69}conveners,

^{70}conveners,

^{71}conveners,

^{72}conveners,

^{73}conveners,

^{74}conveners,

^{75}conveners,

^{76}conveners,

^{77}conveners,

^{78}conveners,

^{79}conveners,

^{80}conveners

**Category:**High Energy Physics - Phenomenology

This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2. Read More

**Authors:**J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. -S. Shao, T. Stelzer, P. Torrielli, M. Zaro

**Category:**High Energy Physics - Phenomenology

We discuss the theoretical bases that underpin the automation of the computations of tree-level and next-to-leading order cross sections, of their matching to parton shower simulations, and of the merging of matched samples that differ by light-parton multiplicities. We present a computer program, MadGraph5_aMC@NLO, capable of handling all these computations -- parton-level fixed order, shower-matched, merged -- in a unified framework whose defining features are flexibility, high level of parallelisation, and human intervention limited to input physics quantities. We demonstrate the potential of the program by presenting selected phenomenological applications relevant to the LHC and to a 1-TeV $e^+e^-$ collider. Read More

We compare the impact of top-quark spin polarization effects in Higgs boson production in association with top-quark pairs and in corresponding backgrounds at the LHC. Because of the spin-zero nature of the Higgs boson, one expects, in the chiral limit for the top quarks, a substantial complementarity in $t\bar t$ spin correlations for a Higgs decaying into fermions/gauge-bosons and $t\bar{t}$ spin correlations for the corresponding irreducible $t\bar t f\bar f/VV$ backgrounds. Although top mass effects in $t\bar t H$ production are in general dominant, and seriously spoil the chiral-limit expectations, one can find observables that capture the $t \bar t$ angular spin correlations and can help in separating the signal from irreducible backgrounds. Read More

We present predictions for the SM-Higgs-pair production channels of relevance at the LHC: gluon-gluon fusion, VBF, and top-pair, W, Z and single-top associated production. All these results are at the NLO accuracy in QCD, and matched to parton showers by means of the MC@NLO method; hence, they are fully differential. With the exception of the gluon-gluon fusion process, for which a special treatment is needed in order to improve upon the infinite-top-mass limit, our predictions are obtained in a fully automatic way within the publicly available MadGraph5_aMC@NLO framework. Read More

We present the complete NLO contributions to the pp -> e^+ v_e mu^- vbar_m b bbar + X process in the four flavour scheme, i.e. with massive b quarks, and its contribution to the H -> WW -> llvv measurement in the 1-jet bin at the LHC. Read More

**Authors:**S. Alioli, S. Badger, J. Bellm, B. Biedermann, F. Boudjema, G. Cullen, A. Denner, H. van Deurzen, S. Dittmaier, R. Frederix, S. Frixione, M. V. Garzelli, S. Gieseke, E. W. N. Glover, N. Greiner, G. Heinrich, V. Hirschi, S. Hoeche, J. Huston, H. Ita, N. Kauer, F. Krauss, G. Luisoni, D. Maitre, F. Maltoni, P. Nason, C. Oleari, R. Pittau, S. Plaetzer, S. Pozzorini, L. Reina, C. Reuschle, T. Robens, J. Schlenk, M. Schoenherr, F. Siegert, J. F. von Soden-Fraunhofen, F. Tackmann, F. Tramontano, P. Uwer, G. Salam, P. Skands, S. Weinzierl, J. Winter, V. Yundin, G. Zanderighi, M. Zaro

**Category:**High Energy Physics - Phenomenology

We present an update of the Binoth Les Houches Accord (BLHA) to standardise the interface between Monte Carlo programs and codes providing one-loop matrix elements. Read More

In this paper, we present the next-to-leading order QCD corrections for di-lepton, di-electroweak boson (ZZ, W+W-) production in both the SM and the ADD model, matched to the HERWIG parton-shower using the aMC@NLO framework. A selection of results at the 8 TeV LHC, which exhibits deviation from the SM as a result of the large extra-dimension scenario are presented. Read More

**Authors:**The LHC Higgs Cross Section Working Group, S. Heinemeyer

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, J. R. Andersen, P. Artoisenet, E. A. Bagnaschi, A. Banfi, T. Becher, F. U. Bernlochner, S. Bolognesi, P. Bolzoni, R. Boughezal, D. Buarque, J. Campbell, F. Caola, M. Carena, F. Cascioli, N. Chanon, T. Cheng, S. Y. Choi, A. David, P. de Aquino, G. Degrassi, D. Del Re, A. Denner, H. van Deurzen, S. Diglio, B. Di Micco, R. Di Nardo, S. Dittmaier, M. Duhrssen, R. K. Ellis, G. Ferrera, N. Fidanza, M. Flechl, D. de Florian, S. Forte, R. Frederix, S. Frixione, S. Gangal, Y. Gao, M. V. Garzelli, D. Gillberg, P. Govoni, M. Grazzini, N. Greiner, J. Griffiths, A . V. Gritsan, C. Grojean, D. C. Hall, C. Hays, R. Harlander, R. Hernandez-Pinto, S. Hoche, J. Huston, T. Jubb, M. Kadastik, S. Kallweit, A. Kardos, L. Kashif, N. Kauer, H. Kim, R. Klees, M. Kramer, F. Krauss, A. Laureys, S. Laurila, S. Lehti, Q. Li, S. Liebler, X. Liu, H. E. Logan, G. Luisoni, M. Malberti, F. Maltoni, K. Mawatari, F. Maierhofer, H. Mantler, S. Martin, P. Mastrolia, O. Mattelaer, J. Mazzitelli, B. Mellado, K. Melnikov, P. Meridiani, D. J. Miller, E. Mirabella, S. O. Moch, P. Monni, N. Moretti, A. Muck, M. Muhlleitner, P. Musella, P. Nason, C. Neu, M. Neubert, C. Oleari, J. Olsen, G. Ossola, T. Peraro, K. Peters, F. Petriello, G. Piacquadio, C. T. Potter, S. Pozzorini, K. Prokofiev, I. Puljak, M. Rauch, D. Rebuzzi, L. Reina, R. Rietkerk, A. Rizzi, Y. Rotstein-Habarnau, G. P. Salam, G. Sborlini, F. Schissler, M. Schonherr, M. Schulze, M. Schumacher, F. Siegert, P. Slavich, J. M. Smillie, O. Stal, J. F. von Soden-Fraunhofen, M. Spira, I. W. Stewart, F. J. Tackmann, P. T. E. Taylor, D. Tommasini, J. Thompson, R. S. Thorne, P. Torrielli, F. Tramontano, N. V. Tran, Z. Trocsanyi, M. Ubiali, P. Vanlaer, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, C. Wagner, J. R. Walsh, J. Wang, G. Weiglein, A. Whitbeck, C. Williams, J. Yu, G. Zanderighi, M. Zanetti, M. Zaro, P. M. Zerwas, C. Zhang, T. J . E. Zirke, S. Zuberi

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

We introduce a framework, based on an effective field theory approach, that allows one to perform characterisation studies of the boson recently discovered at the LHC, for all the relevant channels and in a consistent, systematic and accurate way. The production and decay of such a boson with various spin and parity assignments can be simulated by means of multi-parton, tree-level matrix elements and of next-to-leading order QCD calculations, both matched with parton showers. Several sample applications are presented which show, in particular, that beyond-leading-order effects in QCD have non-trivial phenomenological implications. Read More

This letter details and discusses the next-to-leading order QCD corrections to $t$-channel electro-weak $W^+ b j$ production, where finite top-width effects are consistently taken into account. The computation is done within the aMC@NLO framework and includes both resonant and non-resonant contributions as well as interferences between the two. Results are presented for the LHC and compared to those of the narrow-width approximation and effective theory approaches. Read More

We present a general method that allows one to decay narrow resonances in Les Houches Monte Carlo events in an efficient and accurate way. The procedure preserves both spin correlation and finite width effects to a very good accuracy, and is therefore particularly suited for the decay of resonances in production events generated at next-to-leading-order accuracy. The method is implemented as a generic tool in the MadGraph framework, giving access to a very large set of possible applications. Read More

In this paper, we present the next-to-leading order predictions for diphoton production in the ADD model, matched to the HERWIG parton shower using the MC@NLO formalism. A selection of the results is presented for d=2-6 extra dimensions, using generic cuts as well as analysis cuts mimicking the search strategies as pursued by the ATLAS and CMS experiments. Read More

The next-to-leading order accuracy for MC@NLO results exclusive in J light jets is achieved if the computation is based on matrix elements that feature J and J+1 QCD partons. The simultaneous prediction of observables which are exclusive in different light-jet multiplicities cannot simply be obtained by summing the above results over the relevant range in J; rather, a suitable merging procedure must be defined. We address the problem of such a merging, and propose a solution that can be easily incorporated into existing MC@NLO implementations. Read More

We present results for the QCD next-to-leading order (NLO) calculation of single-top t-channel production in the 4-flavour scheme, interfaced to Parton Shower (PS) Monte Carlo programs according to the POWHEG and MC@NLO methods. Comparisons between the two methods, as well as with the corresponding process in the 5-flavour scheme are presented. For the first time results for typical kinematic distributions of the spectator-b jet are presented in an NLO+PS approach. Read More

**Authors:**J. Alcaraz Maestre, S. Alioli, J. R. Andersen, R. D. Ball, A. Buckley, M. Cacciari, F. Campanario, N. Chanon, G. Chachamis, V. Ciulli, F. Cossutti, G. Cullen, A. Denner, S. Dittmaier, J. Fleischer, R. Frederix, S. Frixione, J. Gao, L. Garren, S. Gascon-Shotkin, N. Greiner, J. P. Guillet, T. Hapola, N. P. Hartland, G. Heinrich, G. Hesketh, V. Hirschi, H. Hoeth, J. Huston, T. Ježo, S. Kallweit, K. Kovařík, F. Krauss, A. Kusina, Z. Liang, P. Lenzi, L. Lönnblad, J. J. Lopez-Villarejo, G. Luisoni, D. Maître, F. Maltoni, P. Mastrolia, P. M. Nadolsky, E. Nurse, C. Oleari, F. I. Olness, G. Ossola, E. Pilon, R. Pittau, S. Plätzer, S. Pozzorini, S. Prestel, E. Re, T. Reiter, T. Riemann, J. Rojo, G. P. Salam, S. Sapeta, I. Schienbein, M. Schönherr, H. Schulz, M. Schulze, M. Schwoerer, P. Skands, J. M. Smillie, G. Somogyi, G. Soyez, T. Stavreva, I. W. Stewart, M. Stockton, Z. Szor, F. J. Tackmann, P. Torrielli, F. Tramontano, M. Tripiana, Z. Trócsányi, M. Ubiali, V. Yundin, S. Weinzierl, J. Winter, J. Y. Yu, K. Zapp

The 2011 Les Houches workshop was the first to confront LHC data. In the two years since the previous workshop there have been significant advances in both soft and hard QCD, particularly in the areas of multi-leg NLO calculations, the inclusion of those NLO calculations into parton shower Monte Carlos, and the tuning of the non-perturbative parameters of those Monte Carlos. These proceedings describe the theoretical advances that have taken place, the impact of the early LHC data, and the areas for future development. Read More

We present a next-to-leading order calculation of Higgs boson production plus one and two jets via gluon fusion interfaced to shower Monte Carlo programs, implemented according to the POWHEG method. For this implementation we have used a new interface of the POWHEG BOX with MadGraph4, that generates the codes for generic Born and real processes automatically. The virtual corrections have been taken from the MCFM code. Read More

We use aMC@NLO to predict the lv+ 2-jet cross section at the NLO accuracy in QCD matched to parton shower simulations. We find that the perturbative expansion is well behaved for all the observables we study, and in particular for those relevant to the experimental analyses. We therefore conclude that NLO corrections to this process cannot be responsible for the excess of events in the dijet invariant mass observed by the CDF collaboration. Read More

We use aMC@NLO to study the production of four charged leptons at the LHC, performing parton showers with both HERWIG and Pythia6. Our underlying matrix element calculation features the full next-to-leading order $O(\alpha_S)$ result and the $O(\alpha_S^2)$ contribution of the $gg$ channel, and it includes all off-shell, spin-correlation, virtual-photon-exchange, and interference effects. We present several key distributions together with the corresponding theoretical uncertainties. Read More

We present a study of l\nu b\bar{b} and l+ l- b\bar{b} production at hadron colliders. Our results, accurate to the next-to-leading order in QCD, are based on automatic matrix-element calculations performed by MadLoop and MadFKS, and are given at both the parton level, and after the matching with the Herwig event generator, achieved with aMC@NLO. We retain the complete dependence on the bottom-quark mass, and include exactly all spin correlations of final-state leptons. Read More

We present the calculation of scalar and pseudoscalar Higgs production in association with a top-antitop pair to the next-to-leading order (NLO) accuracy in QCD, interfaced with parton showers according to the MC@NLO formalism. We apply our results to the cases of light and very light Higgs boson production at the LHC, giving results for total rates as well as for sample differential distributions, relevant to the Higgs, to the top quarks, and to their decay products. This work constitutes the first phenomenological application of aMC@NLO, a fully automated approach to complete event generation at NLO in QCD. Read More

We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. Read More

In this talk three 2-sigma deviations from the Standard Model predictions in the top quark sector are briefly discussed. These are the excess of events in the tail of the H_T distribution in ttbar events, the top-quark charge asymmetry and the discrimination of s- and t-channel events in single top. The latter has only been observed by CDF, while the other two are found by both CDF and D0. Read More

The highest exclusive jet multiplicity studied at LEP experiments is five. In this paper we compute the next-to-leading order QCD corrections to e+e- annihilation to five jets, essentially closing the (pure) perturbative QCD studies of exclusive jetty final states at LEP. We compare fixed-order perturbative results with ALEPH data. Read More

Heading towards a full automation of next-to-leading order (NLO) QCD corrections, one important ingredient is the analytical integration over the one-particle phase space of the unresolved particle that is necessary when adding the subtraction terms to the virtual corrections. We present the implementation of these integrated dipoles in the MadGraph framework. The result is a package that allows an automated calculation for the NLO real emission parts of an arbitrary process. Read More

**Authors:**T. Binoth, G. Dissertori, J. Huston, R. Pittau, J. R. Andersen, J. Archibald, S. Badger, R. D. Ball, G. Bevilacqua, I. Bierenbaum, T. Binoth, F. Boudjema, R. Boughezal, A. Bredenstein, R. Britto, M. Campanelli, J. Campbell, L. Carminati, G. Chachamis, V. Ciulli, G. Cullen, M. Czakon, L. Del Debbio, A. Denner, G. Dissertori, S. Dittmaier, S. Forte, R. Frederix, S. Frixione, E. Gardi, M. V. Garzelli, S. Gascon-Shotkin, T. Gehrmann, A. Gehrmann-De Ridder, W. Giele, T. Gleisberg, E. W. N. Glover, N. Greiner, A. Guffanti, J. -Ph. Guillet, A. van Hameren, G. Heinrich, S. Hoeche, M. Huber, J. Huston, M. Jaquier, S. Kallweit, S. Karg, N. Kauer, F. Krauss, J. I. Latorre, A. Lazopoulos, P. Lenzi, G. Luisoni, R. Mackeprang, L. Magnea, D. Maitre, D. Majumder, I. Malamos, F. Maltoni, K. Mazumdar, P. Nadolsky, P. Nason, C. Oleari, F. Olness, C. G. Papadopoulos, G. Passarino, E. Pilon, R. Pittau, S. Pozzorini, T. Reiter, J. Reuter, M. Rodgers, G. Rodrigo, J. Rojo, G. Sanguinetti, F. -P. Schilling, M. Schumacher, S. Schumann, R. Schwienhorst, P. Skands, H. Stenzel, F. Stoeckli, R. Thorne, M. Ubiali, P. Uwer, A. Vicini, M. Warsinsky, G. Watt, J. Weng, I. Wigmore, S. Weinzierl, J. Winter, M. Worek, G. Zanderighi

**Category:**High Energy Physics - Phenomenology

This report summarizes the activities of the SM and NLO Multileg Working Group of the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 2009. Read More

**Authors:**T. Binoth, F. Boudjema, G. Dissertori, A. Lazopoulos, A. Denner, S. Dittmaier, R. Frederix, N. Greiner, S. Hoche, W. Giele, P. Skands, J. Winter, T. Gleisberg, J. Archibald, G. Heinrich, F. Krauss, D. Maitre, M. Huber, J. Huston, N. Kauer, F. Maltoni, C. Oleari, G. Passarino, R. Pittau, S. Pozzorini, T. Reiter, S. Schumann, G. Zanderighi

**Category:**High Energy Physics - Phenomenology

Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. Read More

We present the complete automation of the universal subtraction formalism proposed by Frixione, Kunszt, and Signer for the computation of any cross section at the next-to-leading order in QCD. Given a process, the only ingredient to be provided externally is the infrared- and ultraviolet-finite contribution of virtual origin. Our implementation, currently restricted to the case of e+e- collisions, is built upon and works in the same way as MadGraph. Read More

We present updated NLO predictions for the electroweak t-channel production of heavy quarks at the Tevatron and at the LHC. We consider production of single top and fourth generation t' starting from both 2 to 2 and 2 to 3 Born processes. Predictions for tb' and t'b' cross sections at NLO are also given for the first time. Read More

We present the predictions at next-to-leading order (NLO) in the strong coupling for the single-top cross section in the t channel at the Tevatron and the LHC. Our calculation starts from the 2 -> 3 Born amplitude g q -> t bbar q', keeping the b-quark mass non-zero. A comparison is performed with a traditional NLO calculation of this channel based on the 2 -> 2 Born process with a bottom quark in the initial state. Read More

We here present some recent developments of MadGraph/MadEvent since the latest published version, 4.0. These developments include: Jet matching with Pythia parton showers for both Standard Model and Beyond the Standard Model processes, decay chain functionality, decay width calculation and decay simulation, process generation for the Grid, a package for calculation of quarkonium amplitudes, calculation of Matrix Element weights for experimental events, automatic dipole subtraction for next-to-leading order calculations, and an interface to FeynRules, a package for automatic calculation of Feynman rules and model files from the Lagrangian of any New Physics model. Read More

We present the implementation of the dipole subtraction formalism for the real radiation contributions to any next-to-leading order QCD process in the MadGraph/MadEvent framework. Both massless and massive dipoles are considered. Starting from a specific (n+1)-particle process the package provides a Fortran code for all possible dipoles to all Born processes that constitute the subtraction term to the (n+1)-particle process. Read More

**Authors:**Z. Bern

^{1}, S. Dittmaier

^{2}, L. Dixon

^{3}, G. Heinrich

^{4}, J. Huston

^{5}, B. Kersevan

^{6}, Z. Kunszt

^{7}, D. E. Soper

^{8}, C. Bernicot, T. Binoth, F. Boudjema, R. Britto, J. Campbell, M. Czakon, A. Denner, G. Dissertori, G. Duplancic, R. K. Ellis, R. Frederix, T. Gehrmann, A. Gehrmann-De Ridder, W. T. Giele, E. W. N. Glover, J. P. Guillet, S. Kallweit, S. Karg, N. Kauer, D. A. Kosower, F. Krauss, N. D. Le, P. Mastrolia, A. Mitov, S. Moch, S. Odaka, G. Ossola, C. G. Papadopoulos, E. Pilon, R. Pittau, T. Reiter, G. Sanguinetti, S. Schumann, C. Schwinn, P. Z. Skands, H. Stenzel, P. Uwer, S. Weinzierl, G. Zanderighi

**Affiliations:**

^{1}conveners,

^{2}conveners,

^{3}conveners,

^{4}conveners,

^{5}conveners,

^{6}conveners,

^{7}conveners,

^{8}conveners

**Category:**High Energy Physics - Phenomenology

This report summarizes the activities of the NLM working group of the Workshop "Physics at TeV Colliders", Les Houches, France, 11-29 June, 2007. Read More

We present a consistent analysis of the signal as well as the irreducible background for the search of the SM Higgs boson in the ZZ decay channel at the LHC. Soft-gluons effects are resummed up to next-to-leading logarithmic accuracy, and the results are compared to those obtained with fixed order calculations and the MC@NLO event generator. The soft-gluon effects are typically modest but should be taken into account when precise predictions are demanded. Read More

**Authors:**T. Lari, L. Pape, W. Porod, J. A. Aguilar-Saavedra, F. del Aguila, B. C. Allanach, J. Alwall, Yu. Andreev, D. Aristizabal Sierra, A. Bartl, M. Beccaria, S. Bejar, L. Benucci, S. Bityukov, I. Borjanovic, G. Bozzi, G. Burdman, J. Carvalho, N. Castro, B. Clerbaux, F. de Campos, A. de Gouvea, C. Dennis, A. Djouadi, O. J. P. Eboli, U. Ellwanger, D. Fassouliotis, P. M. Ferreira, R. Frederix, B. Fuks, J. -M. Gerard, A. Giammanco, S. Gopalakrishna, T. Goto, B. Grzadkowski, J. Guasch, T. Hahn, S. Heinemeyer, A. Hektor, M. Herquet, B. Herrmann, K. Hidaka, M. K. Hirsch, K. Hohenwarter-Sodek, W. Hollik, G. W. S. Hou, T. Hurth, A. Ibarra, J. Illana, M. Kadastik, S. Kalinin, C. Karafasoulis, M. Karagoz Unel, T. Kernreiter, M. M. Kirsanov, M. Klasen, E. Kou, C. Kourkoumelis, S. Kraml, N. Krasnikov, F. Krauss, A. Kyriakis, V. Lemaitre, G. Macorini, M. B. Magro, W. Majerotto, F. Maltoni, R. Mehdiyev, M. Misiak, F. Moortgat, G. Moreau, M. Mühlleitner, M. Muntel, A. Onofre, E. Ozcan, F. Palla, L. Panizzi, L. Pape, S. Penaranda, R. Pittau, G. Polesello, A. Pukhov, M. Raidal, A. R. Raklev, L. Rebane, F. M. Renard, D. Restrepo, Z. Roupas, R. Santos, S. Schumann, G. Servant, F. Siegert, P. Skands, P. Slavich, J. Sola, M. Spira, S. Sultansoy, A. Toropin, A. Tricomi, J. Tseng, G. Unel, J. W. F. Valle, F. Veloso, A. Ventura, G. Vermisoglou, C. Verzegnassi, A. Villanova del Moral, G. Weiglein, M. Yilmaz

This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. Read More

We explore in detail the physics potential of a measurement of the ttbar invariant mass distribution. First, we assess the accuracy of the best available predictions for this observable and find that in the low invariant mass region, the shape is very well predicted and could be used to perform a top mass measurement. Second, we study the effects of a heavy s-channel resonance on the ttbar invariant mass distribution, in a model independent way. Read More