R. A. Lindgren - The Jefferson Lab Hall A Collaboration

R. A. Lindgren
Are you R. A. Lindgren?

Claim your profile, edit publications, add additional information:

Contact Details

Name
R. A. Lindgren
Affiliation
The Jefferson Lab Hall A Collaboration
Location

Pubs By Year

Pub Categories

 
Nuclear Experiment (48)
 
High Energy Physics - Experiment (13)
 
Nuclear Theory (4)
 
High Energy Physics - Phenomenology (4)
 
Physics - Instrumentation and Detectors (1)
 
Solar and Stellar Astrophysics (1)
 
Statistics - Theory (1)
 
Mathematics - Statistics (1)

Publications Authored By R. A. Lindgren

$[Background]$ Measurements of the neutron charge distribution are made difficult by the fact that, with no net charge, the neutron electric form factor, $G^n_E$, is generally much smaller than the magnetic form factor, $G^n_M$. In addition, measurements of these form factors must use nuclear targets which requires accurately accounting for nuclear effects. $[Method]$ The inclusive quasi-elastic reaction $^3\overrightarrow{\rm{He}}(\overrightarrow{e},e')$ was measured at Jefferson Lab. Read More

The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of the internal structure of the proton. Read More

2017Feb
Affiliations: 1The Jefferson Lab Hall A Collaboration, 2The Jefferson Lab Hall A Collaboration, 3The Jefferson Lab Hall A Collaboration, 4The Jefferson Lab Hall A Collaboration, 5The Jefferson Lab Hall A Collaboration, 6The Jefferson Lab Hall A Collaboration, 7The Jefferson Lab Hall A Collaboration, 8The Jefferson Lab Hall A Collaboration, 9The Jefferson Lab Hall A Collaboration, 10The Jefferson Lab Hall A Collaboration, 11The Jefferson Lab Hall A Collaboration, 12The Jefferson Lab Hall A Collaboration, 13The Jefferson Lab Hall A Collaboration, 14The Jefferson Lab Hall A Collaboration, 15The Jefferson Lab Hall A Collaboration, 16The Jefferson Lab Hall A Collaboration, 17The Jefferson Lab Hall A Collaboration, 18The Jefferson Lab Hall A Collaboration, 19The Jefferson Lab Hall A Collaboration, 20The Jefferson Lab Hall A Collaboration, 21The Jefferson Lab Hall A Collaboration, 22The Jefferson Lab Hall A Collaboration, 23The Jefferson Lab Hall A Collaboration, 24The Jefferson Lab Hall A Collaboration, 25The Jefferson Lab Hall A Collaboration, 26The Jefferson Lab Hall A Collaboration, 27The Jefferson Lab Hall A Collaboration, 28The Jefferson Lab Hall A Collaboration, 29The Jefferson Lab Hall A Collaboration, 30The Jefferson Lab Hall A Collaboration, 31The Jefferson Lab Hall A Collaboration, 32The Jefferson Lab Hall A Collaboration, 33The Jefferson Lab Hall A Collaboration, 34The Jefferson Lab Hall A Collaboration, 35The Jefferson Lab Hall A Collaboration, 36The Jefferson Lab Hall A Collaboration, 37The Jefferson Lab Hall A Collaboration, 38The Jefferson Lab Hall A Collaboration, 39The Jefferson Lab Hall A Collaboration, 40The Jefferson Lab Hall A Collaboration, 41The Jefferson Lab Hall A Collaboration, 42The Jefferson Lab Hall A Collaboration, 43The Jefferson Lab Hall A Collaboration, 44The Jefferson Lab Hall A Collaboration, 45The Jefferson Lab Hall A Collaboration, 46The Jefferson Lab Hall A Collaboration, 47The Jefferson Lab Hall A Collaboration, 48The Jefferson Lab Hall A Collaboration, 49The Jefferson Lab Hall A Collaboration, 50The Jefferson Lab Hall A Collaboration, 51The Jefferson Lab Hall A Collaboration, 52The Jefferson Lab Hall A Collaboration, 53The Jefferson Lab Hall A Collaboration, 54The Jefferson Lab Hall A Collaboration, 55The Jefferson Lab Hall A Collaboration, 56The Jefferson Lab Hall A Collaboration, 57The Jefferson Lab Hall A Collaboration, 58The Jefferson Lab Hall A Collaboration, 59The Jefferson Lab Hall A Collaboration, 60The Jefferson Lab Hall A Collaboration, 61The Jefferson Lab Hall A Collaboration, 62The Jefferson Lab Hall A Collaboration, 63The Jefferson Lab Hall A Collaboration, 64The Jefferson Lab Hall A Collaboration, 65The Jefferson Lab Hall A Collaboration, 66The Jefferson Lab Hall A Collaboration, 67The Jefferson Lab Hall A Collaboration, 68The Jefferson Lab Hall A Collaboration, 69The Jefferson Lab Hall A Collaboration, 70The Jefferson Lab Hall A Collaboration, 71The Jefferson Lab Hall A Collaboration, 72The Jefferson Lab Hall A Collaboration, 73The Jefferson Lab Hall A Collaboration, 74The Jefferson Lab Hall A Collaboration, 75The Jefferson Lab Hall A Collaboration, 76The Jefferson Lab Hall A Collaboration, 77The Jefferson Lab Hall A Collaboration, 78The Jefferson Lab Hall A Collaboration, 79The Jefferson Lab Hall A Collaboration, 80The Jefferson Lab Hall A Collaboration, 81The Jefferson Lab Hall A Collaboration, 82The Jefferson Lab Hall A Collaboration, 83The Jefferson Lab Hall A Collaboration, 84The Jefferson Lab Hall A Collaboration, 85The Jefferson Lab Hall A Collaboration, 86The Jefferson Lab Hall A Collaboration, 87The Jefferson Lab Hall A Collaboration, 88The Jefferson Lab Hall A Collaboration, 89The Jefferson Lab Hall A Collaboration, 90The Jefferson Lab Hall A Collaboration, 91The Jefferson Lab Hall A Collaboration, 92The Jefferson Lab Hall A Collaboration, 93The Jefferson Lab Hall A Collaboration, 94The Jefferson Lab Hall A Collaboration, 95The Jefferson Lab Hall A Collaboration, 96The Jefferson Lab Hall A Collaboration, 97The Jefferson Lab Hall A Collaboration, 98The Jefferson Lab Hall A Collaboration

We report the first longitudinal/transverse separation of the deeply virtual exclusive $\pi^0$ electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions $d\sigma_L/dt$, $d\sigma_T/dt$, $d\sigma_{LT}/dt$ and $d\sigma_{TT}/dt$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $x_B$=0. Read More

The charge and magnetic form factors, FC and FM, of 3He have been extracted in the kinematic range 25 fm-2 < Q2 < 61 fm-2 from elastic electron scattering by detecting 3He recoil nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements are indicative of a second diffraction minimum for the magnetic form factor, which was predicted in the Q2 range of this experiment, and of a continuing diffractive structure for the charge form factor. The data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem. Read More

2016Oct

The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in $^3$He($e,e^{\prime}\pi^{\pm}$)$X$ have been measured for the first time in Jefferson Lab experiment E06-010 performed with a $5.9\,$GeV $e^-$ beam on a $^3$He target. The experiment focuses on the valence quark region, covering a kinematic range $0. Read More

We present deeply virtual $\pi^0$ electroproduction cross-section measurements at $x_B$=0.36 and three different $Q^2$--values ranging from 1.5 to 2 GeV$^2$, obtained from experiment E07-007 that ran in the Hall A at Jefferson Lab. Read More

We report on the results of the E06-014 experiment performed at Jefferson Lab in Hall A, where a precision measurement of the twist-3 matrix element $d_2$ of the neutron ($d_{2}^{n}$) was conducted. This quantity represents the average color Lorentz force a struck quark experiences in a deep inelastic electron scattering event off a neutron due to its interaction with the hadronizing remnants. This color force was determined from a linear combination of the third moments of the spin structure functions $g_1$ and $g_2$ on $^{3}$He after nuclear corrections had been applied to these moments. Read More

We report on new p$(e,e^\prime p)\pi^\circ$ measurements at the $\Delta^{+}(1232)$ resonance at the low momentum transfer region. The mesonic cloud dynamics is predicted to be dominant and rapidly changing in this kinematic region offering a test bed for chiral effective field theory calculations. The new data explore the low $Q^2$ dependence of the resonant quadrupole amplitudes while extending the measurements of the Coulomb quadrupole amplitude to the lowest momentum transfer ever reached. Read More

We present final results on the photon electroproduction ($\vec{e}p\rightarrow ep\gamma$) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed resulting in photon electroproduction cross sections at new kinematic settings, for a total of 588 experimental bins. Read More

We report the first measurement of the target single-spin asymmetry, $A_y$, in quasi-elastic scattering from the inclusive reaction $^3$He$^{\uparrow}(e,e^\prime)$ on a $^3$He gas target polarized normal to the lepton scattering plane. Assuming time-reversal invariance, this asymmetry is strictly zero for one-photon exchange. A non-zero $A_y$ can arise from the interference between the one- and two-photon exchange processes which is sensitive to the details of the sub-structure of the nucleon. Read More

2015Feb

We report the measurement of beam-target double-spin asymmetries ($A_\text{LT}$) in the inclusive production of identified hadrons, $\vec{e}~$+$~^3\text{He}^{\uparrow}\rightarrow h+X$, using a longitudinally polarized 5.9 GeV electron beam and a transversely polarized $^3\rm{He}$ target. Hadrons ($\pi^{\pm}$, $K^{\pm}$ and proton) were detected at 16$^{\circ}$ with an average momentum $<$$P_h$$>$=2. Read More

New results are reported from a measurement of $\pi^0$ electroproduction near threshold using the $p(e,e^{\prime} p)\pi^0$ reaction. The experiment was designed to determine precisely the energy dependence of $s-$ and $p-$wave electromagnetic multipoles as a stringent test of the predictions of Chiral Perturbation Theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. Read More

We present a precise measurement of double-polarization asymmetries in the $^3\vec{\mathrm{He}}(\vec{\mathrm{e}},\mathrm{e}'\mathrm{d})$ reaction. This particular process is a uniquely sensitive probe of hadron dynamics in $^3\mathrm{He}$ and the structure of the underlying electromagnetic currents. The measurements have been performed in and around quasi-elastic kinematics at $Q^2 = 0. Read More

New problems arise when the standard theory of joint detection and estimation is applied to a set of signals drawn from a continuous family; decision thresholds must be determined as a function of the continuous parameter x characterizing the signals, and false alarms occur, not with a discrete probability, but with a density in x. A Bayes decision structure over the domain of signal parameters yields a state estimate of the signal parameter x as an integral part of a signal declaration. The decision criterion is converted to a form in which detection and false alarm densities appear and from which is derived a relation between them for all x. Read More

The interpretation of the signals detected by high precision experiments aimed at measuring neutrino oscillations requires an accurate description of the neutrino-nucleus cross sections. One of the key element of the analysis is the treatment of nuclear effects, which is one of the main sources of systematics for accelerator based experiments such as the Long Baseline Neutrino Experiment (LBNE). A considerable effort is currently being made to develop theoretical models capable of providing a fully quantitative description of the neutrino-nucleus cross sections in the kinematical regime relevant to LBNE. Read More

2014Jun
Affiliations: 1The Jefferson Lab Hall A Collaboration, 2The Jefferson Lab Hall A Collaboration, 3The Jefferson Lab Hall A Collaboration, 4The Jefferson Lab Hall A Collaboration, 5The Jefferson Lab Hall A Collaboration, 6The Jefferson Lab Hall A Collaboration, 7The Jefferson Lab Hall A Collaboration, 8The Jefferson Lab Hall A Collaboration, 9The Jefferson Lab Hall A Collaboration, 10The Jefferson Lab Hall A Collaboration, 11The Jefferson Lab Hall A Collaboration, 12The Jefferson Lab Hall A Collaboration, 13The Jefferson Lab Hall A Collaboration, 14The Jefferson Lab Hall A Collaboration, 15The Jefferson Lab Hall A Collaboration, 16The Jefferson Lab Hall A Collaboration, 17The Jefferson Lab Hall A Collaboration, 18The Jefferson Lab Hall A Collaboration, 19The Jefferson Lab Hall A Collaboration, 20The Jefferson Lab Hall A Collaboration, 21The Jefferson Lab Hall A Collaboration, 22The Jefferson Lab Hall A Collaboration, 23The Jefferson Lab Hall A Collaboration, 24The Jefferson Lab Hall A Collaboration, 25The Jefferson Lab Hall A Collaboration, 26The Jefferson Lab Hall A Collaboration, 27The Jefferson Lab Hall A Collaboration, 28The Jefferson Lab Hall A Collaboration, 29The Jefferson Lab Hall A Collaboration, 30The Jefferson Lab Hall A Collaboration, 31The Jefferson Lab Hall A Collaboration, 32The Jefferson Lab Hall A Collaboration, 33The Jefferson Lab Hall A Collaboration, 34The Jefferson Lab Hall A Collaboration, 35The Jefferson Lab Hall A Collaboration, 36The Jefferson Lab Hall A Collaboration, 37The Jefferson Lab Hall A Collaboration, 38The Jefferson Lab Hall A Collaboration, 39The Jefferson Lab Hall A Collaboration, 40The Jefferson Lab Hall A Collaboration, 41The Jefferson Lab Hall A Collaboration, 42The Jefferson Lab Hall A Collaboration, 43The Jefferson Lab Hall A Collaboration, 44The Jefferson Lab Hall A Collaboration, 45The Jefferson Lab Hall A Collaboration, 46The Jefferson Lab Hall A Collaboration, 47The Jefferson Lab Hall A Collaboration, 48The Jefferson Lab Hall A Collaboration, 49The Jefferson Lab Hall A Collaboration, 50The Jefferson Lab Hall A Collaboration, 51The Jefferson Lab Hall A Collaboration, 52The Jefferson Lab Hall A Collaboration, 53The Jefferson Lab Hall A Collaboration, 54The Jefferson Lab Hall A Collaboration, 55The Jefferson Lab Hall A Collaboration, 56The Jefferson Lab Hall A Collaboration, 57The Jefferson Lab Hall A Collaboration, 58The Jefferson Lab Hall A Collaboration, 59The Jefferson Lab Hall A Collaboration, 60The Jefferson Lab Hall A Collaboration, 61The Jefferson Lab Hall A Collaboration, 62The Jefferson Lab Hall A Collaboration, 63The Jefferson Lab Hall A Collaboration, 64The Jefferson Lab Hall A Collaboration, 65The Jefferson Lab Hall A Collaboration, 66The Jefferson Lab Hall A Collaboration, 67The Jefferson Lab Hall A Collaboration, 68The Jefferson Lab Hall A Collaboration, 69The Jefferson Lab Hall A Collaboration, 70The Jefferson Lab Hall A Collaboration, 71The Jefferson Lab Hall A Collaboration, 72The Jefferson Lab Hall A Collaboration, 73The Jefferson Lab Hall A Collaboration, 74The Jefferson Lab Hall A Collaboration, 75The Jefferson Lab Hall A Collaboration, 76The Jefferson Lab Hall A Collaboration, 77The Jefferson Lab Hall A Collaboration, 78The Jefferson Lab Hall A Collaboration, 79The Jefferson Lab Hall A Collaboration, 80The Jefferson Lab Hall A Collaboration, 81The Jefferson Lab Hall A Collaboration, 82The Jefferson Lab Hall A Collaboration, 83The Jefferson Lab Hall A Collaboration, 84The Jefferson Lab Hall A Collaboration, 85The Jefferson Lab Hall A Collaboration, 86The Jefferson Lab Hall A Collaboration, 87The Jefferson Lab Hall A Collaboration, 88The Jefferson Lab Hall A Collaboration, 89The Jefferson Lab Hall A Collaboration, 90The Jefferson Lab Hall A Collaboration, 91The Jefferson Lab Hall A Collaboration, 92The Jefferson Lab Hall A Collaboration

We have performed precision measurements of the double-spin virtual-photon asymmetry $A_1$ on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer. Our data cover a wide kinematic range $0.277 \leq x \leq 0. Read More

2014May
Affiliations: 1Jefferson Lab Hall A Collaboration, 2Jefferson Lab Hall A Collaboration, 3Jefferson Lab Hall A Collaboration, 4Jefferson Lab Hall A Collaboration, 5Jefferson Lab Hall A Collaboration, 6Jefferson Lab Hall A Collaboration, 7Jefferson Lab Hall A Collaboration, 8Jefferson Lab Hall A Collaboration, 9Jefferson Lab Hall A Collaboration, 10Jefferson Lab Hall A Collaboration, 11Jefferson Lab Hall A Collaboration, 12Jefferson Lab Hall A Collaboration, 13Jefferson Lab Hall A Collaboration, 14Jefferson Lab Hall A Collaboration, 15Jefferson Lab Hall A Collaboration, 16Jefferson Lab Hall A Collaboration, 17Jefferson Lab Hall A Collaboration, 18Jefferson Lab Hall A Collaboration, 19Jefferson Lab Hall A Collaboration, 20Jefferson Lab Hall A Collaboration, 21Jefferson Lab Hall A Collaboration, 22Jefferson Lab Hall A Collaboration, 23Jefferson Lab Hall A Collaboration, 24Jefferson Lab Hall A Collaboration, 25Jefferson Lab Hall A Collaboration, 26Jefferson Lab Hall A Collaboration, 27Jefferson Lab Hall A Collaboration, 28Jefferson Lab Hall A Collaboration, 29Jefferson Lab Hall A Collaboration, 30Jefferson Lab Hall A Collaboration, 31Jefferson Lab Hall A Collaboration, 32Jefferson Lab Hall A Collaboration, 33Jefferson Lab Hall A Collaboration, 34Jefferson Lab Hall A Collaboration, 35Jefferson Lab Hall A Collaboration, 36Jefferson Lab Hall A Collaboration, 37Jefferson Lab Hall A Collaboration, 38Jefferson Lab Hall A Collaboration, 39Jefferson Lab Hall A Collaboration, 40Jefferson Lab Hall A Collaboration, 41Jefferson Lab Hall A Collaboration, 42Jefferson Lab Hall A Collaboration, 43Jefferson Lab Hall A Collaboration, 44Jefferson Lab Hall A Collaboration, 45Jefferson Lab Hall A Collaboration, 46Jefferson Lab Hall A Collaboration, 47Jefferson Lab Hall A Collaboration, 48Jefferson Lab Hall A Collaboration, 49Jefferson Lab Hall A Collaboration, 50Jefferson Lab Hall A Collaboration, 51Jefferson Lab Hall A Collaboration, 52Jefferson Lab Hall A Collaboration, 53Jefferson Lab Hall A Collaboration, 54Jefferson Lab Hall A Collaboration, 55Jefferson Lab Hall A Collaboration, 56Jefferson Lab Hall A Collaboration, 57Jefferson Lab Hall A Collaboration, 58Jefferson Lab Hall A Collaboration, 59Jefferson Lab Hall A Collaboration, 60Jefferson Lab Hall A Collaboration, 61Jefferson Lab Hall A Collaboration, 62Jefferson Lab Hall A Collaboration, 63Jefferson Lab Hall A Collaboration, 64Jefferson Lab Hall A Collaboration, 65Jefferson Lab Hall A Collaboration, 66Jefferson Lab Hall A Collaboration, 67Jefferson Lab Hall A Collaboration, 68Jefferson Lab Hall A Collaboration, 69Jefferson Lab Hall A Collaboration, 70Jefferson Lab Hall A Collaboration, 71Jefferson Lab Hall A Collaboration, 72Jefferson Lab Hall A Collaboration, 73Jefferson Lab Hall A Collaboration, 74Jefferson Lab Hall A Collaboration, 75Jefferson Lab Hall A Collaboration, 76Jefferson Lab Hall A Collaboration, 77Jefferson Lab Hall A Collaboration, 78Jefferson Lab Hall A Collaboration, 79Jefferson Lab Hall A Collaboration, 80Jefferson Lab Hall A Collaboration, 81Jefferson Lab Hall A Collaboration, 82Jefferson Lab Hall A Collaboration, 83Jefferson Lab Hall A Collaboration, 84Jefferson Lab Hall A Collaboration, 85Jefferson Lab Hall A Collaboration, 86Jefferson Lab Hall A Collaboration, 87Jefferson Lab Hall A Collaboration, 88Jefferson Lab Hall A Collaboration, 89Jefferson Lab Hall A Collaboration, 90Jefferson Lab Hall A Collaboration, 91Jefferson Lab Hall A Collaboration, 92Jefferson Lab Hall A Collaboration, 93Jefferson Lab Hall A Collaboration, 94Jefferson Lab Hall A Collaboration, 95Jefferson Lab Hall A Collaboration, 96Jefferson Lab Hall A Collaboration, 97Jefferson Lab Hall A Collaboration, 98Jefferson Lab Hall A Collaboration

In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei can provide information on the details of the effective hyperon-nucleon interaction. Electroproduction of the hypernucleus Lambda-9Li has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a 9Be target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. Read More

2014Apr
Authors: Y. X. Zhao1, Y. Wang2, K. Allada3, K. Aniol4, J. R. M. Annand5, T. Averett6, F. Benmokhtar7, W. Bertozzi8, P. C. Bradshaw9, P. Bosted10, A. Camsonne11, M. Canan12, G. D. Cates13, C. Chen14, J. -P. Chen15, W. Chen16, K. Chirapatpimol17, E. Chudakov18, E. Cisbani19, J. C. Cornejo20, F. Cusanno21, M. M. Dalton22, W. Deconinck23, C. W. de Jager24, R. De Leo25, X. Deng26, A. Deur27, H. Ding28, P. A. M. Dolph29, C. Dutta30, D. Dutta31, L. El Fassi32, S. Frullani33, H. Gao34, F. Garibaldi35, D. Gaskell36, S. Gilad37, R. Gilman38, O. Glamazdin39, S. Golge40, L. Guo41, D. Hamilton42, O. Hansen43, D. W. Higinbotham44, T. Holmstrom45, J. Huang46, M. Huang47, H. F Ibrahim48, M. Iodice49, X. Jiang50, G. Jin51, M. K. Jones52, J. Katich53, A. Kelleher54, W. Kim55, A. Kolarkar56, W. Korsch57, J. J. LeRose58, X. Li59, Y. Li60, R. Lindgren61, N. Liyanage62, E. Long63, H. -J. Lu64, D. J. Margaziotis65, P. Markowitz66, S. Marrone67, D. McNulty68, Z. -E. Meziani69, R. Michaels70, B. Moffit71, C. Muñoz Camacho72, S. Nanda73, A. Narayan74, V. Nelyubin75, B. Norum76, Y. Oh77, M. Osipenko78, D. Parno79, J. -C. Peng80, S. K. Phillips81, M. Posik82, A. J. R. Puckett83, X. Qian84, Y. Qiang85, A. Rakhman86, R. Ransome87, S. Riordan88, A. Saha89, B. Sawatzky90, E. Schulte91, A. Shahinyan92, M. H. Shabestari93, S. Širca94, S. Stepanyan95, R. Subedi96, V. Sulkosky97, L. -G. Tang98, A. Tobias99, G. M. Urciuoli100, I. Vilardi101, K. Wang102, B. Wojtsekhowski103, X. Yan104, H. Yao105, Y. Ye106, Z. Ye107, L. Yuan108, X. Zhan109, Y. Zhang110, Y. -W. Zhang111, B. Zhao112, X. Zheng113, L. Zhu114, X. Zhu115, X. Zong116
Affiliations: 1Jefferson Lab Hall A Collaboration, 2Jefferson Lab Hall A Collaboration, 3Jefferson Lab Hall A Collaboration, 4Jefferson Lab Hall A Collaboration, 5Jefferson Lab Hall A Collaboration, 6Jefferson Lab Hall A Collaboration, 7Jefferson Lab Hall A Collaboration, 8Jefferson Lab Hall A Collaboration, 9Jefferson Lab Hall A Collaboration, 10Jefferson Lab Hall A Collaboration, 11Jefferson Lab Hall A Collaboration, 12Jefferson Lab Hall A Collaboration, 13Jefferson Lab Hall A Collaboration, 14Jefferson Lab Hall A Collaboration, 15Jefferson Lab Hall A Collaboration, 16Jefferson Lab Hall A Collaboration, 17Jefferson Lab Hall A Collaboration, 18Jefferson Lab Hall A Collaboration, 19Jefferson Lab Hall A Collaboration, 20Jefferson Lab Hall A Collaboration, 21Jefferson Lab Hall A Collaboration, 22Jefferson Lab Hall A Collaboration, 23Jefferson Lab Hall A Collaboration, 24Jefferson Lab Hall A Collaboration, 25Jefferson Lab Hall A Collaboration, 26Jefferson Lab Hall A Collaboration, 27Jefferson Lab Hall A Collaboration, 28Jefferson Lab Hall A Collaboration, 29Jefferson Lab Hall A Collaboration, 30Jefferson Lab Hall A Collaboration, 31Jefferson Lab Hall A Collaboration, 32Jefferson Lab Hall A Collaboration, 33Jefferson Lab Hall A Collaboration, 34Jefferson Lab Hall A Collaboration, 35Jefferson Lab Hall A Collaboration, 36Jefferson Lab Hall A Collaboration, 37Jefferson Lab Hall A Collaboration, 38Jefferson Lab Hall A Collaboration, 39Jefferson Lab Hall A Collaboration, 40Jefferson Lab Hall A Collaboration, 41Jefferson Lab Hall A Collaboration, 42Jefferson Lab Hall A Collaboration, 43Jefferson Lab Hall A Collaboration, 44Jefferson Lab Hall A Collaboration, 45Jefferson Lab Hall A Collaboration, 46Jefferson Lab Hall A Collaboration, 47Jefferson Lab Hall A Collaboration, 48Jefferson Lab Hall A Collaboration, 49Jefferson Lab Hall A Collaboration, 50Jefferson Lab Hall A Collaboration, 51Jefferson Lab Hall A Collaboration, 52Jefferson Lab Hall A Collaboration, 53Jefferson Lab Hall A Collaboration, 54Jefferson Lab Hall A Collaboration, 55Jefferson Lab Hall A Collaboration, 56Jefferson Lab Hall A Collaboration, 57Jefferson Lab Hall A Collaboration, 58Jefferson Lab Hall A Collaboration, 59Jefferson Lab Hall A Collaboration, 60Jefferson Lab Hall A Collaboration, 61Jefferson Lab Hall A Collaboration, 62Jefferson Lab Hall A Collaboration, 63Jefferson Lab Hall A Collaboration, 64Jefferson Lab Hall A Collaboration, 65Jefferson Lab Hall A Collaboration, 66Jefferson Lab Hall A Collaboration, 67Jefferson Lab Hall A Collaboration, 68Jefferson Lab Hall A Collaboration, 69Jefferson Lab Hall A Collaboration, 70Jefferson Lab Hall A Collaboration, 71Jefferson Lab Hall A Collaboration, 72Jefferson Lab Hall A Collaboration, 73Jefferson Lab Hall A Collaboration, 74Jefferson Lab Hall A Collaboration, 75Jefferson Lab Hall A Collaboration, 76Jefferson Lab Hall A Collaboration, 77Jefferson Lab Hall A Collaboration, 78Jefferson Lab Hall A Collaboration, 79Jefferson Lab Hall A Collaboration, 80Jefferson Lab Hall A Collaboration, 81Jefferson Lab Hall A Collaboration, 82Jefferson Lab Hall A Collaboration, 83Jefferson Lab Hall A Collaboration, 84Jefferson Lab Hall A Collaboration, 85Jefferson Lab Hall A Collaboration, 86Jefferson Lab Hall A Collaboration, 87Jefferson Lab Hall A Collaboration, 88Jefferson Lab Hall A Collaboration, 89Jefferson Lab Hall A Collaboration, 90Jefferson Lab Hall A Collaboration, 91Jefferson Lab Hall A Collaboration, 92Jefferson Lab Hall A Collaboration, 93Jefferson Lab Hall A Collaboration, 94Jefferson Lab Hall A Collaboration, 95Jefferson Lab Hall A Collaboration, 96Jefferson Lab Hall A Collaboration, 97Jefferson Lab Hall A Collaboration, 98Jefferson Lab Hall A Collaboration, 99Jefferson Lab Hall A Collaboration, 100Jefferson Lab Hall A Collaboration, 101Jefferson Lab Hall A Collaboration, 102Jefferson Lab Hall A Collaboration, 103Jefferson Lab Hall A Collaboration, 104Jefferson Lab Hall A Collaboration, 105Jefferson Lab Hall A Collaboration, 106Jefferson Lab Hall A Collaboration, 107Jefferson Lab Hall A Collaboration, 108Jefferson Lab Hall A Collaboration, 109Jefferson Lab Hall A Collaboration, 110Jefferson Lab Hall A Collaboration, 111Jefferson Lab Hall A Collaboration, 112Jefferson Lab Hall A Collaboration, 113Jefferson Lab Hall A Collaboration, 114Jefferson Lab Hall A Collaboration, 115Jefferson Lab Hall A Collaboration, 116Jefferson Lab Hall A Collaboration

We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized $^3{\rm{He}}$ target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1$<$$x_{bj}$$<$0. Read More

2014Jan

We studied simultaneously the 4He(e,e'p), 4He(e,e'pp), and 4He(e,e'pn) reactions at Q^2=2 [GeV/c]2 and x_B>1, for a (e,e'p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A=2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum in a region where the nucleon-nucleon force is expected to change from predominantly tensor to repulsive. Read More

The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33-0.4 arcsec spatial resolution, 2 s temporal resolution and 1 km/s velocity resolution over a field-of-view of up to 175 arcsec x 175 arcsec. Read More

2013Dec

An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized $^3$He target was performed at Jefferson Lab in the kinematic region of $0.16Read More

2013Nov
Authors: K. Allada1, Y. X. Zhao2, K. Aniol3, J. R. M. Annand4, T. Averett5, F. Benmokhtar6, W. Bertozzi7, P. C. Bradshaw8, P. Bosted9, A. Camsonne10, M. Canan11, G. D. Cates12, C. Chen13, J. -P. Chen14, W. Chen15, K. Chirapatpimol16, E. Chudakov17, E. Cisbani18, J. C. Cornejo19, F. Cusanno20, M. Dalton21, W. Deconinck22, C. W. de Jager23, R. De Leo24, X. Deng25, A. Deur26, H. Ding27, P. A. M. Dolph28, C. Dutta29, D. Dutta30, L. El Fassi31, S. Frullani32, H. Gao33, F. Garibaldi34, D. Gaskell35, S. Gilad36, R. Gilman37, O. Glamazdin38, S. Golge39, L. Guo40, D. Hamilton41, O. Hansen42, D. W. Higinbotham43, T. Holmstrom44, J. Huang45, M. Huang46, H. F Ibrahim47, M. Iodice48, X. Jiang49, G. Jin50, M. K. Jones51, J. Katich52, A. Kelleher53, W. Kim54, A. Kolarkar55, W. Korsch56, J. J. LeRose57, X. Li58, Y. Li59, R. Lindgren60, N. Liyanage61, E. Long62, H. -J. Lu63, D. J. Margaziotis64, P. Markowitz65, S. Marrone66, D. McNulty67, Z. -E. Meziani68, R. Michaels69, B. Moffit70, C. Munoz Camacho71, S. Nanda72, A. Narayan73, V. Nelyubin74, B. Norum75, Y. Oh76, M. Osipenko77, D. Parno78, J. -C. Peng79, S. K. Phillips80, M. Posik81, A. J. R. Puckett82, X. Qian83, Y. Qiang84, A. Rakhman85, R. Ransome86, S. Riordan87, A. Saha88, B. Sawatzky89, E. Schulte90, A. Shahinyan91, M. H. Shabestari92, S. Sirca93, S. Stepanyan94, R. Subedi95, V. Sulkosky96, L. -G. Tang97, A. Tobias98, G. M. Urciuoli99, I. Vilardi100, K. Wang101, Y. Wang102, B. Wojtsekhowski103, X. Yan104, H. Yao105, Y. Ye106, Z. Ye107, L. Yuan108, X. Zhan109, Y. Zhang110, Y. -W. Zhang111, B. Zhao112, X. Zheng113, L. Zhu114, X. Zhu115, X. Zong116
Affiliations: 1Jefferson Lab Hall A Collaboration, 2Jefferson Lab Hall A Collaboration, 3Jefferson Lab Hall A Collaboration, 4Jefferson Lab Hall A Collaboration, 5Jefferson Lab Hall A Collaboration, 6Jefferson Lab Hall A Collaboration, 7Jefferson Lab Hall A Collaboration, 8Jefferson Lab Hall A Collaboration, 9Jefferson Lab Hall A Collaboration, 10Jefferson Lab Hall A Collaboration, 11Jefferson Lab Hall A Collaboration, 12Jefferson Lab Hall A Collaboration, 13Jefferson Lab Hall A Collaboration, 14Jefferson Lab Hall A Collaboration, 15Jefferson Lab Hall A Collaboration, 16Jefferson Lab Hall A Collaboration, 17Jefferson Lab Hall A Collaboration, 18Jefferson Lab Hall A Collaboration, 19Jefferson Lab Hall A Collaboration, 20Jefferson Lab Hall A Collaboration, 21Jefferson Lab Hall A Collaboration, 22Jefferson Lab Hall A Collaboration, 23Jefferson Lab Hall A Collaboration, 24Jefferson Lab Hall A Collaboration, 25Jefferson Lab Hall A Collaboration, 26Jefferson Lab Hall A Collaboration, 27Jefferson Lab Hall A Collaboration, 28Jefferson Lab Hall A Collaboration, 29Jefferson Lab Hall A Collaboration, 30Jefferson Lab Hall A Collaboration, 31Jefferson Lab Hall A Collaboration, 32Jefferson Lab Hall A Collaboration, 33Jefferson Lab Hall A Collaboration, 34Jefferson Lab Hall A Collaboration, 35Jefferson Lab Hall A Collaboration, 36Jefferson Lab Hall A Collaboration, 37Jefferson Lab Hall A Collaboration, 38Jefferson Lab Hall A Collaboration, 39Jefferson Lab Hall A Collaboration, 40Jefferson Lab Hall A Collaboration, 41Jefferson Lab Hall A Collaboration, 42Jefferson Lab Hall A Collaboration, 43Jefferson Lab Hall A Collaboration, 44Jefferson Lab Hall A Collaboration, 45Jefferson Lab Hall A Collaboration, 46Jefferson Lab Hall A Collaboration, 47Jefferson Lab Hall A Collaboration, 48Jefferson Lab Hall A Collaboration, 49Jefferson Lab Hall A Collaboration, 50Jefferson Lab Hall A Collaboration, 51Jefferson Lab Hall A Collaboration, 52Jefferson Lab Hall A Collaboration, 53Jefferson Lab Hall A Collaboration, 54Jefferson Lab Hall A Collaboration, 55Jefferson Lab Hall A Collaboration, 56Jefferson Lab Hall A Collaboration, 57Jefferson Lab Hall A Collaboration, 58Jefferson Lab Hall A Collaboration, 59Jefferson Lab Hall A Collaboration, 60Jefferson Lab Hall A Collaboration, 61Jefferson Lab Hall A Collaboration, 62Jefferson Lab Hall A Collaboration, 63Jefferson Lab Hall A Collaboration, 64Jefferson Lab Hall A Collaboration, 65Jefferson Lab Hall A Collaboration, 66Jefferson Lab Hall A Collaboration, 67Jefferson Lab Hall A Collaboration, 68Jefferson Lab Hall A Collaboration, 69Jefferson Lab Hall A Collaboration, 70Jefferson Lab Hall A Collaboration, 71Jefferson Lab Hall A Collaboration, 72Jefferson Lab Hall A Collaboration, 73Jefferson Lab Hall A Collaboration, 74Jefferson Lab Hall A Collaboration, 75Jefferson Lab Hall A Collaboration, 76Jefferson Lab Hall A Collaboration, 77Jefferson Lab Hall A Collaboration, 78Jefferson Lab Hall A Collaboration, 79Jefferson Lab Hall A Collaboration, 80Jefferson Lab Hall A Collaboration, 81Jefferson Lab Hall A Collaboration, 82Jefferson Lab Hall A Collaboration, 83Jefferson Lab Hall A Collaboration, 84Jefferson Lab Hall A Collaboration, 85Jefferson Lab Hall A Collaboration, 86Jefferson Lab Hall A Collaboration, 87Jefferson Lab Hall A Collaboration, 88Jefferson Lab Hall A Collaboration, 89Jefferson Lab Hall A Collaboration, 90Jefferson Lab Hall A Collaboration, 91Jefferson Lab Hall A Collaboration, 92Jefferson Lab Hall A Collaboration, 93Jefferson Lab Hall A Collaboration, 94Jefferson Lab Hall A Collaboration, 95Jefferson Lab Hall A Collaboration, 96Jefferson Lab Hall A Collaboration, 97Jefferson Lab Hall A Collaboration, 98Jefferson Lab Hall A Collaboration, 99Jefferson Lab Hall A Collaboration, 100Jefferson Lab Hall A Collaboration, 101Jefferson Lab Hall A Collaboration, 102Jefferson Lab Hall A Collaboration, 103Jefferson Lab Hall A Collaboration, 104Jefferson Lab Hall A Collaboration, 105Jefferson Lab Hall A Collaboration, 106Jefferson Lab Hall A Collaboration, 107Jefferson Lab Hall A Collaboration, 108Jefferson Lab Hall A Collaboration, 109Jefferson Lab Hall A Collaboration, 110Jefferson Lab Hall A Collaboration, 111Jefferson Lab Hall A Collaboration, 112Jefferson Lab Hall A Collaboration, 113Jefferson Lab Hall A Collaboration, 114Jefferson Lab Hall A Collaboration, 115Jefferson Lab Hall A Collaboration, 116Jefferson Lab Hall A Collaboration

We report the first measurement of target single-spin asymmetries (A$_N$) in the inclusive hadron production reaction, $e~$+$~^3\text{He}^{\uparrow}\rightarrow h+X$, using a transversely polarized $^3$He target. The experiment was conducted at Jefferson Lab in Hall A using a 5.9-GeV electron beam. Read More

2013Nov

We report the first measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the inclusive reaction $^3$He$^{\uparrow}\left(e,e' \right)X$ on a polarized $^3$He gas target. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation but can be non-zero if two-photon-exchange contributions are included. The experiment, conducted at Jefferson Lab using a 5. Read More

The charge form factor of $^$4He has been extracted in the range 29 fm$^{-2}$ $\le Q^2 \le 77$ fm$^{-2}$ from elastic electron scattering, detecting $^4$He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the $Q^2$ range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting. Read More

2013Mar
Authors: I. Pomerantz1, Y. Ilieva2, R. Gilman3, D. W. Higinbotham4, E. Piasetzky5, S. Strauch6, K. P. Adhikari7, M. Aghasyan8, K. Allada9, M. J. Amaryan10, S. Anefalos Pereira11, M. Anghinolfi12, H. Baghdasaryan13, J. Ball14, N. A. Baltzell15, M. Battaglieri16, V. Batourine17, A. Beck18, S. Beck19, I. Bedlinskiy20, B. L. Berman21, A. S. Biselli22, W. Boeglin23, J. Bono24, C. Bookwalter25, S. Boiarinov26, W. J. Briscoe27, W. K. Brooks28, N. Bubis29, V. Burkert30, A. Camsonne31, M. Canan32, D. S. Carman33, A. Celentano34, S. Chandavar35, G. Charles36, K. Chirapatpimol37, E. Cisbani38, P. L. Cole39, M. Contalbrigo40, V. Crede41, F. Cusanno42, A. D'Angelo43, A. Daniel44, N. Dashyan45, C. W. de Jager46, R. De Vita47, E. De Sanctis48, A. Deur49, C. Djalali50, G. E. Dodge51, D. Doughty52, R. Dupre53, C. Dutta54, H. Egiyan55, A. El Alaoui56, L. El Fassi57, P. Eugenio58, G. Fedotov59, S. Fegan60, J. A. Fleming61, A. Fradi62, F. Garibaldi63, O. Geagla64, N. Gevorgyan65, K. L. Giovanetti66, F. X. Girod67, J. Glister68, J. T. Goetz69, W. Gohn70, E. Golovatch71, R. W. Gothe72, K. A. Griffioen73, B. Guegan74, M. Guidal75, L. Guo76, K. Hafidi77, H. Hakobyan78, N. Harrison79, D. Heddle80, K. Hicks81, D. Ho82, M. Holtrop83, C. E. Hyde84, D. G. Ireland85, B. S. Ishkhanov86, E. L. Isupov87, X. Jiang88, H. S. Jo89, K. Joo90, A. T. Katramatou91, D. Keller92, M. Khandaker93, P. Khetarpal94, E. Khrosinkova95, A. Kim96, W. Kim97, F. J. Klein98, S. Koirala99, A. Kubarovsky100, V. Kubarovsky101, S. V. Kuleshov102, N. D. Kvaltine103, B. Lee104, J. J. LeRose105, S. Lewis106, R. Lindgren107, K. Livingston108, H. Y. Lu109, I. J. D. MacGregor110, Y. Mao111, D. Martinez112, M. Mayer113, E. McCullough114, B. McKinnon115, D. Meekins116, C. A. Meyer117, R. Michaels118, T. Mineeva119, M. Mirazita120, B. Moffit121, V. Mokeev122, R. A. Montgomery123, H. Moutarde124, E. Munevar125, C. Munoz Camacho126, P. Nadel-Turonski127, R. Nasseripour128, C. S. Nepali129, S. Niccolai130, G. Niculescu131, I. Niculescu132, M. Osipenko133, A. I. Ostrovidov134, L. L. Pappalardo135, R. Paremuzyan136, K. Park137, S. Park138, G. G. Petratos139, E. Phelps140, S. Pisano141, O. Pogorelko142, S. Pozdniakov143, S. Procureur144, D. Protopopescu145, A. J. R. Puckett146, X. Qian147, Y. Qiang148, G. Ricco149, D. Rimal150, M. Ripani151, B. G. Ritchie152, I. Rodriguez153, G. Ron154, G. Rosner155, P. Rossi156, F. Sabatie157, A. Saha158, M. S. Saini159, A. J. Sarty160, B. Sawatzky161, N. A. Saylor162, D. Schott163, E. Schulte164, R. A. Schumacher165, E. Seder166, H. Seraydaryan167, R. Shneor168, G. D. Smith169, D. Sokhan170, N. Sparveris171, S. S. Stepanyan172, S. Stepanyan173, P. Stoler174, R. Subedi175, V. Sulkosky176, M. Taiuti177, W. Tang178, C. E. Taylor179, S. Tkachenko180, M. Ungaro181, B. Vernarsky182, M. F. Vineyard183, H. Voskanyan184, E. Voutier185, N. K. Walford186, Y. Wang187, D. P. Watts188, L. B. Weinstein189, D. P. Weygand190, B. Wojtsekhowski191, M. H. Wood192, X. Yan193, H. Yao194, N. Zachariou195, X. Zhan196, J. Zhang197, Z. W. Zhao198, X. Zheng199, I. Zonta200
Affiliations: 1The CLAS and Hall-A Collaborations, 2The CLAS and Hall-A Collaborations, 3The CLAS and Hall-A Collaborations, 4The CLAS and Hall-A Collaborations, 5The CLAS and Hall-A Collaborations, 6The CLAS and Hall-A Collaborations, 7The CLAS and Hall-A Collaborations, 8The CLAS and Hall-A Collaborations, 9The CLAS and Hall-A Collaborations, 10The CLAS and Hall-A Collaborations, 11The CLAS and Hall-A Collaborations, 12The CLAS and Hall-A Collaborations, 13The CLAS and Hall-A Collaborations, 14The CLAS and Hall-A Collaborations, 15The CLAS and Hall-A Collaborations, 16The CLAS and Hall-A Collaborations, 17The CLAS and Hall-A Collaborations, 18The CLAS and Hall-A Collaborations, 19The CLAS and Hall-A Collaborations, 20The CLAS and Hall-A Collaborations, 21The CLAS and Hall-A Collaborations, 22The CLAS and Hall-A Collaborations, 23The CLAS and Hall-A Collaborations, 24The CLAS and Hall-A Collaborations, 25The CLAS and Hall-A Collaborations, 26The CLAS and Hall-A Collaborations, 27The CLAS and Hall-A Collaborations, 28The CLAS and Hall-A Collaborations, 29The CLAS and Hall-A Collaborations, 30The CLAS and Hall-A Collaborations, 31The CLAS and Hall-A Collaborations, 32The CLAS and Hall-A Collaborations, 33The CLAS and Hall-A Collaborations, 34The CLAS and Hall-A Collaborations, 35The CLAS and Hall-A Collaborations, 36The CLAS and Hall-A Collaborations, 37The CLAS and Hall-A Collaborations, 38The CLAS and Hall-A Collaborations, 39The CLAS and Hall-A Collaborations, 40The CLAS and Hall-A Collaborations, 41The CLAS and Hall-A Collaborations, 42The CLAS and Hall-A Collaborations, 43The CLAS and Hall-A Collaborations, 44The CLAS and Hall-A Collaborations, 45The CLAS and Hall-A Collaborations, 46The CLAS and Hall-A Collaborations, 47The CLAS and Hall-A Collaborations, 48The CLAS and Hall-A Collaborations, 49The CLAS and Hall-A Collaborations, 50The CLAS and Hall-A Collaborations, 51The CLAS and Hall-A Collaborations, 52The CLAS and Hall-A Collaborations, 53The CLAS and Hall-A Collaborations, 54The CLAS and Hall-A Collaborations, 55The CLAS and Hall-A Collaborations, 56The CLAS and Hall-A Collaborations, 57The CLAS and Hall-A Collaborations, 58The CLAS and Hall-A Collaborations, 59The CLAS and Hall-A Collaborations, 60The CLAS and Hall-A Collaborations, 61The CLAS and Hall-A Collaborations, 62The CLAS and Hall-A Collaborations, 63The CLAS and Hall-A Collaborations, 64The CLAS and Hall-A Collaborations, 65The CLAS and Hall-A Collaborations, 66The CLAS and Hall-A Collaborations, 67The CLAS and Hall-A Collaborations, 68The CLAS and Hall-A Collaborations, 69The CLAS and Hall-A Collaborations, 70The CLAS and Hall-A Collaborations, 71The CLAS and Hall-A Collaborations, 72The CLAS and Hall-A Collaborations, 73The CLAS and Hall-A Collaborations, 74The CLAS and Hall-A Collaborations, 75The CLAS and Hall-A Collaborations, 76The CLAS and Hall-A Collaborations, 77The CLAS and Hall-A Collaborations, 78The CLAS and Hall-A Collaborations, 79The CLAS and Hall-A Collaborations, 80The CLAS and Hall-A Collaborations, 81The CLAS and Hall-A Collaborations, 82The CLAS and Hall-A Collaborations, 83The CLAS and Hall-A Collaborations, 84The CLAS and Hall-A Collaborations, 85The CLAS and Hall-A Collaborations, 86The CLAS and Hall-A Collaborations, 87The CLAS and Hall-A Collaborations, 88The CLAS and Hall-A Collaborations, 89The CLAS and Hall-A Collaborations, 90The CLAS and Hall-A Collaborations, 91The CLAS and Hall-A Collaborations, 92The CLAS and Hall-A Collaborations, 93The CLAS and Hall-A Collaborations, 94The CLAS and Hall-A Collaborations, 95The CLAS and Hall-A Collaborations, 96The CLAS and Hall-A Collaborations, 97The CLAS and Hall-A Collaborations, 98The CLAS and Hall-A Collaborations, 99The CLAS and Hall-A Collaborations, 100The CLAS and Hall-A Collaborations, 101The CLAS and Hall-A Collaborations, 102The CLAS and Hall-A Collaborations, 103The CLAS and Hall-A Collaborations, 104The CLAS and Hall-A Collaborations, 105The CLAS and Hall-A Collaborations, 106The CLAS and Hall-A Collaborations, 107The CLAS and Hall-A Collaborations, 108The CLAS and Hall-A Collaborations, 109The CLAS and Hall-A Collaborations, 110The CLAS and Hall-A Collaborations, 111The CLAS and Hall-A Collaborations, 112The CLAS and Hall-A Collaborations, 113The CLAS and Hall-A Collaborations, 114The CLAS and Hall-A Collaborations, 115The CLAS and Hall-A Collaborations, 116The CLAS and Hall-A Collaborations, 117The CLAS and Hall-A Collaborations, 118The CLAS and Hall-A Collaborations, 119The CLAS and Hall-A Collaborations, 120The CLAS and Hall-A Collaborations, 121The CLAS and Hall-A Collaborations, 122The CLAS and Hall-A Collaborations, 123The CLAS and Hall-A Collaborations, 124The CLAS and Hall-A Collaborations, 125The CLAS and Hall-A Collaborations, 126The CLAS and Hall-A Collaborations, 127The CLAS and Hall-A Collaborations, 128The CLAS and Hall-A Collaborations, 129The CLAS and Hall-A Collaborations, 130The CLAS and Hall-A Collaborations, 131The CLAS and Hall-A Collaborations, 132The CLAS and Hall-A Collaborations, 133The CLAS and Hall-A Collaborations, 134The CLAS and Hall-A Collaborations, 135The CLAS and Hall-A Collaborations, 136The CLAS and Hall-A Collaborations, 137The CLAS and Hall-A Collaborations, 138The CLAS and Hall-A Collaborations, 139The CLAS and Hall-A Collaborations, 140The CLAS and Hall-A Collaborations, 141The CLAS and Hall-A Collaborations, 142The CLAS and Hall-A Collaborations, 143The CLAS and Hall-A Collaborations, 144The CLAS and Hall-A Collaborations, 145The CLAS and Hall-A Collaborations, 146The CLAS and Hall-A Collaborations, 147The CLAS and Hall-A Collaborations, 148The CLAS and Hall-A Collaborations, 149The CLAS and Hall-A Collaborations, 150The CLAS and Hall-A Collaborations, 151The CLAS and Hall-A Collaborations, 152The CLAS and Hall-A Collaborations, 153The CLAS and Hall-A Collaborations, 154The CLAS and Hall-A Collaborations, 155The CLAS and Hall-A Collaborations, 156The CLAS and Hall-A Collaborations, 157The CLAS and Hall-A Collaborations, 158The CLAS and Hall-A Collaborations, 159The CLAS and Hall-A Collaborations, 160The CLAS and Hall-A Collaborations, 161The CLAS and Hall-A Collaborations, 162The CLAS and Hall-A Collaborations, 163The CLAS and Hall-A Collaborations, 164The CLAS and Hall-A Collaborations, 165The CLAS and Hall-A Collaborations, 166The CLAS and Hall-A Collaborations, 167The CLAS and Hall-A Collaborations, 168The CLAS and Hall-A Collaborations, 169The CLAS and Hall-A Collaborations, 170The CLAS and Hall-A Collaborations, 171The CLAS and Hall-A Collaborations, 172The CLAS and Hall-A Collaborations, 173The CLAS and Hall-A Collaborations, 174The CLAS and Hall-A Collaborations, 175The CLAS and Hall-A Collaborations, 176The CLAS and Hall-A Collaborations, 177The CLAS and Hall-A Collaborations, 178The CLAS and Hall-A Collaborations, 179The CLAS and Hall-A Collaborations, 180The CLAS and Hall-A Collaborations, 181The CLAS and Hall-A Collaborations, 182The CLAS and Hall-A Collaborations, 183The CLAS and Hall-A Collaborations, 184The CLAS and Hall-A Collaborations, 185The CLAS and Hall-A Collaborations, 186The CLAS and Hall-A Collaborations, 187The CLAS and Hall-A Collaborations, 188The CLAS and Hall-A Collaborations, 189The CLAS and Hall-A Collaborations, 190The CLAS and Hall-A Collaborations, 191The CLAS and Hall-A Collaborations, 192The CLAS and Hall-A Collaborations, 193The CLAS and Hall-A Collaborations, 194The CLAS and Hall-A Collaborations, 195The CLAS and Hall-A Collaborations, 196The CLAS and Hall-A Collaborations, 197The CLAS and Hall-A Collaborations, 198The CLAS and Hall-A Collaborations, 199The CLAS and Hall-A Collaborations, 200The CLAS and Hall-A Collaborations

We have measured cross sections for the gamma+3He->p+d reaction at photon energies of 0.4 - 1.4 GeV and a center-of-mass angle of 90 deg. Read More

The five-fold differential cross section for the 12C(e,e'p)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models and previous lower missing momentum data is shown. Read More

2012Aug
Authors: The HAPPEX, PREX Collaborations, :, S. Abrahamyan, A. Acha, A. Afanasev, Z. Ahmed, H. Albataineh, K. Aniol, D. S. Armstrong, W. Armstrong, J. Arrington, T. Averett, B. Babineau, S. L. Bailey, J. Barber, A. Barbieri, A. Beck, V. Bellini, R. Beminiwattha, H. Benaoum, J. Benesch, F. Benmokhtar, P. Bertin, T. Bielarski, W. Boeglin, P. Bosted, F. Butaru, E. Burtin, J. Cahoon, A. Camsonne, M. Canan, P. Carter, C. C. Chang, G. D. Cates, Y. C. Chao, C. Chen, J. P. Chen, Seonho Choi, E. Chudakov, E. Cisbani, B. Craver, F. Cusanno, M. M. Dalton, R. De Leo, K. de Jager, W. Deconinck, P. Decowski, D. Deepa, X. Deng, A. Deur, D. Dutta, A. Etile, C. Ferdi, R. J. Feuerbach, J. M. Finn, D. Flay, G. B. Franklin, M. Friend, S. Frullani, E. Fuchey, S. A. Fuchs, K. Fuoti, F. Garibaldi, E. Gasser, R. Gilman, A. Giusa, A. Glamazdin, L. E. Glesener, J. Gomez, M. Gorchtein, J. Grames, K. Grimm, C. Gu, O. Hansen, J. Hansknecht, O. Hen, D. W. Higinbotham, R. S. Holmes, T. Holmstrom, C. J. Horowitz, J. Hoskins, J. Huang, T. B. Humensky, C. E. Hyde, H. Ibrahim, F. Itard, C. M. Jen, E. Jensen, X. Jiang, G. Jin, S. Johnston, J. Katich, L. J. Kaufman, A. Kelleher, K. Kliakhandler, P. M. King, A. Kolarkar, S. Kowalski, E. Kuchina, K. S. Kumar, L. Lagamba, D. Lambert, P. LaViolette, J. Leacock, J. Leckey IV, J. H. Lee, J. J. LeRose, D. Lhuillier, R. Lindgren, N. Liyanage, N. Lubinsky, J. Mammei, F. Mammoliti, D. J. Margaziotis, P. Markowitz, M. Mazouz, K. McCormick, A. McCreary, D. McNulty, D. G. Meekins, L. Mercado, Z. E. Meziani, R. W. Michaels, M. Mihovilovic, B. Moffit, P. Monaghan, N. Muangma, C. Munoz-Camacho, S. Nanda, V. Nelyubin, D. Neyret, Nuruzzaman, Y. Oh, K. Otis, A. Palmer, D. Parno, K. D. Paschke, S. K. Phillips, M. Poelker, R. Pomatsalyuk, M. Posik, M. Potokar, K. Prok, A. J. R. Puckett, X. Qian, Y. Qiang, B. Quinn, A. Rakhman, P. E. Reimer, B. Reitz, S. Riordan, J. Roche, P. Rogan, G. Ron, G. Russo, K. Saenboonruang, A. Saha, B. Sawatzky, A. Shahinyan, R. Silwal, J. Singh, S. Sirca, K. Slifer, R. Snyder, P. Solvignon, P. A. Souder, M. L. Sperduto, R. Subedi, M. L. Stutzman, R. Suleiman, V. Sulkosky, C. M. Sutera, W. A. Tobias, W. Troth, G. M. Urciuoli, P. Ulmer, A. Vacheret, E. Voutier, B. Waidyawansa, D. Wang, K. Wang, J. Wexler, A. Whitbeck, R. Wilson, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, V. Yim, L. Zana, X. Zhan, J. Zhang, Y. Zhang, X. Zheng, V. Ziskin, P. Zhu

We have measured the beam-normal single-spin asymmetry $A_n$ in the elastic scattering of 1-3 GeV transversely polarized electrons from $^1$H and for the first time from $^4$He, $^{12}$C, and $^{208}$Pb. For $^1$H, $^4$He and $^{12}$C, the measurements are in agreement with calculations that relate $A_n$ to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the $^{208}$Pb result is significantly smaller than the corresponding prediction using the same formalism. Read More

2012May
Authors: H. Fonvieille1, G. Laveissiere2, N. Degrande3, S. Jaminion4, C. Jutier5, L. Todor6, R. Di Salvo7, L. Van Hoorebeke8, L. C. Alexa9, B. D. Anderson10, K. A. Aniol11, K. Arundell12, G. Audit13, L. Auerbach14, F. T. Baker15, M. Baylac16, J. Berthot17, P. Y. Bertin18, W. Bertozzi19, L. Bimbot20, W. U. Boeglin21, E. J. Brash22, V. Breton23, H. Breuer24, E. Burtin25, J. R. Calarco26, L. S. Cardman27, C. Cavata28, C. -C. Chang29, J. -P. Chen30, E. Chudakov31, E. Cisbani32, D. S. Dale33, C. W. deJager34, R. De Leo35, A. Deur36, N. d'Hose37, G. E. Dodge38, J. J. Domingo39, L. Elouadrhiri40, M. B. Epstein41, L. A. Ewell42, J. M. Finn43, K. G. Fissum44, G. Fournier45, B. Frois46, S. Frullani47, C. Furget48, H. Gao49, J. Gao50, F. Garibaldi51, A. Gasparian52, S. Gilad53, R. Gilman54, A. Glamazdin55, C. Glashausser56, J. Gomez57, V. Gorbenko58, P. Grenier59, P. A. M. Guichon60, J. O. Hansen61, R. Holmes62, M. Holtrop63, C. Howell64, G. M. Huber65, C. E. Hyde66, S. Incerti67, M. Iodice68, J. Jardillier69, M. K. Jones70, W. Kahl71, S. Kato72, A. T. Katramatou73, J. J. Kelly74, S. Kerhoas75, A. Ketikyan76, M. Khayat77, K. Kino78, S. Kox79, L. H. Kramer80, K. S. Kumar81, G. Kumbartzki82, M. Kuss83, A. Leone84, J. J. LeRose85, M. Liang86, R. A. Lindgren87, N. Liyanage88, G. J. Lolos89, R. W. Lourie90, R. Madey91, K. Maeda92, S. Malov93, D. M. Manley94, C. Marchand95, D. Marchand96, D. J. Margaziotis97, P. Markowitz98, J. Marroncle99, J. Martino100, K. McCormick101, J. McIntyre102, S. Mehrabyan103, F. Merchez104, Z. E. Meziani105, R. Michaels106, G. W. Miller107, J. Y. Mougey108, S. K. Nanda109, D. Neyret110, E. A. J. M. Offermann111, Z. Papandreou112, B. Pasquini113, C. F. Perdrisat114, R. Perrino115, G. G. Petratos116, S. Platchkov117, R. Pomatsalyuk118, D. L. Prout119, V. A. Punjabi120, T. Pussieux121, G. Quemener122, R. D. Ransome123, O. Ravel124, J. S. Real125, F. Renard126, Y. Roblin127, D. Rowntree128, G. Rutledge129, P. M. Rutt130, A. Saha131, T. Saito132, A. J. Sarty133, A. Serdarevic134, T. Smith135, G. Smirnov136, K. Soldi137, P. Sorokin138, P. A. Souder139, R. Suleiman140, J. A. Templon141, T. Terasawa142, R. Tieulent143, E. Tomasi-Gustaffson144, H. Tsubota145, H. Ueno146, P. E. Ulmer147, G. M. Urciuoli148, M. Vanderhaeghen149, R. L. J. Van der Meer150, R. Van De Vyver151, P. Vernin152, B. Vlahovic153, H. Voskanyan154, E. Voutier155, J. W. Watson156, L. B. Weinstein157, K. Wijesooriya158, R. Wilson159, B. B. Wojtsekhowski160, D. G. Zainea161, W. -M. Zhang162, J. Zhao163, Z. -L. Zhou164
Affiliations: 1The Jefferson Lab Hall A Collaboration, 2The Jefferson Lab Hall A Collaboration, 3The Jefferson Lab Hall A Collaboration, 4The Jefferson Lab Hall A Collaboration, 5The Jefferson Lab Hall A Collaboration, 6The Jefferson Lab Hall A Collaboration, 7The Jefferson Lab Hall A Collaboration, 8The Jefferson Lab Hall A Collaboration, 9The Jefferson Lab Hall A Collaboration, 10The Jefferson Lab Hall A Collaboration, 11The Jefferson Lab Hall A Collaboration, 12The Jefferson Lab Hall A Collaboration, 13The Jefferson Lab Hall A Collaboration, 14The Jefferson Lab Hall A Collaboration, 15The Jefferson Lab Hall A Collaboration, 16The Jefferson Lab Hall A Collaboration, 17The Jefferson Lab Hall A Collaboration, 18The Jefferson Lab Hall A Collaboration, 19The Jefferson Lab Hall A Collaboration, 20The Jefferson Lab Hall A Collaboration, 21The Jefferson Lab Hall A Collaboration, 22The Jefferson Lab Hall A Collaboration, 23The Jefferson Lab Hall A Collaboration, 24The Jefferson Lab Hall A Collaboration, 25The Jefferson Lab Hall A Collaboration, 26The Jefferson Lab Hall A Collaboration, 27The Jefferson Lab Hall A Collaboration, 28The Jefferson Lab Hall A Collaboration, 29The Jefferson Lab Hall A Collaboration, 30The Jefferson Lab Hall A Collaboration, 31The Jefferson Lab Hall A Collaboration, 32The Jefferson Lab Hall A Collaboration, 33The Jefferson Lab Hall A Collaboration, 34The Jefferson Lab Hall A Collaboration, 35The Jefferson Lab Hall A Collaboration, 36The Jefferson Lab Hall A Collaboration, 37The Jefferson Lab Hall A Collaboration, 38The Jefferson Lab Hall A Collaboration, 39The Jefferson Lab Hall A Collaboration, 40The Jefferson Lab Hall A Collaboration, 41The Jefferson Lab Hall A Collaboration, 42The Jefferson Lab Hall A Collaboration, 43The Jefferson Lab Hall A Collaboration, 44The Jefferson Lab Hall A Collaboration, 45The Jefferson Lab Hall A Collaboration, 46The Jefferson Lab Hall A Collaboration, 47The Jefferson Lab Hall A Collaboration, 48The Jefferson Lab Hall A Collaboration, 49The Jefferson Lab Hall A Collaboration, 50The Jefferson Lab Hall A Collaboration, 51The Jefferson Lab Hall A Collaboration, 52The Jefferson Lab Hall A Collaboration, 53The Jefferson Lab Hall A Collaboration, 54The Jefferson Lab Hall A Collaboration, 55The Jefferson Lab Hall A Collaboration, 56The Jefferson Lab Hall A Collaboration, 57The Jefferson Lab Hall A Collaboration, 58The Jefferson Lab Hall A Collaboration, 59The Jefferson Lab Hall A Collaboration, 60The Jefferson Lab Hall A Collaboration, 61The Jefferson Lab Hall A Collaboration, 62The Jefferson Lab Hall A Collaboration, 63The Jefferson Lab Hall A Collaboration, 64The Jefferson Lab Hall A Collaboration, 65The Jefferson Lab Hall A Collaboration, 66The Jefferson Lab Hall A Collaboration, 67The Jefferson Lab Hall A Collaboration, 68The Jefferson Lab Hall A Collaboration, 69The Jefferson Lab Hall A Collaboration, 70The Jefferson Lab Hall A Collaboration, 71The Jefferson Lab Hall A Collaboration, 72The Jefferson Lab Hall A Collaboration, 73The Jefferson Lab Hall A Collaboration, 74The Jefferson Lab Hall A Collaboration, 75The Jefferson Lab Hall A Collaboration, 76The Jefferson Lab Hall A Collaboration, 77The Jefferson Lab Hall A Collaboration, 78The Jefferson Lab Hall A Collaboration, 79The Jefferson Lab Hall A Collaboration, 80The Jefferson Lab Hall A Collaboration, 81The Jefferson Lab Hall A Collaboration, 82The Jefferson Lab Hall A Collaboration, 83The Jefferson Lab Hall A Collaboration, 84The Jefferson Lab Hall A Collaboration, 85The Jefferson Lab Hall A Collaboration, 86The Jefferson Lab Hall A Collaboration, 87The Jefferson Lab Hall A Collaboration, 88The Jefferson Lab Hall A Collaboration, 89The Jefferson Lab Hall A Collaboration, 90The Jefferson Lab Hall A Collaboration, 91The Jefferson Lab Hall A Collaboration, 92The Jefferson Lab Hall A Collaboration, 93The Jefferson Lab Hall A Collaboration, 94The Jefferson Lab Hall A Collaboration, 95The Jefferson Lab Hall A Collaboration, 96The Jefferson Lab Hall A Collaboration, 97The Jefferson Lab Hall A Collaboration, 98The Jefferson Lab Hall A Collaboration, 99The Jefferson Lab Hall A Collaboration, 100The Jefferson Lab Hall A Collaboration, 101The Jefferson Lab Hall A Collaboration, 102The Jefferson Lab Hall A Collaboration, 103The Jefferson Lab Hall A Collaboration, 104The Jefferson Lab Hall A Collaboration, 105The Jefferson Lab Hall A Collaboration, 106The Jefferson Lab Hall A Collaboration, 107The Jefferson Lab Hall A Collaboration, 108The Jefferson Lab Hall A Collaboration, 109The Jefferson Lab Hall A Collaboration, 110The Jefferson Lab Hall A Collaboration, 111The Jefferson Lab Hall A Collaboration, 112The Jefferson Lab Hall A Collaboration, 113The Jefferson Lab Hall A Collaboration, 114The Jefferson Lab Hall A Collaboration, 115The Jefferson Lab Hall A Collaboration, 116The Jefferson Lab Hall A Collaboration, 117The Jefferson Lab Hall A Collaboration, 118The Jefferson Lab Hall A Collaboration, 119The Jefferson Lab Hall A Collaboration, 120The Jefferson Lab Hall A Collaboration, 121The Jefferson Lab Hall A Collaboration, 122The Jefferson Lab Hall A Collaboration, 123The Jefferson Lab Hall A Collaboration, 124The Jefferson Lab Hall A Collaboration, 125The Jefferson Lab Hall A Collaboration, 126The Jefferson Lab Hall A Collaboration, 127The Jefferson Lab Hall A Collaboration, 128The Jefferson Lab Hall A Collaboration, 129The Jefferson Lab Hall A Collaboration, 130The Jefferson Lab Hall A Collaboration, 131The Jefferson Lab Hall A Collaboration, 132The Jefferson Lab Hall A Collaboration, 133The Jefferson Lab Hall A Collaboration, 134The Jefferson Lab Hall A Collaboration, 135The Jefferson Lab Hall A Collaboration, 136The Jefferson Lab Hall A Collaboration, 137The Jefferson Lab Hall A Collaboration, 138The Jefferson Lab Hall A Collaboration, 139The Jefferson Lab Hall A Collaboration, 140The Jefferson Lab Hall A Collaboration, 141The Jefferson Lab Hall A Collaboration, 142The Jefferson Lab Hall A Collaboration, 143The Jefferson Lab Hall A Collaboration, 144The Jefferson Lab Hall A Collaboration, 145The Jefferson Lab Hall A Collaboration, 146The Jefferson Lab Hall A Collaboration, 147The Jefferson Lab Hall A Collaboration, 148The Jefferson Lab Hall A Collaboration, 149The Jefferson Lab Hall A Collaboration, 150The Jefferson Lab Hall A Collaboration, 151The Jefferson Lab Hall A Collaboration, 152The Jefferson Lab Hall A Collaboration, 153The Jefferson Lab Hall A Collaboration, 154The Jefferson Lab Hall A Collaboration, 155The Jefferson Lab Hall A Collaboration, 156The Jefferson Lab Hall A Collaboration, 157The Jefferson Lab Hall A Collaboration, 158The Jefferson Lab Hall A Collaboration, 159The Jefferson Lab Hall A Collaboration, 160The Jefferson Lab Hall A Collaboration, 161The Jefferson Lab Hall A Collaboration, 162The Jefferson Lab Hall A Collaboration, 163The Jefferson Lab Hall A Collaboration, 164The Jefferson Lab Hall A Collaboration

Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1. Read More

2012Jan
Authors: S. Abrahamyan, Z. Ahmed, H. Albataineh, K. Aniol, D. S. Armstrong, W. Armstrong, T. Averett, B. Babineau, A. Barbieri, V. Bellini, R. Beminiwattha, J. Benesch, F. Benmokhtar, T. Bielarski, W. Boeglin, A. Camsonne, M. Canan, P. Carter, G. D. Cates, C. Chen, J. -P. Chen, O. Hen, F. Cusanno, M. M. Dalton, R. De Leo, K. de Jager, W. Deconinck, P. Decowski, X. Deng, A. Deur, D. Dutta, A. Etile, D. Flay, G. B. Franklin, M. Friend, S. Frullani, E. Fuchey, F. Garibaldi, E. Gasser, R. Gilman, A. Giusa, A. Glamazdin, J. Gomez, J. Grames, C. Gu, O. Hansen, J. Hansknecht, D. W. Higinbotham, R. S. Holmes, T. Holmstrom, C. J. Horowitz, J. Hoskins, J. Huang, C. E. Hyde, F. Itard, C. -M. Jen, E. Jensen, G. Jin, S. Johnston, A. Kelleher, K. Kliakhandler, P. M. King, S. Kowalski, K. S. Kumar, J. Leacock, J. Leckey IV, J. H. Lee, J. J. LeRose, R. Lindgren, N. Liyanage, N. Lubinsky, J. Mammei, F. Mammoliti, D. J. Margaziotis, P. Markowitz, A. McCreary, D. McNulty, L. Mercado, Z. -E. Meziani, R. W. Michaels, M. Mihovilovic, N. Muangma, C. Muñoz-Camacho, S. Nanda, V. Nelyubin, N. Nuruzzaman, Y. Oh, A. Palmer, D. Parno, K. D. Paschke, S. K. Phillips, B. Poelker, R. Pomatsalyuk, M. Posik, A. J. R. Puckett, B. Quinn, A. Rakhman, P. E. Reimer, S. Riordan, P. Rogan, G. Ron, G. Russo, K. Saenboonruang, A. Saha, B. Sawatzky, A. Shahinyan, R. Silwal, S. Sirca, K. Slifer, P. Solvignon, P. A. Souder, M. L. Sperduto, R. Subedi, R. Suleiman, V. Sulkosky, C. M. Sutera, W. A. Tobias, W. Troth, G. M. Urciuoli, B. Waidyawansa, D. Wang, J. Wexler, R. Wilson, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, V. Yim, L. Zana, X. Zhan, J. Zhang, Y. Zhang, X. Zheng, P. Zhu

We report the first measurement of the parity-violating asymmetry A_PV in the elastic scattering of polarized electrons from 208Pb. A_PV is sensitive to the radius of the neutron distribution (Rn). The result A_PV = 0. Read More

The techniques for optical calibration of Jefferson Lab's large-acceptance magnetic hadron spectrometer, BigBite, have been examined. The most consistent and stable results were obtained by using a method based on singular value decomposition. In spite of the complexity of the optics, the particles' positions and momenta at the target have been precisely reconstructed from the coordinates measured in the detectors by means of a single back-tracing matrix. Read More

We present a search at Jefferson Laboratory for new forces mediated by sub-GeV vector bosons with weak coupling $\alpha'$ to electrons. Such a particle $A'$ can be produced in electron-nucleus fixed-target scattering and then decay to an $e^+e^-$ pair, producing a narrow resonance in the QED trident spectrum. Using APEX test run data, we searched in the mass range 175--250 MeV, found no evidence for an $A'\to e^+e^-$ reaction, and set an upper limit of $\alpha'/\alpha \simeq 10^{-6}$. Read More

2011Aug

We report the first measurement of the double-spin asymmetry $A_{LT}$ for charged pion electroproduction in semi\nobreakdash-inclusive deep\nobreakdash-inelastic electron scattering on a transversely polarized $^{3}$He target. The kinematics focused on the valence quark region, $0.16Read More

2011Jun

We report the first measurement of target single spin asymmetries in the semi-inclusive $^3{He}(e,e'\pi^\pm)X$ reaction on a transversely polarized target. The experiment, conducted at Jefferson Lab using a 5.9 GeV electron beam, covers a range of 0. Read More

We present an updated extraction of the proton electromagnetic form factor ratio, mu_p G_E/G_M, at low Q^2. The form factors are sensitive to the spatial distribution of the proton, and precise measurements can be used to constrain models of the proton. An improved selection of the elastic events and reduced background contributions yielded a small systematic reduction in the ratio mu_p G_E/G_M compared to the original analysis. Read More

2011Feb
Affiliations: 1The Jefferson Lab Hall A Collaboration, 2The Jefferson Lab Hall A Collaboration, 3The Jefferson Lab Hall A Collaboration, 4The Jefferson Lab Hall A Collaboration, 5The Jefferson Lab Hall A Collaboration, 6The Jefferson Lab Hall A Collaboration, 7The Jefferson Lab Hall A Collaboration, 8The Jefferson Lab Hall A Collaboration, 9The Jefferson Lab Hall A Collaboration, 10The Jefferson Lab Hall A Collaboration, 11The Jefferson Lab Hall A Collaboration, 12The Jefferson Lab Hall A Collaboration, 13The Jefferson Lab Hall A Collaboration, 14The Jefferson Lab Hall A Collaboration, 15The Jefferson Lab Hall A Collaboration, 16The Jefferson Lab Hall A Collaboration, 17The Jefferson Lab Hall A Collaboration, 18The Jefferson Lab Hall A Collaboration, 19The Jefferson Lab Hall A Collaboration, 20The Jefferson Lab Hall A Collaboration, 21The Jefferson Lab Hall A Collaboration, 22The Jefferson Lab Hall A Collaboration, 23The Jefferson Lab Hall A Collaboration, 24The Jefferson Lab Hall A Collaboration, 25The Jefferson Lab Hall A Collaboration, 26The Jefferson Lab Hall A Collaboration, 27The Jefferson Lab Hall A Collaboration, 28The Jefferson Lab Hall A Collaboration, 29The Jefferson Lab Hall A Collaboration, 30The Jefferson Lab Hall A Collaboration, 31The Jefferson Lab Hall A Collaboration, 32The Jefferson Lab Hall A Collaboration, 33The Jefferson Lab Hall A Collaboration, 34The Jefferson Lab Hall A Collaboration, 35The Jefferson Lab Hall A Collaboration, 36The Jefferson Lab Hall A Collaboration, 37The Jefferson Lab Hall A Collaboration, 38The Jefferson Lab Hall A Collaboration, 39The Jefferson Lab Hall A Collaboration, 40The Jefferson Lab Hall A Collaboration, 41The Jefferson Lab Hall A Collaboration, 42The Jefferson Lab Hall A Collaboration, 43The Jefferson Lab Hall A Collaboration, 44The Jefferson Lab Hall A Collaboration, 45The Jefferson Lab Hall A Collaboration, 46The Jefferson Lab Hall A Collaboration, 47The Jefferson Lab Hall A Collaboration, 48The Jefferson Lab Hall A Collaboration, 49The Jefferson Lab Hall A Collaboration, 50The Jefferson Lab Hall A Collaboration, 51The Jefferson Lab Hall A Collaboration, 52The Jefferson Lab Hall A Collaboration, 53The Jefferson Lab Hall A Collaboration, 54The Jefferson Lab Hall A Collaboration, 55The Jefferson Lab Hall A Collaboration, 56The Jefferson Lab Hall A Collaboration, 57The Jefferson Lab Hall A Collaboration, 58The Jefferson Lab Hall A Collaboration, 59The Jefferson Lab Hall A Collaboration, 60The Jefferson Lab Hall A Collaboration, 61The Jefferson Lab Hall A Collaboration, 62The Jefferson Lab Hall A Collaboration, 63The Jefferson Lab Hall A Collaboration, 64The Jefferson Lab Hall A Collaboration, 65The Jefferson Lab Hall A Collaboration, 66The Jefferson Lab Hall A Collaboration, 67The Jefferson Lab Hall A Collaboration, 68The Jefferson Lab Hall A Collaboration, 69The Jefferson Lab Hall A Collaboration, 70The Jefferson Lab Hall A Collaboration, 71The Jefferson Lab Hall A Collaboration, 72The Jefferson Lab Hall A Collaboration, 73The Jefferson Lab Hall A Collaboration, 74The Jefferson Lab Hall A Collaboration

Precise measurements of the proton electromagnetic form factor ratio $R = \mu_p G_E^p/G_M^p$ using the polarization transfer method at Jefferson Lab have revolutionized the understanding of nucleon structure by revealing the strong decrease of $R$ with momentum transfer $Q^2$ for $Q^2 \gtrsim 1$ GeV$^2$, in strong disagreement with previous extractions of $R$ from cross section measurements. In particular, the polarization transfer results have exposed the limits of applicability of the one-photon-exchange approximation and highlighted the role of quark orbital angular momentum in the nucleon structure. The GEp-II experiment in Jefferson Lab's Hall A measured $R$ at four $Q^2$ values in the range 3. Read More

We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for $x>1$, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. Read More

2010Aug
Authors: S. Riordan, S. Abrahamyan, B. Craver, A. Kelleher, A. Kolarkar, J. Miller, G. D. Cates, N. Liyanage, B. Wojtsekhowski, A. Acha, K. Allada, B. Anderson, K. A. Aniol, J. R. M. Annand, J. Arrington, T. Averett, A. Beck, M. Bellis, W. Boeglin, H. Breuer, J. R. Calarco, A. Camsonne, J. P. Chen, E. Chudakov, L. Coman, B. Crowe, F. Cusanno, D. Day, P. Degtyarenko, P. A. M. Dolph, C. Dutta, C. Ferdi, C. Fernandez-Ramirez, R. Feuerbach, L. M. Fraile, G. Franklin, S. Frullani, S. Fuchs, F. Garibaldi, N. Gevorgyan, R. Gilman, A. Glamazdin, J. Gomez, K. Grimm, J. O. Hansen, J. L. Herraiz, D. W. Higinbotham, R. Holmes, T. Holmstrom, D. Howell, C. W. deJager, X. Jiang, M. K. Jones, J. Katich, L. J. Kaufman, M. Khandaker, J. J. Kelly, D. Kiselev, W. Korsch, J. LeRose, R. Lindgren, P. Markowitz, D. J. Margaziotis, S. May-Tal Beck, S. Mayilyan, K. McCormick, Z. E. Meziani, R. Michaels, B. Moffit, S. Nanda, V. Nelyubin, T. Ngo, D. M. Nikolenko, B. Norum, L. Pentchev, C. F. Perdrisat, E. Piasetzky, R. Pomatsalyuk, D. Protopopescu, A. J. R. Puckett, V. A. Punjabi, X. Qian, Y. Qiang, B. Quinn, I. Rachek, R. D. Ransome, P. E. Reimer, B. Reitz, J. Roche, G. Ron, O. Rondon, G. Rosner, A. Saha, M. Sargsian, B. Sawatzky, J. Segal, M. Shabestari, A. Shahinyan, Yu. Shestakov, J. Singh, S. Sirca, P. Souder, S. Stepanyan, V. Stibunov, V. Sulkosky, S. Tajima, W. A. Tobias, J. M. Udias, G. M. Urciuoli, B. Vlahovic, H. Voskanyan, K. Wang, F. R. Wesselmann, J. R. Vignote, S. A. Wood, J. Wright, H. Yao, X. Zhu

The electric form factor of the neutron was determined from studies of the reaction He3(e,e'n)pp in quasi-elastic kinematics in Hall A at Jefferson Lab. Longitudinally polarized electrons were scattered off a polarized target in which the nuclear polarization was oriented perpendicular to the momentum transfer. The scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons that were registered in a large-solid-angle detector. Read More

High precision measurements of induced and transferred recoil proton polarization in d(polarized gamma, polarized p})n have been performed for photon energies of 277--357 MeV and theta_cm = 20 degrees -- 120 degrees. The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. At the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used. Read More

The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, where a proton is knocked-out of the nucleus with high momentum transfer and high missing momentum, show that in 12C the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars. Read More

2008Nov
Affiliations: 1nee Rohe, 2nee Rohe, 3nee Rohe, 4nee Rohe, 5nee Rohe, 6nee Rohe, 7nee Rohe, 8nee Rohe, 9nee Rohe, 10nee Rohe, 11nee Rohe, 12nee Rohe, 13nee Rohe, 14nee Rohe, 15nee Rohe, 16nee Rohe, 17nee Rohe, 18nee Rohe, 19nee Rohe, 20nee Rohe, 21nee Rohe, 22nee Rohe, 23nee Rohe, 24nee Rohe, 25nee Rohe, 26nee Rohe, 27nee Rohe, 28nee Rohe, 29nee Rohe, 30nee Rohe, 31nee Rohe, 32nee Rohe, 33nee Rohe, 34nee Rohe, 35nee Rohe, 36nee Rohe, 37nee Rohe, 38nee Rohe, 39nee Rohe, 40nee Rohe, 41nee Rohe, 42nee Rohe, 43nee Rohe, 44nee Rohe, 45nee Rohe, 46nee Rohe, 47nee Rohe, 48nee Rohe, 49nee Rohe, 50nee Rohe, 51nee Rohe, 52nee Rohe

We have extracted QCD matrix elements from our data on double polarized inelastic scattering of electrons on nuclei. We find the higher twist matrix element \tilde{d_2}, which arises strictly from quark- gluon interactions, to be unambiguously non zero. The data also reveal an isospin dependence of higher twist effects if we assume that the Burkhardt-Cottingham Sum rule is valid. Read More

An experimental study of the 16O(e,e'K^+)16N_Lambda reaction has been performed at Jefferson Lab. A thin film of falling water was used as a target. This permitted a simultaneous measurement of the p(e,e'K^+)Lambda,Sigma_0 exclusive reactions and a precise calibration of the energy scale. Read More