R. A. Harrison - Rosebury School

R. A. Harrison
Are you R. A. Harrison?

Claim your profile, edit publications, add additional information:

Contact Details

Name
R. A. Harrison
Affiliation
Rosebury School
City
Epsom
Country
United Kingdom

Pubs By Year

Pub Categories

 
Solar and Stellar Astrophysics (12)
 
Physics - Atmospheric and Oceanic Physics (10)
 
Physics - Geophysics (9)
 
High Energy Astrophysical Phenomena (7)
 
Physics - Space Physics (4)
 
Quantitative Biology - Biomolecules (3)
 
Physics - History of Physics (2)
 
Physics - Materials Science (2)
 
Nuclear Theory (2)
 
Earth and Planetary Astrophysics (2)
 
Physics - Instrumentation and Detectors (2)
 
Mathematics - Mathematical Physics (2)
 
Computer Science - Computational Engineering; Finance; and Science (2)
 
Mathematical Physics (2)
 
Physics - Physics Education (2)
 
Computer Science - Human-Computer Interaction (1)
 
Instrumentation and Methods for Astrophysics (1)
 
Astrophysics (1)
 
Computer Science - Mathematical Software (1)
 
Mathematics - History and Overview (1)
 
Computer Science - Networking and Internet Architecture (1)
 
High Energy Physics - Experiment (1)
 
Physics - Plasma Physics (1)
 
Physics - Soft Condensed Matter (1)
 
Mathematics - Numerical Analysis (1)
 
Physics - Biological Physics (1)

Publications Authored By R. A. Harrison

Layer clouds are abundant in the Earth's atmosphere. Such clouds do not become sufficiently strongly charged to generate lightning, but they show weak charging along the upper and lower cloud boundaries where there is a conductivity transition. Cloud edge charging has recently been observed using balloon-carried electrometers. Read More

Operating networks depends on collecting and analyzing measurement data. Current technologies do not make it easy to do so, typically because they separate data collection (e.g. Read More

Increasing interest in energetic particle effects on weather and climate has motivated development of a miniature scintillator-based detector intended for deployment on meteorological radiosondes or unmanned airborne vehicles. The detector was calibrated with laboratory gamma sources up to 1.3 MeV, and known gamma peaks from natural radioactivity of up to 2. Read More

We present a major step forward towards accurately predicting the arrivals of coronal mass ejections (CMEs) on the terrestrial planets, including the Earth. For the first time, we are able to assess a CME prediction model using data over almost a full solar cycle of observations with the Heliophysics System Observatory. We validate modeling results on 1337 CMEs observed with the Solar Terrestrial Relations Observatory (STEREO) heliospheric imagers (HI) with data from 8 years of observations by 5 spacecraft in situ in the solar wind, thereby gathering over 600 independent in situ CME detections. Read More

Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Read More

Atmospheric electric field (AEF) measurements were carried out in three different sites forming a triangular array in Southern Portugal. The campaign was performed during the summer characterized by Saharan dust outbreaks; the 16th-17th July 2014 desert dust event is considered here. Evidence of long-range dust electrification is attributed to the air-Earth electrical current creating a positive space-charge inside of the dust layer. Read More

The systematic monitoring of the solar wind in high-cadence and high-resolution heliospheric images taken by the Solar-Terrestrial Relation Observatory (STEREO) spacecraft permits the study of the spatial and temporal evolution of variable solar wind flows from the Sun out to 1~AU, and beyond. As part of the EU Framework 7 (FP7) Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) project, we have generated a catalogue listing the properties of 190 corotating structures well-observed in images taken by the Heliospheric Imager instruments on-board STEREO-A. We present here one of very few long-term analyses of solar wind structures advected by the background solar wind. Read More

Zircon crystals offer a unique combination of suitability for high-precision radiometric dating and high resistance to alteration. Paleomagnetic experiments on ancient zircons may potentially constrain the earliest geodynamo, which holds broad implications for the early Earth interior and atmosphere. However, the ability of zircons to record accurately the geomagnetic field has not been fully demonstrated. Read More

In this study, we present a new method for forecasting arrival times and speeds of coronal mass ejections (CMEs) at any location in the inner heliosphere. This new approach enables the adoption of a highly flexible geometrical shape for the CME front with an adjustable CME angular width and an adjustable radius of curvature of its leading edge, i.e. Read More

Detailed observations of the solar system planets reveal a wide variety of local atmospheric conditions. Astronomical observations have revealed a variety of extrasolar planets none of which resembles any of the solar system planets in full. Instead, the most massive amongst the extrasolar planets, the gas giants, appear very similar to the class of (young) Brown Dwarfs which are amongst the oldest objects in the universe. Read More

Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt $\gamma$-ray emission was still ongoing. In this paper, we present densely sampled (10-second temporal resolution) early optical light curves in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. Read More

MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics. Read More

DNA bending is biologically important for genome regulation and is relevant to a range of nanotechnological systems. Recent results suggest that sharp bending is much easier than implied by the widely-used worm-like chain model; many of these studies, however, remain controversial. We use a coarse-grained model, previously fitted to DNA's basic thermodynamic and mechanical properties, to explore strongly bent systems. Read More

DNA cyclization is a powerful technique to gain insight into the nature of DNA bending. The worm-like chain model provides a good description of small to moderate bending fluctuations, but some experiments on strongly-bent shorter molecules suggest enhanced flexibility over and above that expected from the worm-like chain. Here, we use a coarse-grained model of DNA to investigate the thermodynamics of DNA cyclization for molecules with less than 210 base pairs. Read More

We present predictions of centimeter and millimeter radio emission from reverse shocks in the early afterglows of gamma-ray bursts with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parametrization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. Read More

Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly-bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, they are all characterized by large sizes and complex topologies, in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Read More

Forecasting the in situ properties of coronal mass ejections (CMEs) from remote images is expected to strongly enhance predictions of space weather, and is of general interest for studying the interaction of CMEs with planetary environments. We study the feasibility of using a single heliospheric imager (HI) instrument, imaging the solar wind density from the Sun to 1 AU, for connecting remote images to in situ observations of CMEs. We compare the predictions of speed and arrival time for 22 CMEs (in 2008-2012) to the corresponding interplanetary coronal mass ejection (ICME) parameters at in situ observatories (STEREO PLASTIC/IMPACT, Wind SWE/MFI). Read More

We use a parent sample of 118 gamma-ray burst (GRB) afterglows, with known redshift and host galaxy extinction, to separate afterglows with and without signatures of dominant reverse-shock emission and to determine which physical conditions lead to a prominent reverse-shock emission. We identify 10 GRBs with reverse shock signatures - GRBs 990123, 021004, 021211, 060908, 061126, 080319B, 081007, 090102, 090424 and 130427A. By modeling their optical afterglows with reverse and forward shock analytic light curves and using Monte Carlo simulations, we estimate the parameter space of the physical quantities describing the ejecta and circumburst medium. Read More

We use high--quality, multi-band observations of Swift GRB120404A, from gamma-ray to radio frequencies, together with the new hydrodynamics code of van Eerten et al. (2012) to test the standard synchrotron shock model. The evolution of the radio and optical afterglow, with its prominent optical rebrightening at t_rest 260-2600 s, is remarkably well modelled by a decelerating jet viewed close to the jet edge, combined with some early re-energization of the shock. Read More

We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus-Wind, Swift, and Fermi, GRB 091024A has prompt emission episodes covering ~1300 s, accompanied by bright and highly structured optical emission captured by various rapid-response facilities, including the 2-m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and SRO. We also observed the burst with 8- and 10-m class telescopes and determine the redshift to be z = 1. Read More

To simulate long time and length scale processes involving DNA it is necessary to use a coarse-grained description. Here we provide an overview of different approaches to such coarse graining, focussing on those at the nucleotide level that allow the self-assembly processes associated with DNA nanotechnology to be studied. OxDNA, our recently-developed coarse-grained DNA model, is particularly suited to this task, and has opened up this field to systematic study by simulations. Read More

2013Aug
Affiliations: 1State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing, China, 2Rutherford-Appleton Laboratory, 3State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing, China, 4Reading University, Reading, UK, 5Rutherford-Appleton Laboratory, 6Reading University, Reading, UK

Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White-light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons, and therefore depend on both the viewing geometry and the electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component $B_\parallel$, and the electron density. Read More

Lord Kelvin (William Thomson) made important contributions to the study of atmospheric electricity during a brief but productive period from 1859-1861. By 1859 Kelvin had recognised the need for "incessant recording" of atmospheric electrical parameters, and responded by inventing both the water-dropper instrument for measuring the atmospheric Potential Gradient (PG), and photographic data logging. The water-dropper was widely adopted internationally and is still in use today. Read More

The relative strength between forward and reverse shock emission in early gamma-ray burst afterglow reflects that of magnetic energy densities in the two shock regions. We numerically show that with the current standard treatment, the fireball magnetization is underestimated by up to two orders of magnitude. This discrepancy is especially large in the sub-relativistic reverse shock regime (i. Read More

Charged particles are continually generated in atmospheric air, and the interaction between natural ionisation and atmospheric particles is complicated. It is of some climatic importance to establish if ions are implicated in particle formation. Atmospheric ion concentrations have been investigated here at high temporal resolution, using Gerdien ion analysers at a site where synchronous meteorological measurements were also made. Read More

We present multi-point in situ observations of a complex sequence of coronal mass ejections (CMEs) which may serve as a benchmark event for numerical and empirical space weather prediction models. On 2010 August 1, instruments on various space missions (Solar Dynamics Observatory/ Solar and Heliospheric Observatory/Solar-TErrestrial-RElations-Observatory) monitored several CMEs originating within tens of degrees from solar disk center. We compare their imprints on four widely separated locations, spanning 120 degree in heliospheric longitude, with radial distances from the Sun ranging from MESSENGER (0. Read More

We discuss the detection and evolution of a complex series of transient and quasi-static solar wind structures in the days following the well-known comet 2P / Encke tail disconnection event in April 2007. The evolution of transient solar wind structures ranging in size from < 105 km to > 106 km was characterized using one-minute time resolution observation of Interplanetary Scintillation (IPS) made using the European Incoherent SCA Tter (EISCA T) radar system. Simultaneously, the global structure and evolution of these features was characterized by the Heliospheric Imagers (HI) on the Solar TERrestrial RElations Observatory (STEREO) spacecraft, placing the IPS observations in context. Read More

The self-consistent Hartree-Fock-Bogoliubov problem in large boxes can be solved accurately in the coordinate space with the recently developed solvers HFB-AX (2D) and MADNESS-HFB (3D). This is essential for the description of superfluid Fermi systems with complicated topologies and significant spatial extend, such as fissioning nuclei, weakly-bound nuclei, nuclear matter in the neutron star rust, and ultracold Fermi atoms in elongated traps. The HFB-AX solver based on B-spline techniques uses a hybrid MPI and OpenMP programming model for parallel computation for distributed parallel computation, within a node multi-threaded LAPACK and BLAS libraries are used to further enable parallel calculations of large eigensystems. Read More

We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and HI data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and find that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field-of-view. Read More

The successive coronal mass ejections (CMEs) from 2010 July 30 - August 1 present us the first opportunity to study CME-CME interactions with unprecedented heliospheric imaging and in situ observations from multiple vantage points. We describe two cases of CME interactions: merging of two CMEs launched close in time and overtaking of a preceding CME by a shock wave. The first two CMEs on August 1 interact close to the Sun and form a merged front, which then overtakes the July 30 CME near 1 AU, as revealed by wide-angle imaging observations. Read More

The power of mobile devices has increased dramatically in the last few years. These devices are becoming more sophisticated allowing users to accomplish a wide variety of tasks while on the move. The increasingly mobile nature of business has meant that more users will need access to spreadsheets while away from their desktop and laptop computers. Read More

A goal of the NASA STEREO mission is to study the feasibility of forecasting the direction, arrival time and internal structure of solar coronal mass ejections (CMEs) from a vantage point outside the Sun-Earth line. Through a case study, we discuss the arrival time calculation of interplanetary CMEs (ICMEs) in the ecliptic plane using data from STEREO/SECCHI at large elongations from the Sun in combination with different geometric assumptions about the ICME front shape (Fixed-\Phi (FP): a point and harmonic Mean (HM): a circle). These forecasting techniques use single-spacecraft imaging data and are based on the assumptions of constant velocity and direction. Read More

Multiferroic BiFeO3 ceramics have been doped with Ca. The smaller ionic size of Ca compared with Bi means that doping acts as a proxy for hydrostatic pressure, at a rate of 1%Ca=0.3GPa. Read More

Snowfall during anticyclonic, non-frontal, and foggy conditions is surprising. Because it is often not forecast, it can present a hazard to transport and modify the surface albedo. In this report, we present some observations of snowfall during conditions of freezing fog in the UK during the winter of 2008/09. Read More

2009Feb
Affiliations: 1MSSL-UCL, 2ESO, 3INAF, 4MSSL-UCL, 5ESO, 6U.Tubingen, 7MPA, 8Rosebury School

Starting from the Strasbourg ESO Catalogue (SEC) of Planetary Nebulae (PNe), the largest PNe compilation available with ~ 1500 objects, we undertook a comprehensive study of the whole PN population, never carried out so far, only using on-line catalogues and data from public imaging surveys. The study includes the PN dynamics through their measured proper motions (PMs), the study of their galactocentric orbits, the study of their interactions with the interstellar medium (ISM), and the study of their UV-to-IR spectral energy distribution (SED). As a preliminary step required to perform cross-correlations with on-line catalogues, we first went through a systematic reassessment of the PN coordinates (Kerber et al. Read More

Commission 10 deals with solar activity in all of its forms, ranging from the smallest nanoflares to the largest coronal mass ejections. This report reviews scientific progress over the roughly two-year period ending in the middle of 2008. This has been an exciting time in solar physics, highlighted by the launches of the Hinode and STEREO missions late in 2006. Read More

We show experimental switching data on microscale capacitors of lead-zirconate-titanate (PZT), which reveal time-resolved domain behavior during switching on a 100-ns scale. For small circular capacitors, an unswitched domain remains in the center while complete switching is observed in square capacitors. The observed effect is attributed to the formation of vortex domain during polarization switching in circular capacitors. Read More

Electricity in the atmosphere provides an ideal topic for educational outreach in environmental science. To support this objective, a simple instrument to measure real atmospheric electrical parameters has been developed and its performance evaluated. This project compliments educational activities undertaken by the Coupling of Atmospheric Layers (CAL) European research collaboration. Read More

Electricity in the atmosphere provides an ideal topic for educational outreach in environmental science. To support this objective, a simple instrument to measure real atmospheric electrical parameters has been developed and its performance evaluated. This project compliments educational activities undertaken by the Coupling of Atmospheric Layers (CAL) European research collaboration. Read More

A multifactor parameterization is described to permit the efficient calculation of collision efficiency (E) between electrically charged aerosol particles and neutral cloud droplets in numerical cloud and climate models. The four parameter representation summarizes the results obtained from a detailed microphysical model of collision efficiency, which accounts for the different forces acting on the aerosol in the path of falling cloud droplets. The parameterizations range of validity is for aerosol particle radius 0. Read More

Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Read More

Surface neutron counter data are often used as a proxy for atmospheric ionisation from cosmic rays in studies of extraterrestrial effects on climate. Neutron counter instrumentation was developed in the 1950s and relationships between neutron counts, ionisation and meteorological conditions were investigated thoroughly using the techniques available at the time; the analysis can now be extended using modern data. Whilst surface neutron counts are shown to be a good proxy for ionisation rate, the usual meteorological correction applied to surface neutron measurements, using surface atmospheric pressure, does not completely compensate for tropospheric effects on neutron data. Read More

Early surface measurements of atmospheric Potential Gradient were made in many European cities in the nineteenth century (C19th). The data was usually obtained at hourly resolution, and good accounts of the calibration of the instruments are also often available. The PG measurements made by Chauveau on the Eiffel Tower, soon after its completion in the 1890s, are particularly notable. Read More

We consider the linear stability of the spherically-symmetric stationary solutions of the Schrodinger-Newton equations. We find that the ground state is linearly stable, with only imaginary eigenvalues, while the n-th excited state has n quadruples of complex eigenvalues as well as purely imaginary ones and so is linearly unstable. Read More

We present a numerical study of the time-dependent SN equations in 3 dimensions with 3 different kinds of symmetry: spherically symmetric, axially symmetric and translationally symmetric. We find that the solutions manifest the competing tendencies of dispersion from the Schrodinger equation and gravitational attraction from the Poisson equation. Only the ground state is stable, and lumps of probability attract each other gravitationally before dispersing to leave a nugget of the ground state. Read More