R. Castillo Fernandez - University of California, Berkeley, Department of Physics

R. Castillo Fernandez
Are you R. Castillo Fernandez?

Claim your profile, edit publications, add additional information:

Contact Details

Name
R. Castillo Fernandez
Affiliation
University of California, Berkeley, Department of Physics
Location

Pubs By Year

Pub Categories

 
High Energy Astrophysical Phenomena (19)
 
Solar and Stellar Astrophysics (15)
 
Astrophysics of Galaxies (11)
 
Nuclear Theory (9)
 
General Relativity and Quantum Cosmology (8)
 
Mathematics - Probability (7)
 
High Energy Physics - Experiment (5)
 
Mathematics - Mathematical Physics (5)
 
Physics - Instrumentation and Detectors (5)
 
Mathematical Physics (5)
 
Cosmology and Nongalactic Astrophysics (3)
 
Physics - Fluid Dynamics (2)
 
Instrumentation and Methods for Astrophysics (2)
 
Mathematics - General Mathematics (1)
 
Physics - Soft Condensed Matter (1)
 
Physics - Accelerator Physics (1)
 
Computer Science - Learning (1)
 
Computer Science - Computer Vision and Pattern Recognition (1)
 
Computer Science - Computation and Language (1)
 
Computer Science - Artificial Intelligence (1)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (1)

Publications Authored By R. Castillo Fernandez

2017May
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Anthony, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, B. Bullard, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, G. De Geronimo, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, A. A. Fadeeva, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, A. Hourlier, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, S. Li, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, S. Rescia, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, A. Smith, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, C. Thorn, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, W. Van De Pontseele, R. G. Van de Water, B. Viren, M. Weber, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang

The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Read More

2017Apr
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Anthony, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. A. Sutton, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, G. P. Zeller, J. Zennamo, C. Zhang

The MicroBooNE liquid argon time projection chamber (LArTPC) has been taking data at Fermilab since 2015 collecting, in addition to neutrino beam, cosmic-ray muons. Results are presented on the reconstruction of Michel electrons produced by the decay at rest of cosmic-ray muons. Michel electrons are abundantly produced in the TPC, and given their well known energy spectrum can be used to study MicroBooNE's detector response to low-energy electrons (electrons with energies up to ~50 MeV). Read More

2017Mar
Authors: MicroBooNE collaboration, P. Abratenko, R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, G. P. Zeller, J. Zennamo, C. Zhang

We discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Read More

We investigate the nucleosynthesis of heavy elements in the winds ejected by accretion disks formed in neutron star mergers. We compute the element formation in disk outflows from hypermassive neutron star (HMNS) remnants of variable lifetime, including the effect of angular momentum transport in the disk evolution. We employ long-term axisymmetric hydrodynamic disk simulations to model the ejecta, and compute r-process nucleosynthesis with tracer particles using a nuclear reaction network containing $\sim 8000$ species. Read More

The role of major mergers in galaxy evolution is investigated through a detailed characterization of the stellar populations, ionized gas properties, and star formation rates (SFR) in the early-stage merger LIRGs IC 1623 W and NGC 6090, by analysing optical Integral Field Spectroscopy (IFS) and high resolution HST imaging. The spectra were processed with the Starlight full spectral fitting code, and the emission lines measured in the residual spectra. The results are compared with control non-interacting spiral galaxies from the CALIFA survey. Read More

2016Dec
Authors: MicroBooNE Collaboration, R. Acciarri, C. Adams, R. An, A. Aparicio, S. Aponte, J. Asaadi, M. Auger, N. Ayoub, L. Bagby, B. Baller, R. Barger, G. Barr, M. Bass, F. Bay, K. Biery, M. Bishai, A. Blake, V. Bocean, D. Boehnlein, V. D. Bogert, T. Bolton, L. Bugel, C. Callahan, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, S. Chappa, H. Chen, K. Chen, C. Y. Chi, C. S. Chiu, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. Cornele, P. Cowan, J. I. Crespo-Anadon, G. Crutcher, C. Darve, R. Davis, M. Del Tutto, D. Devitt, S. Duffin, S. Dytman, B. Eberly, A. Ereditato, D. Erickson, L. Escudero Sanchez, J. Esquivel, S. Farooq, J. Farrell, D. Featherston, B. T. Fleming, W. Foreman, A. P. Furmanski, V. Genty, M. Geynisman, D. Goeldi, B. Goff, S. Gollapinni, N. Graf, E. Gramellini, J. Green, A. Greene, H. Greenlee, T. Griffin, R. Grosso, R. Guenette, A. Hackenburg, R. Haenni, P. Hamilton, P. Healey, O. Hen, E. Henderson, J. Hewes, C. Hill, K. Hill, L. Himes, J. Ho, G. Horton-Smith, D. Huffman, C. M. Ignarra, C. James, E. James, J. Jan de Vries, W. Jaskierny, C. M. Jen, L. Jiang, B. Johnson, M. Johnson, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, T. Katori, P. Kellogg, W. Ketchum, J. Kilmer, B. King, B. Kirby, M. Kirby, E. Klein, T. Kobilarcik, I. Kreslo, R. Krull, R. Kubinski, G. Lange, F. Lanni, A. Lathrop, A. Laube, W. M. Lee, Y. Li, D. Lissauer, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, G. Lukhanin, M. Luethi, B. Lundberg, X. Luo, G. Mahler, I. Majoros, D. Makowiecki, A. Marchionni, C. Mariani, D. Markley, J. Marshall, D. A. Martinez Caicedo, K. T. McDonald, D. McKee, A. McLean, J. Mead, V. Meddage, T. Miceli, G. B. Mills, W. Miner, J. Moon, M. Mooney, C. D. Moore, Z. Moss, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, B. Norris, N. Norton, J. Nowak, M. OBoyle, T. Olszanowski, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, R. Pelkey, M. Phipps, S. Pordes, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, R. A Rameika, B. Rebel, R. Rechenmacher, S. Rescia, L. Rochester, C. Rudolf von Rohr, A. Ruga, B. Russell, R. Sanders, W. R. Sands III, M. Sarychev, D. W. Schmitz, A. Schukraft, R. Scott, W. Seligman, M. H. Shaevitz, M. Shoun, J. Sinclair, W. Sippach, T. Smidt, A. Smith, E. L. Snider, M. Soderberg, M. Solano-Gonzalez, S. Soldner-Rembold, S. R. Soleti, J. Sondericker, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. Sutton, A. M. Szelc, K. Taheri, N. Tagg, K. Tatum, J. Teng, K. Terao, M. Thomson, C. Thorn, J. Tillman, M. Toups, Y. T. Tsai, S. Tufanli, T. Usher, M. Utes, R. G. Van de Water, C. Vendetta, S. Vergani, E. Voirin, J. Voirin, B. Viren, P. Watkins, M. Weber, T. Wester, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, K. C. Wu, T. Yang, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang, M. Zuckerbrot

This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported. Read More

We investigate the ejecta from black hole - neutron star mergers by modeling the formation and interaction of mass ejected in a tidal tail and a disk wind. The outflows are neutron-rich, giving rise to optical/infrared emission powered by the radioactive decay of $r$-process elements (a kilonova). Here we perform an end-to-end study of this phenomenon, where we start from the output of a fully-relativistic merger simulation, calculate the post-merger hydrodynamical evolution of the ejecta and disk winds including neutrino physics, determine the final nucleosynthetic yields using post-processing nuclear reaction network calculations, and compute the kilonova emission with a radiative transfer code. Read More

2016Nov
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, B. Baller, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadón, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Söldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, G. P. Zeller, J. Zennamo, C. Zhang

We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. Read More

In this paper, we present a solution for arbitrary 3D character deformation by investigating rotation angle of decomposition and preserving the mesh topology structure. In computer graphics, skeleton extraction and skeleton-driven animation is an active areas and gains increasing interests from researchers. The accuracy is critical for realistic animation and related applications. Read More

We consider $r$-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star -- black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important -- and in some cases dominant -- contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. Read More

2016Jun
Affiliations: 1CIMeC - Center for Mind/Brain Sciences, University of Trento, 2CIMeC - Center for Mind/Brain Sciences, University of Trento, 3CIMeC - Center for Mind/Brain Sciences, University of Trento, 4CIMeC - Center for Mind/Brain Sciences, University of Trento, 5CIMeC - Center for Mind/Brain Sciences, University of Trento, 6CIMeC - Center for Mind/Brain Sciences, University of Trento, 7CIMeC - Center for Mind/Brain Sciences, University of Trento, 8CIMeC - Center for Mind/Brain Sciences, University of Trento, 9Institute for Logic, Language & Computation, University of Amsterdam

We introduce LAMBADA, a dataset to evaluate the capabilities of computational models for text understanding by means of a word prediction task. LAMBADA is a collection of narrative passages sharing the characteristic that human subjects are able to guess their last word if they are exposed to the whole passage, but not if they only see the last sentence preceding the target word. To succeed on LAMBADA, computational models cannot simply rely on local context, but must be able to keep track of information in the broader discourse. Read More

This paper describes the Third Public Data Release (DR3) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. Science-grade quality data for 667 galaxies are made public, including the 200 galaxies of the Second Public Data Release (DR2). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3. Read More

The aim of this paper is to characterize the radial structure of the star formation rate (SFR) in galaxies in the nearby Universe as represented by the CALIFA survey. The sample under study contains 416 galaxies observed with IFS, covering a wide range of Hubble types and stellar masses. Spectral synthesis techniques are applied to obtain radial profiles of the intensity of the star formation rate in the recent past, and the local sSFR. Read More

We present an extended version of the spectral synthesis code STARLIGHT designed to incorporate both $\lambda$-by-$\lambda$ spectra and photometric fluxes in the estimation of stellar population properties of galaxies. The code is tested with simulations and data for 260 galaxies culled from the CALIFA survey, spatially matching the 3700--7000 \AA\ optical datacubes to GALEX near and far UV images. The sample spans E--Sd galaxies with masses from $10^9$ to $10^{12} M_\odot$ and stellar populations all the way from star-forming to old, passive systems. Read More

The mergers of binaries containing neutron stars and stellar-mass black holes are the most promising sources for direct detection in gravitational waves by the interferometers Advanced LIGO and Virgo over the next few years. The concurrent detection of electromagnetic emission from these events would greatly enhance the scientific return of these discoveries. Here we review the state of the art in modeling the electromagnetic signal of neutron star binary mergers across different phases of the merger and multiple wavelengths. Read More

2015Oct
Affiliations: 1Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 2Jet Propulsion Laboratory, 3California Institute of Technology, Cahill Center for Astronomy and Astrophysics, 4Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 5Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 6Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 7Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 8Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 9Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 10Anton Pannekoek Institute for Astronomy, 11California Institute of Technology, Cahill Center for Astronomy and Astrophysics, 12California Institute of Technology, Cahill Center for Astronomy and Astrophysics, 13Jet Propulsion Laboratory, 14Jet Propulsion Laboratory, 15Rice University, Department of Physics and Astronomy, 16Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 17Georgia College, Department of Chemistry, Physics, and Astronomy, 18Jet Propulsion Laboratory, 19Jet Propulsion Laboratory, 20North-West University, Centre for Space Research, 21Technical University of Denmark, DTU Space, National Space Institute, 22Yale University, Department of Astronomy, 23Washington University in Saint Louis, Physics Department and McDonnell Center for the Space Sciences, 24University of Virginia, Department of Astronomy, 25MPI for Extraterrestrial Physics Garching, 26Durham University, Centre for Extragalactic Astronomy, Department of Physics, 27Jet Propulsion Laboratory, 28North Carolina State University, Department of Physics, 29Jet Propulsion Laboratory, 30Cambridge, Institute of Astronomy, UK, 31Penn State University, Department of Astronomy and Astrophysics, 32Jet Propulsion Laboratory, 33University of California, Berkeley, Department of Physics, 34ASI Science Data Center, Italy, 35California Institute of Technology, Cahill Center for Astronomy and Astrophysics, 36Cambridge, Institute of Astronomy, UK, 37Jet Propulsion Laboratory, 38Purdue University, Department of Physics and Astronomy, 39Texas Tech University, Physics Department, 40Nagoya University, Center for Experimental Studies, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, 41University of Maryland, Physics Department, 42RIKEN, 43Univ. of Michigan in Ann Arbor, Astronomy Dept, 44Harvard-Smithsonian Center for Astrophysics, 45Istituto di Astrofisica e Planetologia Spaziali, INAF, 46Department of Astronomy/Steward Observatory, 47Lawrence Livermore National Laboratory, 48Jet Propulsion Laboratory, 49Department of Astronomy/Steward Observatory, 50NASA Goddard Space Flight Center, 51Tohoku University, Astronomical Institute, 52NASA Goddard Space Flight Center

This paper describes the Polarization Spectroscopic Telescope Array (PolSTAR), a mission proposed to NASA's 2014 Small Explorer (SMEX) announcement of opportunity. PolSTAR measures the linear polarization of 3-50 keV (requirement; goal: 2.5-70 keV) X-rays probing the behavior of matter, radiation and the very fabric of spacetime under the extreme conditions close to the event horizons of black holes, as well as in and around magnetars and neutron stars. Read More

We develop analytic and numerical models of the properties of super-Eddington stellar winds, motivated by phases in stellar evolution when super-Eddington energy deposition (via, e.g., unstable fusion, wave heating, or a binary companion) heats a region near the stellar surface. Read More

For a general class of gas models ---which includes discrete and continuous Gibbsian models as well as contour or polymer ensembles--- we determine a \emph{diluteness condition} that implies: (1) Uniqueness of the infinite-volume equilibrium measure; (2) stability of this measure under perturbations of parameters and discretization schemes, and (3) existence of a coupled perfect-simulation scheme for the infinite-volume measure together with its perturbations and discretizations. Some of these results have previously been obtained through methods based on cluster expansions. In contrast, our treatment is purely probabilistic and its diluteness condition is weaker than existing convergence conditions for cluster expansions. Read More

2015Jul

We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. Read More

We study the effects of stochastic thermal fluctuations on the instability of the free surface of a flat liquid film upon a solid substrate. These fluctuations are represented as a standard Brownian motion that can be added to the deterministic equation for the film thickness within the lubrication approximation. Here, we consider that while the noise term is white in time, it is coloured in space. Read More

This paper characterizes the radial structure of stellar population properties of galaxies in the nearby universe, based on 300 galaxies from the CALIFA survey. The sample covers a wide range of Hubble types, and galaxy stellar mass. We apply the spectral synthesis techniques to recover the stellar mass surface density, stellar extinction, light and mass-weighted ages, and mass-weighted metallicity, for each spatial resolution element in our target galaxies. Read More

We characterize in detail the radial structure of the stellar population properties of 300 galaxies in the nearby universe, observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, from spheroidal to spiral galaxies, ranging in stellar masses from $M_\star \sim 10^9$ to $7 \times 10^{11}$ $M_\odot$. We derive the stellar mass surface density ($\mu_\star$), light-weighted and mass-weighted ages ($\langle {\rm log}\,age\rangle _L$, $\langle {\rm log}\,age\rangle _M$), and mass-weighted metallicity ($\langle {\rm log}\,Z_\star\rangle _M$), applying the spectral synthesis technique. Read More

We investigate the effect of dimensionality on the transition to explosion in neutrino-driven core-collapse supernovae. Using parameterized hydrodynamic simulations of the stalled supernova shock in one-, two- (2D), and three spatial dimensions (3D), we systematically probe the extent to which hydrodynamic instabilities alone can tip the balance in favor of explosion. In particular, we focus on systems that are well into the regimes where the Standing Accretion Shock Instability (SASI) or neutrino-driven convection dominate the dynamics, and characterize the difference between them. Read More

We explore the evolution of the different ejecta components generated during the merger of a neutron star (NS) and a black hole (BH). Our focus is the interplay between material ejected dynamically during the merger, and the wind launched on a viscous timescale by the remnant accretion disk. These components are expected to contribute to an electromagnetic transient and to produce r-process elements, each with a different signature when considered separately. Read More

We analyze the spatially resolved star formation history of 300 nearby galaxies from the CALIFA integral field spectroscopic survey to investigate the radial structure and gradients of the present day stellar populations properties as a function of Hubble type and galaxy stellar mass. A fossil record method based on spectral synthesis techniques is used to recover spatially and temporally resolved maps of stellar population properties of spheroidal and spiral galaxies with masses $10^9$ to $7 \times 10^{11}$ M$_\odot$. The results show that galaxy-wide spatially averaged stellar population properties (stellar mass, mass surface density, age, metallicity, and extinction) match those obtained from the integrated spectrum, and that these spatially averaged properties match those at $R = 1$ HLR (half light radius), proving that the effective radii are really effective. Read More

We study the radioactively-powered transients produced by accretion disk winds following a compact object merger. Starting with the outflows generated in two-dimensional hydrodynamical disk models, we use wavelength-dependent radiative transfer calculations to generate synthetic light curves and spectra. We show that the brightness and color of the resulting kilonova transients carry information about the merger physics. Read More

2014Oct

For high bunch intensities the long-range beam-beam interactions are strong enough to provoke effects on the orbit. As a consequence the closed orbit changes. The closed orbit of an unperturbed machine with respect to a machine where the beam-beam force becomes more and more important has been studied and the results are presented in this paper. Read More

We study the asymptotic hitting time $\tau^{(n)}$ of a family of Markov processes $X^{(n)}$ to a target set $G^{(n)}$ when the process starts from a trap defined by very general properties. We give an explicit description of the law of $X^{(n)}$ conditioned to stay within the trap, and from this we deduce the exponential distribution of $\tau^{(n)}$. Our approach is very broad ---it does not require reversibility, the target $G$ does not need to be a rare event, and the traps and the limit on $n$ can be of very general nature--- and leads to explicit bounds on the deviations of $\tau^{(n)}$ from exponentially. Read More

We resolve spatially the star formation history of 300 nearby galaxies from the CALIFA integral field survey to investigate: a) the radial structure and gradients of the present stellar populations properties as a function of the Hubble type; and b) the role that plays the galaxy stellar mass and stellar mass surface density in governing the star formation history and metallicity enrichment of spheroids and the disks of galaxies. We apply the fossil record method based on spectral synthesis techniques to recover spatially and temporally resolved maps of stellar population properties of spheroids and spirals with galaxy mass from 10$^9$ to 7$\times$10$^{11}$ M$_{\odot}$. The individual radial profiles of the stellar mass surface density ($\mu_{*}$), stellar extinction (A$_{V}$), luminosity weighted ages ($\langle$ log age $\rangle_{L}$), and mass weighted metallicity ($\langle$ log Z/Z$_{\odot}$$\rangle_{M}$) are stacked in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc and Sd). Read More

Methods to recover the fossil record of galaxy evolution encoded in their optical spectra have been instrumental in processing the avalanche of data from mega-surveys along the last decade, effectively transforming observed spectra onto a long and rich list of physical properties: from stellar masses and mean ages to full star formation histories. This promoted progress in our understanding of galaxies as a whole. Yet, the lack of spatial resolution introduces undesirable aperture effects, and hampers advances on the internal physics of galaxies. Read More

The accretion disk that forms after a neutron star merger is a source of neutron-rich ejecta. The ejected material contributes to a radioactively-powered electromagnetic transient, with properties that depend sensitively on the composition of the outflow. Here we investigate how the spin of the black hole remnant influences mass ejection on the thermal and viscous timescales. Read More

We use spatially and temporally resolved maps of stellar population properties of 300 galaxies from the CALIFA integral field survey to investigate how the stellar metallicity (Z*) relates to the total stellar mass (M*) and the local mass surface density ($\mu$*) in both spheroidal and disk dominated galaxies. The galaxies are shown to follow a clear stellar mass-metallicity relation (MZR) over the whole 10$^9$ to 10$^{12}$ M$_{\odot}$ range. This relation is steeper than the one derived from nebular abundances, which is similar to the flatter stellar MZR derived when we consider only young stars. Read More

We study the hitting times of Markov processes to target set $G$, starting from a reference configuration $x_0$ or its basin of attraction. The configuration $x_0$ can correspond to the bottom of a (meta)stable well, while the target $G$ could be either a set of saddle (exit) points of the well, or a set of further (meta)stable configurations. Three types of results are reported: (1) A general theory is developed, based on the path-wise approach to metastability, which has three important attributes. Read More

Mergers of binary neutron stars (NSs) usually result in the formation of a hypermassive neutron star (HMNS). Whether- and when this remnant collapses to a black hole (BH) depends primarily on the equation of state and on angular momentum transport processes, both of which are uncertain. Here we show that the lifetime of the merger remnant may be directly imprinted in the radioactively powered kilonova emission following the merger. Read More

2014Jan
Affiliations: 1Columbia University, 2Columbia University, 3Columbia University, 4Columbia University

The presence of quasars at redshifts z > 6 indicates the existence of supermassive black holes (SMBHs) as massive as a few times 10^9 Msun, challenging models for SMBH formation. One pathway is through the direct collapse of gas in T_{vir} > 10^4 K halos; however, this requires the suppression of H_2 cooling to prevent fragmentation. In this paper, we examine a proposed new mechanism for this suppression which relies on cold-mode accretion flows leading to shocks at high densities (n > 10^4 cm^{-3}) and temperatures (T > 10^4 K). Read More

We study the radial structure of the stellar mass surface density ($\mu$) and stellar population age as a function of the total stellar mass and morphology for a sample of 107 galaxies from the CALIFA survey. We use the fossil record to recover the star formation history (SFH) in spheroidal and disk dominated galaxies with masses from 10$^9$ to 10$^{12}$ M$_\odot$. We derive the half mass radius, and we find that galaxies are on average 15% more compact in mass than in light. Read More

In the collapsing core of massive stars, the standing accretion shock instability (SASI) can drive spiral modes that efficiently redistribute angular momentum. This process can impart a spin to the forming neutron star even when the progenitor star is non-rotating. Here we develop the first analytical description of the angular momentum redistribution driven by a spiral mode of the SASI. Read More

The success of the neutrino mechanism of core-collapse supernovae relies on the supporting action of two hydrodynamic instabilities: neutrino-driven convection and the Standing Accretion Shock Instability (SASI). Depending on the structure of the stellar progenitor, each of these instabilities can dominate the evolution of the gain region prior to the onset of explosion, with implications for the ensuing asymmetries. Here we examine the flow dynamics in the neighborhood of explosion by means of parametric two-dimensional, time-dependent hydrodynamic simulations for which the linear stability properties are well understood. Read More

We continue our study of Gibbs-non-Gibbs dynamical transitions. In the present paper we consider a system of Ising spins on a large discrete torus with a Kac-type interaction subject to an independent spin-flip dynamics (infinite-temperature Glauber dynamics). We show that, in accordance with the program outlined in \cite{vEFedHoRe10}, in the thermodynamic limit Gibbs-non-Gibbs dynamical transitions are \emph{equivalent} to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the empirical density \emph{conditional} on their endpoint. Read More

Expulsion of neutron-rich matter following the merger of neutron star (NS) binaries is crucial to the radioactively-powered electromagnetic counterparts of these events and to their relevance as sources of r-process nucleosynthesis. Here we explore the long-term (viscous) evolution of remnant black hole accretion disks formed in such mergers by means of two-dimensional, time-dependent hydrodynamical simulations. The evolution of the electron fraction due to charged-current weak interactions is included, and neutrino self-irradiation is modeled as a lightbulb that accounts for the disk geometry and moderate optical depth effects. Read More

Type Ia supernovae (SNe Ia), thermonuclear explosions of carbon-oxygen white dwarfs (CO-WDs), are currently the best cosmological "standard candles", but the triggering mechanism of the explosion is unknown. It was recently shown that the rate of head-on collisions of typical field CO-WDs in triple systems may be comparable to the SNe Ia rate. Here we provide evidence supporting a scenario in which the majority of SNe Ia are the result of such head-on collisions of CO-WDs. Read More

The Calar Alto Legacy Integral Field Area (CALIFA) is an ongoing 3D spectroscopic survey of 600 nearby galaxies of all kinds. This pioneer survey is providing valuable clues on how galaxies form and evolve. Processed through spectral synthesis techniques, CALIFA datacubes allow us to, for the first time, spatially resolve the star formation history of galaxies spread across the color-magnitude diagram. Read More

We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux -- the Radiation-Driven Magneto-Acoustic Instability (RMI, a.k.a. Read More

We explore the evolution of radiatively inefficient accretion disks in which nuclear reactions are dynamically important (`Nuclear Dominated Accretion Flows', or NuDAFs). Examples of such disks are those generated by the merger of a white dwarf with a neutron star or black hole, or by the collapse of a rotating star. Here we present two-dimensional hydrodynamic simulations that systematically explore the effect of adding a single nuclear reaction to a viscous torus. Read More

Water in plant xylem is often superheated, and therefore in a meta-stable state. Under certain conditions, it may suddenly turn from the liquid to the vapor state. This cavitation process produces acoustic emissions. Read More

We perform a detailed study of Gibbs-non-Gibbs transitions for the Curie-Weiss model subject to independent spin-flip dynamics ("infinite-temperature" dynamics). We show that, in this setup, the program outlined in van Enter, Fern\'andez, den Hollander and Redig can be fully completed, namely that Gibbs-non-Gibbs transitions are equivalent to bifurcations in the set of global minima of the large-deviation rate function for the trajectories of the magnetization conditioned on their endpoint. As a consequence, we show that the time-evolved model is non-Gibbs if and only if this set is not a singleton for some value of the final magnetization. Read More

We study the transition to runaway expansion of an initially stalled core-collapse supernova shock. The neutrino luminosity, mass accretion rate, and neutrinospheric radius are all treated as free parameters. In spherical symmetry, this transition is mediated by a global non-adiabatic instability that develops on the advection time and reaches non-linear amplitude. Read More

Regular $g$-measures are discrete-time processes determined by conditional expectations with respect to the past. One-dimensional Gibbs measures, on the other hand, are fields determined by simultaneous conditioning on past and future. For the Markovian and exponentially continuous cases both theories are known to be equivalent. Read More

In the magnetar model, the quiescent non-thermal soft X-ray emission from Anomalous X-ray Pulsars and Soft-Gamma Repeaters is thought to arise from resonant comptonization of thermal photons by charges moving in a twisted magnetosphere. Robust inference of physical quantities from observations is difficult, because the process depends strongly on geometry and current understanding of the magnetosphere is not very deep. The polarization of soft X-ray photons is an independent source of information, and its magnetospheric imprint remains only partially explored. Read More

We develop a space-time large-deviation point of view on Gibbs-non-Gibbs transitions in spin systems subject to a stochastic spin-flip dynamics. Using the general theory for large deviations of functionals of Markov processes outlined in Feng and Kurtz [11], we show that the trajectory under the spin-flip dynamics of the empirical measure of the spins in a large block in Z^d satisfies a large deviation principle in the limit as the block size tends to infinity. The associated rate function can be computed as the action functional of a Lagrangian that is the Legendre transform of a certain non-linear generator, playing a role analogous to the moment-generating function in the Gartner-Ellis theorem of large deviation theory when this is applied to finite-dimensional Markov processes. Read More