R. Asaturyan - HKS - JLab E05-115 and E01-001 - Collaborations

R. Asaturyan
Are you R. Asaturyan?

Claim your profile, edit publications, add additional information:

Contact Details

Name
R. Asaturyan
Affiliation
HKS - JLab E05-115 and E01-001 - Collaborations
Location

Pubs By Year

Pub Categories

 
Nuclear Experiment (22)
 
High Energy Physics - Experiment (4)
 
High Energy Physics - Phenomenology (3)
 
Physics - Instrumentation and Detectors (2)
 
Nuclear Theory (2)

Publications Authored By R. Asaturyan

2016Jun
Affiliations: 1HKS, 2HKS, 3HKS, 4HKS, 5HKS, 6HKS, 7HKS, 8HKS, 9HKS, 10HKS, 11HKS, 12HKS, 13HKS, 14HKS, 15HKS, 16HKS, 17HKS, 18HKS, 19HKS, 20HKS, 21HKS, 22HKS, 23HKS, 24HKS, 25HKS, 26HKS, 27HKS, 28HKS, 29HKS, 30HKS, 31HKS, 32HKS, 33HKS, 34HKS, 35HKS, 36HKS, 37HKS, 38HKS, 39HKS, 40HKS, 41HKS, 42HKS, 43HKS, 44HKS, 45HKS, 46HKS, 47HKS, 48HKS, 49HKS, 50HKS, 51HKS, 52HKS, 53HKS, 54HKS, 55HKS, 56HKS, 57HKS, 58HKS, 59HKS, 60HKS, 61HKS, 62HKS, 63HKS, 64HKS, 65HKS, 66HKS, 67HKS, 68HKS, 69HKS, 70HKS, 71HKS, 72HKS, 73HKS, 74HKS, 75HKS, 76HKS, 77HKS, 78HKS, 79HKS, 80HKS, 81HKS, 82HKS, 83HKS, 84HKS, 85HKS, 86HKS

The missing mass spectroscopy of the $^{7}_{\Lambda}$He hypernucleus was performed, using the $^{7}$Li$(e,e^{\prime}K^{+})^{7}_{\Lambda}$He reaction at the Thomas Jefferson National Accelerator Facility Hall C. The $\Lambda$ binding energy of the ground state (1/2$^{+}$) was determined with a smaller error than that of the previous measurement, being $B_{\Lambda}$ = 5.55 $\pm$ 0. Read More

Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the quark dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available for the longitudinal structure function in particular. Here we present separated structure functions for hydrogen and deuterium at low four--momentum transfer squared, Q^2< 1 GeV^2, and compare these with parton distribution parameterizations and a k_T factorization approach. Read More

2014Jun
Authors: L. Tang1, C. Chen2, T. Gogami3, D. Kawama4, Y. Han5, L. Yuan6, A. Matsumura7, Y. Okayasu8, T. Seva9, V. M. Rodriguez10, P. Baturin11, A. Acha12, P. Achenbach13, A. Ahmidouch14, I. Albayrak15, D. Androic16, A. Asaturyan17, R. Asaturyan18, O. Ates19, R. Badui20, O. K. Baker21, F. Benmokhtar22, W. Boeglin23, J. Bono24, P. Bosted25, E. Brash26, P. Carter27, R. Carlini28, A. Chiba29, M. E. Christy30, L. Cole31, M. M. Dalton32, S. Danagoulian33, A. Daniel34, R. De Leo35, V. Dharmawardane36, D. Doi37, K. Egiyan38, M. Elaasar39, R. Ent40, H. Fenker41, Y. Fujii42, M. Furic43, M. Gabrielyan44, L. Gan45, F. Garibaldi46, D. Gaskell47, A. Gasparian48, E. F. Gibson49, P. Gueye50, O. Hashimoto51, D. Honda52, T. Horn53, B. Hu54, Ed V. Hungerford55, C. Jayalath56, M. Jones57, K. Johnston58, N. Kalantarians59, H. Kanda60, M. Kaneta61, F. Kato62, S. Kato63, M. Kawai64, C. Keppel65, H. Khanal66, M. Kohl67, L. Kramer68, K. J. Lan69, Y. Li70, A. Liyanage71, W. Luo72, D. Mack73, K. Maeda74, S. Malace75, A. Margaryan76, G. Marikyan77, P. Markowitz78, T. Maruta79, N. Maruyama80, V. Maxwell81, D. J. Millener82, T. Miyoshi83, A. Mkrtchyan84, H. Mkrtchyan85, T. Motoba86, S. Nagao87, S. N. Nakamura88, A. Narayan89, C. Neville90, G. Niculescu91, M. I. Niculescu92, A. Nunez93, Nuruzzaman94, H. Nomura95, K. Nonaka96, A. Ohtani97, M. Oyamada98, N. Perez99, T. Petkovic100, J. Pochodzalla101, X. Qiu102, S. Randeniya103, B. Raue104, J. Reinhold105, R. Rivera106, J. Roche107, C. Samanta108, Y. Sato109, B. Sawatzky110, E. K. Segbefia111, D. Schott112, A. Shichijo113, N. Simicevic114, G. Smith115, Y. Song116, M. Sumihama117, V. Tadevosyan118, T. Takahashi119, N. Taniya120, K. Tsukada121, V. Tvaskis122, M. Veilleux123, W. Vulcan124, S. Wells125, F. R. Wesselmann126, S. A. Wood127, T. Yamamoto128, C. Yan129, Z. Ye130, K. Yokota131, S. Zhamkochyan132, L. Zhu133
Affiliations: 1HKS - JLab E05-115 and E01-001 - Collaborations, 2HKS - JLab E05-115 and E01-001 - Collaborations, 3HKS - JLab E05-115 and E01-001 - Collaborations, 4HKS - JLab E05-115 and E01-001 - Collaborations, 5HKS - JLab E05-115 and E01-001 - Collaborations, 6HKS - JLab E05-115 and E01-001 - Collaborations, 7HKS - JLab E05-115 and E01-001 - Collaborations, 8HKS - JLab E05-115 and E01-001 - Collaborations, 9HKS - JLab E05-115 and E01-001 - Collaborations, 10HKS - JLab E05-115 and E01-001 - Collaborations, 11HKS - JLab E05-115 and E01-001 - Collaborations, 12HKS - JLab E05-115 and E01-001 - Collaborations, 13HKS - JLab E05-115 and E01-001 - Collaborations, 14HKS - JLab E05-115 and E01-001 - Collaborations, 15HKS - JLab E05-115 and E01-001 - Collaborations, 16HKS - JLab E05-115 and E01-001 - Collaborations, 17HKS - JLab E05-115 and E01-001 - Collaborations, 18HKS - JLab E05-115 and E01-001 - Collaborations, 19HKS - JLab E05-115 and E01-001 - Collaborations, 20HKS - JLab E05-115 and E01-001 - Collaborations, 21HKS - JLab E05-115 and E01-001 - Collaborations, 22HKS - JLab E05-115 and E01-001 - Collaborations, 23HKS - JLab E05-115 and E01-001 - Collaborations, 24HKS - JLab E05-115 and E01-001 - Collaborations, 25HKS - JLab E05-115 and E01-001 - Collaborations, 26HKS - JLab E05-115 and E01-001 - Collaborations, 27HKS - JLab E05-115 and E01-001 - Collaborations, 28HKS - JLab E05-115 and E01-001 - Collaborations, 29HKS - JLab E05-115 and E01-001 - Collaborations, 30HKS - JLab E05-115 and E01-001 - Collaborations, 31HKS - JLab E05-115 and E01-001 - Collaborations, 32HKS - JLab E05-115 and E01-001 - Collaborations, 33HKS - JLab E05-115 and E01-001 - Collaborations, 34HKS - JLab E05-115 and E01-001 - Collaborations, 35HKS - JLab E05-115 and E01-001 - Collaborations, 36HKS - JLab E05-115 and E01-001 - Collaborations, 37HKS - JLab E05-115 and E01-001 - Collaborations, 38HKS - JLab E05-115 and E01-001 - Collaborations, 39HKS - JLab E05-115 and E01-001 - Collaborations, 40HKS - JLab E05-115 and E01-001 - Collaborations, 41HKS - JLab E05-115 and E01-001 - Collaborations, 42HKS - JLab E05-115 and E01-001 - Collaborations, 43HKS - JLab E05-115 and E01-001 - Collaborations, 44HKS - JLab E05-115 and E01-001 - Collaborations, 45HKS - JLab E05-115 and E01-001 - Collaborations, 46HKS - JLab E05-115 and E01-001 - Collaborations, 47HKS - JLab E05-115 and E01-001 - Collaborations, 48HKS - JLab E05-115 and E01-001 - Collaborations, 49HKS - JLab E05-115 and E01-001 - Collaborations, 50HKS - JLab E05-115 and E01-001 - Collaborations, 51HKS - JLab E05-115 and E01-001 - Collaborations, 52HKS - JLab E05-115 and E01-001 - Collaborations, 53HKS - JLab E05-115 and E01-001 - Collaborations, 54HKS - JLab E05-115 and E01-001 - Collaborations, 55HKS - JLab E05-115 and E01-001 - Collaborations, 56HKS - JLab E05-115 and E01-001 - Collaborations, 57HKS - JLab E05-115 and E01-001 - Collaborations, 58HKS - JLab E05-115 and E01-001 - Collaborations, 59HKS - JLab E05-115 and E01-001 - Collaborations, 60HKS - JLab E05-115 and E01-001 - Collaborations, 61HKS - JLab E05-115 and E01-001 - Collaborations, 62HKS - JLab E05-115 and E01-001 - Collaborations, 63HKS - JLab E05-115 and E01-001 - Collaborations, 64HKS - JLab E05-115 and E01-001 - Collaborations, 65HKS - JLab E05-115 and E01-001 - Collaborations, 66HKS - JLab E05-115 and E01-001 - Collaborations, 67HKS - JLab E05-115 and E01-001 - Collaborations, 68HKS - JLab E05-115 and E01-001 - Collaborations, 69HKS - JLab E05-115 and E01-001 - Collaborations, 70HKS - JLab E05-115 and E01-001 - Collaborations, 71HKS - JLab E05-115 and E01-001 - Collaborations, 72HKS - JLab E05-115 and E01-001 - Collaborations, 73HKS - JLab E05-115 and E01-001 - Collaborations, 74HKS - JLab E05-115 and E01-001 - Collaborations, 75HKS - JLab E05-115 and E01-001 - Collaborations, 76HKS - JLab E05-115 and E01-001 - Collaborations, 77HKS - JLab E05-115 and E01-001 - Collaborations, 78HKS - JLab E05-115 and E01-001 - Collaborations, 79HKS - JLab E05-115 and E01-001 - Collaborations, 80HKS - JLab E05-115 and E01-001 - Collaborations, 81HKS - JLab E05-115 and E01-001 - Collaborations, 82HKS - JLab E05-115 and E01-001 - Collaborations, 83HKS - JLab E05-115 and E01-001 - Collaborations, 84HKS - JLab E05-115 and E01-001 - Collaborations, 85HKS - JLab E05-115 and E01-001 - Collaborations, 86HKS - JLab E05-115 and E01-001 - Collaborations, 87HKS - JLab E05-115 and E01-001 - Collaborations, 88HKS - JLab E05-115 and E01-001 - Collaborations, 89HKS - JLab E05-115 and E01-001 - Collaborations, 90HKS - JLab E05-115 and E01-001 - Collaborations, 91HKS - JLab E05-115 and E01-001 - Collaborations, 92HKS - JLab E05-115 and E01-001 - Collaborations, 93HKS - JLab E05-115 and E01-001 - Collaborations, 94HKS - JLab E05-115 and E01-001 - Collaborations, 95HKS - JLab E05-115 and E01-001 - Collaborations, 96HKS - JLab E05-115 and E01-001 - Collaborations, 97HKS - JLab E05-115 and E01-001 - Collaborations, 98HKS - JLab E05-115 and E01-001 - Collaborations, 99HKS - JLab E05-115 and E01-001 - Collaborations, 100HKS - JLab E05-115 and E01-001 - Collaborations, 101HKS - JLab E05-115 and E01-001 - Collaborations, 102HKS - JLab E05-115 and E01-001 - Collaborations, 103HKS - JLab E05-115 and E01-001 - Collaborations, 104HKS - JLab E05-115 and E01-001 - Collaborations, 105HKS - JLab E05-115 and E01-001 - Collaborations, 106HKS - JLab E05-115 and E01-001 - Collaborations, 107HKS - JLab E05-115 and E01-001 - Collaborations, 108HKS - JLab E05-115 and E01-001 - Collaborations, 109HKS - JLab E05-115 and E01-001 - Collaborations, 110HKS - JLab E05-115 and E01-001 - Collaborations, 111HKS - JLab E05-115 and E01-001 - Collaborations, 112HKS - JLab E05-115 and E01-001 - Collaborations, 113HKS - JLab E05-115 and E01-001 - Collaborations, 114HKS - JLab E05-115 and E01-001 - Collaborations, 115HKS - JLab E05-115 and E01-001 - Collaborations, 116HKS - JLab E05-115 and E01-001 - Collaborations, 117HKS - JLab E05-115 and E01-001 - Collaborations, 118HKS - JLab E05-115 and E01-001 - Collaborations, 119HKS - JLab E05-115 and E01-001 - Collaborations, 120HKS - JLab E05-115 and E01-001 - Collaborations, 121HKS - JLab E05-115 and E01-001 - Collaborations, 122HKS - JLab E05-115 and E01-001 - Collaborations, 123HKS - JLab E05-115 and E01-001 - Collaborations, 124HKS - JLab E05-115 and E01-001 - Collaborations, 125HKS - JLab E05-115 and E01-001 - Collaborations, 126HKS - JLab E05-115 and E01-001 - Collaborations, 127HKS - JLab E05-115 and E01-001 - Collaborations, 128HKS - JLab E05-115 and E01-001 - Collaborations, 129HKS - JLab E05-115 and E01-001 - Collaborations, 130HKS - JLab E05-115 and E01-001 - Collaborations, 131HKS - JLab E05-115 and E01-001 - Collaborations, 132HKS - JLab E05-115 and E01-001 - Collaborations, 133HKS - JLab E05-115 and E01-001 - Collaborations

Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "tilt method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. Read More

The lifetime of a Lambda particle embedded in a nucleus (hypernucleus) decreases from that of free Lambda decay due to the opening of the Lambda N to NN weak decay channel. However, it is generally believed that the lifetime of a hypernucleus attains a constant value (saturation) for medium to heavy hypernuclear masses, yet this hypothesis has been difficult to verify. The present paper reports a direct measurement of the lifetime of medium-heavy hypernuclei produced with a photon-beam from Fe, Cu, Ag, and Bi targets. Read More

2012Jul
Affiliations: 1HKS, 2HKS, 3HKS, 4HKS, 5HKS, 6HKS, 7HKS, 8HKS, 9HKS, 10HKS, 11HKS, 12HKS, 13HKS, 14HKS, 15HKS, 16HKS, 17HKS, 18HKS, 19HKS, 20HKS, 21HKS, 22HKS, 23HKS, 24HKS, 25HKS, 26HKS, 27HKS, 28HKS, 29HKS, 30HKS, 31HKS, 32HKS, 33HKS, 34HKS, 35HKS, 36HKS, 37HKS, 38HKS, 39HKS, 40HKS, 41HKS, 42HKS, 43HKS, 44HKS, 45HKS, 46HKS, 47HKS, 48HKS, 49HKS, 50HKS, 51HKS, 52HKS, 53HKS, 54HKS, 55HKS, 56HKS, 57HKS, 58HKS, 59HKS, 60HKS, 61HKS, 62HKS, 63HKS, 64HKS, 65HKS, 66HKS, 67HKS, 68HKS, 69HKS, 70HKS, 71HKS, 72HKS, 73HKS, 74HKS, 75HKS, 76HKS, 77HKS, 78HKS, 79HKS, 80HKS, 81HKS, 82HKS, 83HKS, 84HKS, 85HKS, 86HKS, 87HKS, 88HKS, 89HKS, 90HKS, 91HKS, 92HKS, 93HKS

An experiment with a newly developed high-resolution kaon spectrometer (HKS) and a scattered electron spectrometer with a novel configuration was performed in Hall C at Jefferson Lab (JLab). The ground state of a neutron-rich hypernucleus, He 7 Lambda, was observed for the first time with the (e,e'K+) reaction with an energy resolution of ~0.6 MeV. Read More

A large set of cross sections for semi-inclusive electroproduction of charged pions ($\pi^\pm$) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared $W^2$ > 4 GeV$^2$ and range in four-momentum transfer squared $2 < Q^2 < 4$ (GeV/c)$^2$, and cover a range in the Bjorken scaling variable 0.2 < x < 0. Read More

2011Mar
Authors: G0 Collaboration, D. Androic, D. S. Armstrong, J. Arvieux, R. Asaturyan, T. D. Averett, S. L. Bailey, G. Batigne, D. H. Beck, E. J. Beise, J. Benesch, F. Benmokhtar, L. Bimbot, J. Birchall, A. Biselli, P. Bosted, H. Breuer, P. Brindza, C. L. Capuano, R. D. Carlini, R. Carr, N. Chant, Y. -C. Chao, R. Clark, A. Coppens, S. D. Covrig, A. Cowley, D. Dale, C. A. Davis, C. Ellis, W. R. Falk, H. Fenker, J. M. Finn, T. Forest, G. Franklin, R. Frascaria, C. Furget, D. Gaskell, M. T. W. Gericke, J. Grames, K. A. Griffioen, K. Grimm, G. Guillard, B. Guillon, H. Guler, K. Gustafsson, L. Hannelius, J. Hansknecht, R. D. Hasty, A. M. Hawthorne Allen, T. Horn, T. M. Ito, K. Johnston, M. Jones, P. Kammel, R. Kazimi, P. M. King, A. Kolarkar, E. Korkmaz, W. Korsch, S. Kox, J. Kuhn, J. Lachniet, R. Laszewski, L. Lee, J. Lenoble, E. Liatard, J. Liu, A. Lung, G. A. MacLachlan, J. Mammei, D. Marchand, J. W. Martin, D. J. Mack, K. W. McFarlane, D. W. McKee, R. D. McKeown, F. Merchez, M. Mihovilovic, A. Micherdzinska, H. Mkrtchyan, B. Moffit, M. Morlet, M. Muether, J. Musson, K. Nakahara, R. Neveling, S. Niccolai, D. Nilsson, S. Ong, S. A. Page, V. Papavassiliou, S. F. Pate, S. K. Phillips, P. Pillot, M. L. Pitt, M. Poelker, T. A. Porcelli, G. Quemener, B. P. Quinn, W. D. Ramsay, A. W. Rauf, J. -S. Real, T. Ries, J. Roche P. Roos, G. A. Rutledge, J. Schaub, J. Secrest, T. Seva, N. Simicevic, G. R. Smith, D. T. Spayde, S. Stepanyan, M. Stutzman, R. Suleiman, V. Tadevosyan, R. Tieulent, J. van de Wiele, W. T. H. van Oers, M. Versteegen, E. Voutier, W. F. Vulcan, S. P. Wells, G. Warren, S. E. Williamson, R. J. Woo, S. A. Wood, C. Yan, J. Yun, V. Zeps

In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. Read More

We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for $x>1$, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. Read More

2008Nov
Affiliations: 1nee Rohe, 2nee Rohe, 3nee Rohe, 4nee Rohe, 5nee Rohe, 6nee Rohe, 7nee Rohe, 8nee Rohe, 9nee Rohe, 10nee Rohe, 11nee Rohe, 12nee Rohe, 13nee Rohe, 14nee Rohe, 15nee Rohe, 16nee Rohe, 17nee Rohe, 18nee Rohe, 19nee Rohe, 20nee Rohe, 21nee Rohe, 22nee Rohe, 23nee Rohe, 24nee Rohe, 25nee Rohe, 26nee Rohe, 27nee Rohe, 28nee Rohe, 29nee Rohe, 30nee Rohe, 31nee Rohe, 32nee Rohe, 33nee Rohe, 34nee Rohe, 35nee Rohe, 36nee Rohe, 37nee Rohe, 38nee Rohe, 39nee Rohe, 40nee Rohe, 41nee Rohe, 42nee Rohe, 43nee Rohe, 44nee Rohe, 45nee Rohe, 46nee Rohe, 47nee Rohe, 48nee Rohe, 49nee Rohe, 50nee Rohe, 51nee Rohe, 52nee Rohe

We have extracted QCD matrix elements from our data on double polarized inelastic scattering of electrons on nuclei. We find the higher twist matrix element \tilde{d_2}, which arises strictly from quark- gluon interactions, to be unambiguously non zero. The data also reveal an isospin dependence of higher twist effects if we assume that the Burkhardt-Cottingham Sum rule is valid. Read More

2008Sep
Affiliations: 1nee Rohe, 2nee Rohe, 3nee Rohe, 4nee Rohe, 5nee Rohe, 6nee Rohe, 7nee Rohe, 8nee Rohe, 9nee Rohe, 10nee Rohe, 11nee Rohe, 12nee Rohe, 13nee Rohe, 14nee Rohe, 15nee Rohe, 16nee Rohe, 17nee Rohe, 18nee Rohe, 19nee Rohe, 20nee Rohe, 21nee Rohe, 22nee Rohe, 23nee Rohe, 24nee Rohe, 25nee Rohe, 26nee Rohe, 27nee Rohe

A search was made for sub-threshold $J/\psi$ production from a carbon target using a mixed real and quasi-real Bremsstrahlung photon beam with an endpoint energy of 5.76 GeV. No events were observed, which is consistent with predictions assuming quasi-free production. Read More

2004Nov
Affiliations: 1Yerevan Physics Institute, 2Thomas Jefferson National Accelerator Facility, 3Thomas Jefferson National Accelerator Facility, 4Thomas Jefferson National Accelerator Facility, 5University of Regina, 6Thomas Jefferson National Accelerator Facility, 7Thomas Jefferson National Accelerator Facility, 8Yerevan Physics Institute, 9Thomas Jefferson National Accelerator Facility, 10Houston Baptist University, 11Yerevan Physics Institute, 12Yerevan Physics Institute, 13Thomas Jefferson National Accelerator Facility

We describe a new aerogel threshold Cherenkov detector installed in the HMS spectrometer in Hall C at Jefferson Lab. The Hall C experimental program in 2003 required an improved particle identification system for better identification of pi/K/P, which was achieved by installing an additional threshold Cherenkov counter. Two types of aerogel with n=1. Read More

We report on a detailed study of longitudinal strength in the nucleon resonance region, presenting new results from inclusive electron-proton cross sections measured at Jefferson Lab Hall C in the four-momentum transfer range 0.2 < Q^2 < 5.5 GeV^2. Read More

A pioneering experiment in Lambda hypernuclear spectroscopy, undertaken at the Thomas Jefferson National Accelerator Facility (Jlab), was recently reported. The experiment used the high- precision, continuous electron beam at Jlab, and a special arrangement of spectrometer magnets to measure the spectrum from {nat}C and 7Li targets using the (e,e' K+)reaction. The 12B hypernuclear spectrum was previously published. Read More

We have carried out an (e,e'p) experiment at high momentum transfer and in parallel kinematics to measure the strength of the nuclear spectral function S(k,E) at high nucleon momenta k and large removal energies E. This strength is related to the presence of short-range and tensor correlations, and was known hitherto only indirectly and with considerable uncertainty from the lack of strength in the independent-particle region. This experiment confirms by direct measurement the correlated strength predicted by theory. Read More