Qinru Qiu

Qinru Qiu
Are you Qinru Qiu?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Qinru Qiu
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Computer Vision and Pattern Recognition (2)
 
Computer Science - Artificial Intelligence (1)
 
Computer Science - Distributed; Parallel; and Cluster Computing (1)

Publications Authored By Qinru Qiu

Recently, Deep Convolutional Neural Networks (DCNNs) have made unprecedented progress, achieving the accuracy close to, or even better than human-level perception in various tasks. There is a timely need to map the latest software DCNNs to application-specific hardware, in order to achieve orders of magnitude improvement in performance, energy efficiency and compactness. Stochastic Computing (SC), as a low-cost alternative to the conventional binary computing paradigm, has the potential to enable massively parallel and highly scalable hardware implementation of DCNNs. Read More

Automatic decision-making approaches, such as reinforcement learning (RL), have been applied to (partially) solve the resource allocation problem adaptively in the cloud computing system. However, a complete cloud resource allocation framework exhibits high dimensions in state and action spaces, which prohibit the usefulness of traditional RL techniques. In addition, high power consumption has become one of the critical concerns in design and control of cloud computing systems, which degrades system reliability and increases cooling cost. Read More

With recent advancing of Internet of Things (IoTs), it becomes very attractive to implement the deep convolutional neural networks (DCNNs) onto embedded/portable systems. Presently, executing the software-based DCNNs requires high-performance server clusters in practice, restricting their widespread deployment on the mobile devices. To overcome this issue, considerable research efforts have been conducted in the context of developing highly-parallel and specific DCNN hardware, utilizing GPGPUs, FPGAs, and ASICs. Read More